
Online Accelerated Rendering of Visual Hulls in Real
Scenes

Ming Li, Marcus Magnor and Hans-Peter Seidel
Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85

D-66123, Saarbrücken, Germany

{ming,magnor,hpseidel}@mpi-sb.mpg.de

ABSTRACT
This paper presents an online system which is capable of reconstructing and rendering dynamic objects in real

scenes. We reconstruct visual hulls of the objects by using a shape-from-silhouette approach. During rendering, a

novel blending scheme is employed to compose multiple background images. Visibility artifacts on the dynamic

object are removed by using opaque projective texture mapping. We also propose a dynamic texture packing tech-

nique to improve rendering performance by exploiting region-of-interest information. Our system takes multiple

live or pre-recorded video streams as input. It produces realistic real-time rendering results of dynamic objects in

their surrounding natural environment in which the user can freely navigate.

Keywords

Image-based Modeling and Rendering, Hardware-accelerated Rendering, Projective Texture Mapping, Shadow

Mapping, Visual Hull Rendering.

1 INTRODUCTION

In the past few years, Image-Based Modeling and

Rendering systems configured with multiple video

cameras [Moe96][Ved98][Mat01] have been devel-

oped to visualize dynamic objects in real scenes.

These systems enable a wide range of applications

such as 3D interactive TV, computer games, immer-

sive tele-collaboration, sports analysis, etc. In many

cases, real-time performance is a critical aspect of

these applications.

Recently, the shape from silhouette (SfS) approach

[Sze93] has been successfully used in real time sys-

tems [Mat00][Lok01][Mat01]. The reconstruction re-

sult of this approach is the Visual Hull [Lau94], an ap-

proximate shell that envelopes the true geometry of the

object. The visual hull allows real-time reconstruction

and rendering, yet some improvements are still possi-

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted with-

out fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy oth-

erwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972

WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.

Copyright UNION Agency - Science Press

ble to obtain faster and better rendering results. In this

paper, we make three contributions to the background

and visual hull rendering algorithm.

We propose a novel blending scheme to hide bound-

ary seams when composing background images. We

then extend the projective texture mapping technique

to remove the artifact which we call shadow leak. Fi-

nally, we make use of region-of-interest information

to pack multi-view textures in order to improve ren-

dering performance.

The remainder of this paper is organized as follows.

Section 2 discusses some previous work related to our

topic. Section 3 gives an overview of our system. We

explain how to reconstruct the dynamic 3D model in

Section 4 and describe the rendering algorithm in Sec-

tion 5. After showing some results, we conclude this

paper and suggest several future research directions.

2 RELATED WORK

The problem of reconstructing 3D objects from multi-

ple images has been investigated for decades. Some

model-based methods try to minimize an objective

function [Deb96], which characterizes the difference

between the 2D projection of parameterized features

and their counterparts in real images. Such approaches

usually involve laborious user interaction. Other

methods like Depth from Stereo (DfS) [Nar98] and

Shape from Silhouette (SfS) can be fully automated

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295549119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and are promising candidates for online 3D recon-

struction systems. The SfS method has become quite

popular recently because the result is robust compared

to the noisy output of DfS. More importantly, a con-

sistent 3D model can be directly obtained using SfS,

while in the stereo case, one must post-process the

depth results from different image pairs in order to ob-

tain a consistent 3D model [Cur96].

Hardware-supported projective texture mapping is

widely adopted for mapping multi-view images onto

3D objects. Debevec et al. [Deb98] describe a view-

dependent texture mapping technique which combines

three views for each polygon. Buehler et al. [Bue01]

create a blending field and use it as weights to blend

different projective textures. This approach ensures

spatial continuity in the final rendering result.

Shadow mapping is an image-space technique de-

veloped by Williams[Wil78]. Segal et al. [Seg92]

propose to use projective texture mapping hardware

to accelerate shadow generation. Heidrich [Hei99]

presents a dual-texture approach to make shadow map-

ping technique available on most common graphics

platforms. The fast speed of shadow mapping is ex-

ploited by [Saw02] for removing the visibility arti-

fact of projective texture mapping. This method is

extended in this paper to remove another artifact —

shadow leaking during projective texturing.

