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ABSTRACT

This paper presents an approach for efficiently simulating highly deformable 2D substances undergoing vis-

coplastic deformations in real time. The user deals with objects in the same way as clay works. Based on the work

of Y. Takai and H. Arata, we suggest a new approach for the computation of repartition rules. We use a discrete

2D space in which each pixel is given a certain amount of clay at the intialisation of the system. The user’s tool

only moves some clay from a pixel to another, creating an overload. The repartition of this overload amoung the

neighbours is then made according to the laws of plastic deformation thanks to a cellular automaton.
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1 INTRODUCTION

On the first CAD systems, the modeling techniques

were based on strict geometrical and mathematical

operators. Designed for mechanical engineering, they

require the user to have a very good knowledge of 3D

geometry and a good spatial recognition. Furthermore,

it is really difficult to model a natural object (animal,

human face, etc.) from and with the geometric primi-

tives proposed.

A very useful technique is image metamorphosis,

or image "morphing". Given two or more objects, a

smooth transition between them is created by gener-

ating intermediate objects. [Ler95] [Coh98] [Bei92]

[Che95] [He94]. This very popular method needs the

final image : it is thus impossible to apply it to the

problem of shape modeling from scratch.

Another approach to this problem is the use of

parametric patches or primitives to manipulate the sur-

face of the object: Bezier Curves, NURBS, control

points, disk Fields, etc. This kind of method is both

efficient and applicable: [Wyv97], [Wel92],
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[Hsu92], [Che96]. The main limit of this tech-

nique is that the user cannot deform the objects in an

intuitive way.

Because those systems are inadapted to artistic

creation, Free-form shape modeling is now a key-

technique in modern computer graphics. The object

is considered as clay which shows well-known defor-

mations. It is then much more simple for the user to

interact with the object. In that case, the modelling

task is carried out in a natural and user-friendly way,

exactly like during clayworks.

Many research works have been carried out on

simulation of such deformations using physical laws:

Finite Element method [Pen89] [Wie97] [Deb00],

methods based on elasticity theory [Deb00] [Ter88]

[Don01], particle systems [Ree83] [Des96], etc. So

far, none of these methods allows real time interaction

with the user : they require much too long computa-

tion time for complex shapes and are not suitable for

human interaction.

Some researches are undergoing on volume sculpt-

ing in a 3D virtual space. The idea is to use a discreti-

sation of the space in voxel (or pixel in the 2D case).

Each voxel can be full or empty : the user starts from

a basic shape and then removes or adds matter where

he wants [Aya01]. Such an approach, combined with

a cellular automaton, has been developed by Y. Takai

and H. Arata [Ara99]. In this approach, a 3D cellular

automaton is used to simulate plastic deformations of

clay. To each voxel is allocated a finite state automaton

which is given the distribution rules of the virtual clay.

Each automaton repeats state transitions according to
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the state of their neighbours.

This paper presents an extension of the work of

Y. Takai and H. Arata. Several new repartition algo-

rithms have been developed and tested in order to get

more realistic results and to evaluate the efficiency and

the speed of the method. A parallel implementation of

the automaton has also been tested in the 2D case and

will be presented here.

2 THE VIRTUAL CLAY MODEL

This section is a very short presentation of the work

suggested by H. Arata and al. in [Ara99]. In Arata’s

method, the deformation is considered as a physical

process of equalizing density distribution of the virtual

clay in a 2D space. When the density of virtual clay is

under a certain threshold everywhere, the virtual clay

objects keeps its own shape. The deformation of the

object is caused by clay transportation from high den-

sity portions to low density portions. In this approach,

each pixel is given an integer value corresponding to

the mass of clay included in the pixel. A threshold

is defined in the pixel space : every pixel over this

threshold will try to give some clay to its neighbours.

The process is implemented by a cellular automaton

using 2D Margolus Neighborhood.

Figure 1 : Margolus neighborhood

Figure 1 shows an example of Margolus neighbor-

hood. In this neighborhood, the nearest 4 cells make

one block: the neighborhood can be seen as the block

including the cell itself. The transitions of all the cells

belonging to a same block will be performed in one

step of the algorithm. In addition, the boundaries of

the blocks are changed at each step, as shown in fig 1.

During even steps, a cell will not belong to the same

block as during odd steps : a cell alternates its neigh-

borhood in every transition step.

Figure 2 illustrates the transition rules in the 2D

case. Each cell has a binary state depending on

whether it is above or under the threshold and a cer-

tain amount of clay mk. A block is composed of four

cells, over or under the threshold. Hence, four differ-

ent block patterns can occurr.