3 SYSTEM OVERVIEW

Our system consists of six Sony DFW500 FireWire

cameras arranged along a half-circle. These cameras

are connected to 3 client computers which communi-

cate with the server via a standard TCP/IP network.

All cameras are calibrated in advance, and video ac-

quisition is synchronized at run time. Fig. 1 shows a

schematic diagram of our system setup.

The initialization phase of our system includes

recording a background image for each camera and

sending this background image together with camera

calibration information to the server. After initial-

ization, the client machines extract silhouettes using

background differencing [Bic94] and deliver these sil-

houettes to the server for every frame. The server com-

putes the visual hull from multiple silhouettes and ren-

ders the dynamic object together with the surrounding

background.

The system architecture has been designed to dis-

tribute the computational load between the server and

the clients. Image acquisition and silhouette extraction

are performed on the client machines. This provides

good scalability and allows us to use more cameras

without significantly decreasing overall system perfor-

mance. In addition to using live video streams as in-

put, we can also record multiple synchronized video

Figure 1: Schematic diagram of our system setup. The

box in the lower left corner is a synchronization device

which sends the synchronization signal to all cameras.

streams, which can be played back later. No matter

whether the input is live-acquired or pre-recorded, the

visual hull reconstruction and rendering is performed

in real-time.

4 3D RECONSTRUCTION

There are two different approaches for visual hull re-

construction: voxel-based [Moe96] and polyhedron-

based [Mat01]. The latter method has been chosen for

our system because it is amenable to fast rendering.

The 3D reconstruction is rather straightforward.

For each frame, the silhouette of the moving fore-

ground object is segmented using the previously ac-

quired background. Then we approximate its contour

as a 2D polygon and transfer it to the server. On the

server, silhouettes from all cameras are available. The

server computes a polyhedral visual hull by intersect-

ing back-projected cones of the silhouettes, as illus-

trated in Fig. 2. An open source library is used to

compute the 3D intersection [Bek].

We have a tunable parameter for controlling the pre-

cision of the 2D polygon approximation. The server

can notify all clients and demand a different resolution

of 2D contours. This leads to a change in coarseness

of the visual hull model. The on-line precision adjust-

ment is a convenient tool for the user to choose the

trade-off between reconstruction quality and speed.



(a) (b)

Figure 2: Reconstruction of the polyhedral visual hull.

(a) Generalized cones formed by back-projecting the

silhouettes. (b) The intersection result of these cones

— the polyhedral visual hull. Small arrows around the

visual hull indicate camera positions.

5 ACCELERATED RENDERING

ALGORITHM

5.1 Background rendering

For simplicity, we model the surrounding background

as a box with the dimensions of our image acquisi-

tion room. To render the background, we map multi-

ple background images from different viewpoints onto

this box using multi-pass projective texture mapping.

Improved rendering results are achieved by clipping

and blending. Rendering speed is accelerated using a

display list.

5.1.1 Clipping

Without special treatment, the geometry behind a cam-

era also gets textured during projective texturing. This

“negative projection” can be simply removed by set-

ting up a clipping plane for each background image as

suggested in [Saw02]. The clipping plane is defined

by the image plane equation, which can be derived

from the camera parameters associated with that im-

age. However, when clipping is applied to a polygon,

the rasterization behavior of the polygon is changed.

Thus, problems occur when we texture the geometry

several times with multiple background images using

different clipping planes. The same surface in dif-

ferent rendering passes could penetrate itself due to

slightly different Z values generated from inconsistent

rasterization. Severe artifacts can be observed in Fig.

3(a). By setting a different polygon offset [Seg] for

each rendering pass to enlarge the difference of Z val-

ues, the penetration artifact is completely removed, as

shown in Fig. 3(b).

(a) (b)

Figure 3: Clipping with polygon offset. Interpene-

tration patterns can be seen in the left image without

polygon offset. This artifact disappears in the right

image when we use a different polygon offset for ren-

dering each background image.

5.1.2 Blending

Due to the limited field of view of each camera, one

background image can only cover parts of the scene.

If we simply overlay them one by one, visible artifacts

between boundaries can be observed. To alleviate this

artifact, we need to use blending to reduce the color

contrast in the vicinity of boundaries. A simple blend-

ing scheme can be expressed as follows:

C =
1

N
∗

N∑

k=1

Ck

where N is the total number of textures, Ck is the

source color from each texture image, C is the fi-

nal color. Since different regions of the background

model are textured by different number of textures, we

must compute the blending color in a per-pixel man-

ner. However, with the limited color precision and

functionality of current graphics hardware, it is im-

possible to accumulate the color for each pixel and

then perform a final division. To overcome this prob-

lem, we propose an approximate implementation of

this equal-weight blending scheme on current graph-

ics hardware.

The basic idea is to generate a series of alpha values

Ai = 1

i+1
(i ≥ 0) for each pixel. The color can then

be computed by

Ci+1

d
= Ci+1

s
∗ Ai + Ci

d
∗ (1 − Ai) (i ≥ 0)

= Ci+1
s

∗
1

i + 1
+ Ci

d
∗ (1 −

1

i + 1
) (1)

C stands for pixel color. The subscript d means

destination color, and s denotes source color. The su-

perscript indicates the index number of background

image. This notation is also used in the rest of this

subsection.



In order to give a feeling for how it works, let us

give an example. Initially, the destination color is

C0
d

= 0. If this pixel will be textured by 3 images,

according to Eq. 1, the final pixel value C3
d

can be

computed as follows:

C1
d

= C1
s

C2
d

= C2
s
∗

1

2
+ C1

d
∗ (1 −

1

2
)

= C2
s
∗

1

2
+ C1

s
∗

1

2

C3
d

= C3
s
∗

1

3
+ C2

d
∗ (1 −

1

3
)

= C3
s
∗

1

3
+ C2

s
∗

1

3
+ C1

s
∗

1

3

As expected, each source color gets a weight of 1

3
.

Here the key problem is how to generate the 1

i+1
se-

ries. Although currently there is no graphics hardware

available to compute the exact solution, we can use the

following equation to approximate this series:

Ai+1 = 0.06 +
Ai

2
(i ≥ 0) (2)

This is an inhomogeneous linear recurrence equa-

tion with constant coefficient [Bal91]. The boundary

condition is A0 = 1. Eq. 2 produces a sequence of real

numbers: 0.56, 0.34, 0.23, 0.175, 0.1475· · ·. Includ-

ing the boundary condition, we get an approximation

of 1

i+1
(i ≥ 0). The constant value 0.06 in Eq. 2 is

adjustable. An optimal value might be obtained in the

sense of lease squares. We have tried several values

ranging from 0.05~0.07. The difference between the

rendering results are indistinguishable.

Now that the mathematics is clear, the implemen-

tation is straightforward. Like [Pee00], we treat each

OpenGL rendering pass as a SIMD instruction. We

use the OpenGL blending function to compute the

recurrence sequence. Initially, the frame buffer is

cleared using color (0, 0, 0, 1) and the alpha channel

of all background images is set to 128 (i.e. 0.5 for the

source alpha value). The border alpha value of each

image is set to zero so that we can use the alpha test to

kill fragments outside the field of view. For each back-

ground image, we render the scene two times. First we

enable the RGB channel and disable the alpha chan-

nel. The RGB colors are composed using the blending

function as follows:

C = Cs∗DST_ALPHA+Cd∗(1−DST_ALPHA)

During the second pass, we disable the RGB chan-

nel and enable the alpha channel. The blending equa-

tion is set to:

A = As ∗ 0.12 + Ad ∗ SRC_ALPHA (3)

The notation used in the above two blending equa-

tions is adopted from [Seg]. SRC_ALPHA is

the alpha value of the incoming fragment, whereas

DST_ALPHA is the alpha value of the fragment in

the current frame buffer. Eq. 3 evaluates the exact

function in Eq. 2 because of As = SRC_ALPHA =
0.5. The 2-pass rendering for each background im-

age can be reduced to one pass when the recently-

approved OpenGL 1.4 standard [Seg] is supported by

the graphics card. There is a new function glBlend-

FuncSeparate, which allows to specify the blending

factor separately for color and alpha channel. In Fig.