Figure 2 : Block patterns and state transition rules

The repartition of the excess of clay dmk will be

performed with the following algorithm :

For each block

For each cell k over threshold

dmk ← mk ∗α

mk ← mk −dmk

For each cell j under threshold

m j ← m j +(dm1 +dm2 + ...+dmr)/n

where α is a rate constant for distribution

( 0 < α < 1 ), r the number of cells over threshold

and n the number of cells under threshold. It is im-

portant to note that this model can deal with physical

obstacles, these obstacles being cells to which clay

cannot be distributed. In this model, all plastic de-

formation is based on a push operation : the clay is

transferred from a cell into the adjacent cell along the

normal direction of the tool.

This model allows real-time interaction with the

user in very good conditions, but because the repar-

tition rules are not physically-based, the behaviour of

the virtual clay can sometimes be very surprising and

not intuitive. Our contribution to this work will fo-

cus on enhancing the realism of the deformation tak-

ing into account the time constraint so that real-time

interaction remains possible.

3 OUR APPROACH

Even though physics based modeling does not seem

to be possible in real time, it is possible to build new



repartition rules that provide results closer to the real-

istic behavior. The macroscopic behavior of the object

obtained with the method described in [Ara99] is not

always realistic. The following pictures show a cylin-

der of clay pressed by a plate submitted to a vertical

displacement and horizontally maintained :

Figure 3.1: An exemple of unexpected

macroscopic behaviour of the clay

Figure 3.2: The density in the object is not

homogeneous

In figure 3.2, the colors of the clay are proportion-

nal to the amount of virtual clay in a pixel. As we

can see, the distribution of density in the object is not

homogeneous. To avoid such situation, we introduce

three different new repartition rules.

First Repartition Rule

This problem can be solved thanks to a better under-

standing of the physics involved in the process. One

of the models provided studied in rheology for such

deformations is the Bingham’s fluid. Bingham’s flu-

ids are perfect visco-plastic bodies. They act like a

newtonian fluid when the constraint is over a certain

threshold τc. If τ denotes the constraint applied to the

object, and ε is the deformation, the behaviour of a

Bingham’s fluid is described by the following state

equation :

{

τ < τc ε̇ = 0

τ > τc τ = τc +αε̇
(1)

From this model comes a new idea for the reparti-

tion law. In the previous method, a cell over the thresh-

old gives a certain amount of its clay to its neighbours,

without any consideration for the threshold. From this

comes the heterogeneity of the density in the object.

Our first new repartition law is inspired from Bing-

ham’s model. We keep the idea of a threshold, but this

threshold is considered as a local stable state for the

cell. The quantity of clay a cell can give away is deter-

mined by this threshold: left alone, a cell will tend to

go back to the nearest stable state. The new repartition

law is the following:

For each block

For each cell k over threshold Tc

dmk ← mk −Tc

mk ← mk −dmk

For each cell j under threshold Tc

m j ← m j +(dm1 +dm2 + ...+dmr)/n

The value of the threshold Tc and the initial quan-

tity of matter in the cells will determinate the behavior

of our virtual clay. For great values of the threshold,

the virtual clay will be very compressible and will not

flow easily. For values near zero, the clay is nearly

incompressible and behaves like a newtonian fluid.

Because this algorithm was implemented using

integers, we have to take into account the error intro-

duced by the division (the total quantity of clay must

be conserved through the deformation). This error is

added randomly to one of the neighbours of the cell.

As you can see in figure 4, the visual aspect of the

deformation is good and the density is homogeneous.

Furthermore, the computation time is about the same

as in [Ara99] (cf figure 6 for a comparison ).

Figure 4.1: Results obtained with repartition law 1

Figure 4.2: The density in the object is now

homogeneous

Second Repartition Rule

Even though the results of method 1 are correct, there

is something wrong in the way the clay is allocated

to the neighbours. If we have a look on the way this

excess clay is reparted, we can observe that all the

accepting cells will have to accept the same quantity,

no matter how much clay they already contain.



This second repartition law introduces a new con-

cept in our algorithm : the concept of absorbance. The

absorbance A is the amount of clay necessary to reach

the state of maximum compressibility in accepting

cells.

For each block

For each cell k over threshold Tc

E ← E +(mk −Tc )

For each cell j under threshold Tc

A ← A+(Tc −m j)

For each block, E is the excess clay in the cells

over the threshold, A is the room available in the cells

under threshold.

• if E < A, the absorbing cells are sorted and we

begin by filling the cells with the less clay in-

side.

For each absorbing cell j (sorted by quantity of clay)

temp ← min(Tc −m j,E)
m j ← m j + temp

E ← E − temp

• if E > A, the clay is equally reparted to the cells

:

For each absorbing cell j, jε{1 . . .n} :

m j ← Tc +
E −A

n

The results obtained with this second repartition

rule are visually correct, but the computing time is

now very long. As shown in figure 6, the evolution of

the computing time of each state is not constant with

this method and prevents from using it in real time

applications. It is obvious that the sort of the absorb-

ing cells is a cpu-consuming operation, this is why we

built this third and last repartition rule.

Third Repartition Rule

The principle of the method remains the same : for

each block, we determinate the quantity of clay E in

excess and the total absorbance A. But instead of try-

ing to sort the absorbing cells, the repartition of E will

be made at the pro-rata of absorbance :

For each block

For each cell k over threshold Tc

E ← E +(mk −Tc )

mk ← Tc

For each cell j under threshold Tc

A ← A+(Tc −m j)
For each cell j under threshold Tc

m j ← m j +E
Tc −m j

A

This last method presents the avantages of the two

previous ones. The deformation is closer to the real

one, and the computing time is reduced to its min-

imum because all the calculation is performed in a

simple affectation operation. The result of the imple-

mentation is illustrated in figure 5.

Figure 5: Results with repartition law 3

Comparison of the Methods

There are two aspects in the evalutation of a method:

the final aspect of the object and the time elapsed be-

fore the stabilisation of the automaton. Figure 6 is a

comparison of the stabilisation time for the four algo-

rithms in the example of the cylinder pressed by an

horizontal plate. The tests were performed on a dell

workstation "Precision 530" ( bi-processors Xeon 1.9

Ghz, 1 Gig Ram ) running Linux Redhat 7.3 .

Method 2, as described in the previous lines, is not

converging : the computation time does not seem to be

majorated and thus is not usable for real time applica-

tions. Method 1 and 3, are of course longer than the

method described by Arata and al. [Ara99] but this is

due to the fact that we are looking for more realism in

the deformation and need more computing. Anyway,

the computing time does not exceed 500 ms without

any optimisation in the algorithm nor parallelisation :

the conditions for real-time usability are reached.



Figure 6: Time comparison

4 PARALLELISATION OF THE

ALGORITHM

The problem of working with voxels is the compu-

tational complexity. For a voxel space of size n, n2

operations will be performed for the 2D case and n3

for the 3D case. Furthermore, the greater n is, and the

more precise is the model. This is the reason why cel-

lular automata are interesting : one of their advantage

is the fact that it is a highly parallel structure and as a

consequence, they allow to work with greater values

of n.

One of the methods available for using cellular

automata systems in optimal conditions is the use of

Posix threads for maximum efficiency. In this arti-

cle, we will only describe the 2 threads case, but the

method can be easily extended to n threads.

Odd Thread

Zone 1

Zone 2
Time

Even Thread

Zone 1

Zone 2

Lattice

Figure 7 : Two threads working on the same lattice

If we take a closer look to the algorithm, we can

observe that it is not necessary for a step to be finished

before beginning the next one. Even and odd steps

can be performed by different threads as long as we

make sure that they will not interact on the same cells

concurrently and as long as they remain in the same

order.

In order to make sure that these conditions are re-

spected, we have cut our working grid in two zones.

Each one is seen as an unsharable ressource. Figure 7

illustrates the use of the lattice by two threads :

Two threads are used, one for the odd steps and

one for the even steps of the algorithm. The synchro-

nization between the two threads is made thanks to a

simple petri network, described in figure 8.

Zone 2

Zone 1

Thread 1 Thread 2

Figure 8 : Petri Network used for threads

synchronisation



Thanks to this use of the Posix threads, the com-

putation time before stabilisation is nearly divided by

two. An implementation on a workstation using shared

cache memory should allow us to make this time even

shorter.

5 EXTENSION TO THE 3D CASE

Figure 9 : 3D Margolus neighborhood

( odd and even steps )

The repartition rules presented in the previous

pages are general and can be applied to the 3D case

without any change. The margolus neighborhood, of

course, was adapted and is represented in figure 9.

The parallalelisation of the algorithm in the 3D

case is also based on what we presented in the pre-

vious sections. For p threads, the voxel space is cut

into p horizontal layers.

6 RESULTS AND

PERSPECTIVES

As we saw in the previous sections, it is possible to

use cellular automata for interactive and realistic sim-

ulations of deformations. The method we have pre-

sented in this paper allows real time interaction and

a natural behaviour of the clay in the 2D case. The

different repartition rules and the parallelisation of the

algorithm can be extended to the 3D case with no real

difficulty. The following pictures show some exam-

ples of deformations in a 3D voxel space. This work

is a first attempt to make a realistic modelisation of

viscoplastic deformations in real time. The aim of our

research work is now on enhancing the realism of the

deformation and the interactivity between the user and

the 3D system.
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Figure 10 : Cube pressed by a small plate (repartition rule 3)

Figure 11 : Cube pressed by a big plate (repartition rule 3)

Figure 12 : Cube pressed by two big plates (repartition rule 3 )