4, (a) and (b) give an extreme example to illustrate the

effectiveness of our blending algorithm. (c) and (d)

show the blending result for real background images.

(a) (b)

(c) (d)

Figure 4: Background blending. (a)(b) Using red,

green, blue background images. (c)(d) A carpet cor-

ner in the real scene. (a) Without blending. (b) With

blending. In the region where there is only one tex-

ture image available, the final color is the one of that

texture. In the region covered by two images, they are

blended using the weights 1/2. The blending weights

become 1/3 in the region of three images. (c) Without

blending. (d) With blending.

5.1.3 Display List

Since the surrounding background is static, we can

compile the background rendering commands into a

display list. This display list only needs to be updated

when the number of background images changes. Ac-

cording to our experiment, when we use 4 background



images (resolution:320x240 pixels), the frame rate

usually increases by about 20% compared to render-

ing without using display list.

5.2 Opaque projective texture mapping

Debevec et al. [Deb98] suggest that shadow maps can

be used to solve the visibility problem in projective

texture mapping. But because of lacking hardware

support at that time, they resort to a pre-processing

step to determine the visibility on a per-polygon ba-

sis. Recently, [Saw02] implemented the shadow-map-

based visibility algorithm by employing state-of-the-

art graphics hardware. We refer to this algorithm as

opaque projective texture mapping. In practice, visi-

ble artifacts remain when we apply this technique to

the reconstructed dynamic visual hull. As seen in Fig.

5(b), the front surfaces do not occlude the back part

completely, and the contour leaks onto occluded sur-

faces. We call this artifact shadow leak. In the fol-

lowing, we first give a brief description of the opaque

projective texture mapping algorithm and then extend

it to solve the shadow leak problem. Moreover, we use

the geometry information of the visual hull to achieve

optimal precision for the shadow map.

5.2.1 Basic rendering algorithm

The basic opaque projective texture mapping algo-

rithm can be implemented using multiple texture units

and the texture environment mode GL_COMBINE.

They are both available on mainstream graphics cards.

The rendering process is as follows:

For each reference view, the RGBA color image is

loaded into the first texture unit. The shadow map is

generated by OpenGL shadow extensions in the sec-

ond texture unit. In order not to destroy the depth val-

ues already in the frame buffer, the P-buffer can be

used for shadow map generation. In the texture appli-

cation stage, each shadow map texel is modulated with

the alpha value of the texel in the first texture unit. By

enabling the alpha test, the occluded part on the ob-

ject does not get textured. It should be mentioned that

the tangent surfaces with respect to each camera po-

sition are culled in advance to avoid being colored by

ill-sampled textures.

5.2.2 Shadow leak

The shadow leak problem is caused by insufficient

sampling of the shadow map. But increasing the sam-

pling rate requires a larger resolution of the depth im-

age which decreases rendering performance consider-

ably. Even for a depth image with 640x480 pixels, this

artifact still cannot be completely eliminated. Our aim

is to remove this artifact with a moderate shadow map

size.

One can perform a morphological erosion opera-

tor on the color image to shrink the contour. Then

the boundary pixels will not project onto the object

so that the shadow leak is removed. But the erosion

operation usually also removes thin features in the im-

age, which is undesirable. The solution to the shadow

leak problem is to fatten the object a little bit when

generating the shadow map. Simply rendering an up-

scaled version of the object does not work because of

the mismatches between the shadow map and projec-

tive texture coordinates. Ideally, we need to keep the

inner part of the object unchanged and only thicken

the contour of the object. This can be accomplished

by a two-pass shadow map rendering technique.

In the first pass, we choose a thick line width and

render the visual hull in line mode. In the second pass,

we switch to the normal fill mode to render the visual

hull. Thus, the contour of the depth map will be fat-

tened a little bit and the interior regions will correctly

keep their original depth. A subtle problem here is to

use the polygon offset to remove self-shadowing. We

need to use a larger polygon offset in the line mode

so that the thickened line will not occlude the region

adjacent to the edge.

(a) (b) (c)

Figure 5: Removing shadow leak artifacts. To better

illustrate the problem, the visual hull is only rendered

using a single image. (a) Without considering visibil-

ity. Notice the showing-through of the hands onto the

back surfaces. (b) Using opaque texture mapping, the

occluded parts do not get textured. However, along the

contours, there are conspicuous shadow leak artifacts.

(c) Shadow leak artifacts removed by 2-pass shadow

map rendering. The resolution of the shadow map is

only 320x240 pixels, the same as the original color

image.



5.2.3 Precision of the shadow map

Because of perspective projection, the precision of the

shadow map is not uniform. A tight range between

near and far plane can efficiently improve the preci-

sion. Since the 3D intersection algorithm that we use

also computes bounding box information for the vi-

sual hull, we can transform world coordinates of this

bounding box to the camera coordinate system. The

minimum and maximum z values of this bounding box

can be computed and used as the near and the far

plane. This computation is performed for each cam-

era. Therefore, the precision of the shadow map is

kept optimal for all cameras. The cost of computation

is trivial since only the 8 vertices of the box need to be

considered.

5.3 Dynamic texture packing

Normally, in order to project multiple images onto the

3D object, we need to download the images to the

graphics card one by one. But texture switching is an

expensive operation, especially when we have a large

number of source images. Texture packing combines

multiple images from different viewpoints into one big

image and sends it to the graphics card in one. This

reduces the number of texture switching and improves

rendering performance.

Texture packing is also beneficial for reducing the

amount of texture data. In the case of our visual hull

system, only the moving foreground object is needed

for projective texturing mapping. Therefore, we can

compute the bounding box of the foreground object

on the client machine and transfer it to the server.

Then this region-of-interest (ROI) information can be

exploited to pack multi-view images and reduce the

packed texture size significantly. One might argue

that hardware-accelerated compressed textures can re-

duce the amount of texture data as well. But compres-

sion and decompression take extra time. Usually this

penalty is even bigger than using uncompressed data.

Our basic packing principle is very simple: We just

take the ROIs from the source images and concatenate

them into the packed image along the horizontal di-

rection. The offsets of the ROIs between the original

and the packed images are recorded and used later for

computing correct texture coordinates.

There are two problems when using this simple

scheme. First, the copying operation from the source

images to the packed image takes some time. This

time can be spared by directly updating the subregion

of the texture, which proves to be a more efficient way

to manipulate texture images. In addition, since the

object is moving, the silhouette generated from each

view is different from frame to frame. Therefore, the

size of the packed texture also varies. If we change

the texture size for every frame, the relocation of tex-

ture memory slows down rendering performance. To

prevent frequent change in texture size, we can take

advantage of the fact that the packed texture size does

not change much between several consecutive frames,

owing to temporal coherence. We reserve some ad-

ditional space both for the width and height of the

packed texture. This way, some size change can be tol-

erated. We dynamically expand or shrink the packed

texture size only when the change is beyond a pre-

defined threshold (20 pixels in our system). Fig. 6

shows an example of the packed texture.

Figure 6: Dynamic texture packing. 4 textures are

packed together. The top and right sides have some

reserved empty space. The size of the original texture

images are 320x240, while the packed texture size is

only 315x211: It is even smaller than a single original

texture.

Our dynamic texture packing technique can be ap-

plied to the background images and shadow maps as

well, which gives us further rendering speed improve-

ment.

6 Results

In our current system configuration, the server is a

P4 1.7GHz dual-processor machine equipped with a

GeForce 3 graphics card. The clients are Athlon

1.1GHz computers. The video images are acquired

at 320x240 pixel resolution. Using 6 silhouettes, we

achieve reconstruction rates of 15 fps, which is also

the highest possible speed of our synchronized video

acquisition system.

We use multiple threads to receive data via the net-

work and to decouple reconstruction from rendering.

The rendering thread can run faster than that for the re-

construction. This provides the user with a good sense

of interactivity even when the reconstruction is slow.

The rendering frame rate is about 23 fps for a video

sequence acquired from six views. The number of tri-

angles of the dynamic object ranges from 400 to 500.



For dynamic texture packing, we carried out a test

by using different numbers of source images. The per-

formance improvement can be seen in Table 1.

Number of Performance

Source

Images

Unpacked

Texture(fps)

Packed

Texture(fps)
Increase(%)

2 111 134 20.7

3 85 105 23.5

4 72 90 25.0

5 54 70 29.6

6 46 63 36.9

Table 1: Performance improvement of texture pack-

ing. The frame rates are measured without background

and shadow map rendering.

Thanks to the polyhedral representation of the

3D model, our system can easily visualize the dy-

namic object in different ways, as seen in Fig.

7(a)-(c). Fig. 7(d) shows that multiple dy-

namic objects can also be reconstructed and ren-

dered by our system. Video demos are available

at the web site http://www.mpi-sb.mpg.de/

~ming/DynaVisualHull.html.

7 CONCLUSIONS and FUTURE

WORK

A distributed real-time 3D reconstruction and render-

ing system is presented in this paper. The visual hulls

of the dynamic objects can be reconstructed on line

from live videos. We have introduced a novel blend-

ing algorithm to hide boundary seams for rendering

the surrounding environment. Opaque projective tex-

ture mapping is extended to handle shadow leak ar-

tifacts. We have proposed a dynamic texture pack-

ing technique to reduce texture download overhead.

The visual quality of both the dynamic objects and the

background is improved. Meanwhile, our rendering

algorithm is fully hardware-accelerated and achieves

real time rendering performance.

There are still plenty of areas that need to be ex-

plored in real time reconstruction and rendering from

real scenes. One line of future research is geom-

etry refinement. Visual hulls usually have a lot of

rough-edged surfaces which severely lower the visual

quality. This problem might be dealt with surface

fairing techniques [Tau95]. For background render-

ing, even our blending method shows visible seams

when the images differ two much. A better blend-

ing scheme can be implemented using the feathering

technique [Sze97]. Hardware-accelerated implemen-

tations of this scheme need more texture units and the

advanced OpenGL extension FRAGMENT_PROGRAM,

which will be supported soon by top graphics vendors.

Of course, the same blending scheme can be applied

not only to the background but also to the dynamic

foreground objects.

So far, we render the dynamic object using images

from all reference viewpoints. Actually, depending

on the destination viewpoint, we are able to select a

subset of source images and only transfer these to the

server. This way, an approximately constant rendering

frame rate can be maintained even when a large num-

ber of cameras are deployed. Recovering the light-

ing and surface properties of real scenes can be help-

ful for relighting. Real time recovery still remains a

challenging problem. It is also an important aspect to-

ward building a fully-automated, dynamic reconstruc-

tion and rendering system.

8 REFERENCES

[Bal91] Balakrishnan, V. K. Introductory discrete

mathematics, chapter 3. Recurrence Relations. Prentice

Hall, 1991.

[Bek] Bekaert, P. Boundary representation library.

http://breplibrary.sourceforge.net/.

[Bic94] Bichsel, M. Segmenting simply connected

moving-objects in a static scene. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 16(11):pp.

1138–1142, 1994.

[Bue01] Buehler, C., Bosse, M., McMillan, L., Gortler,

S. J., and Cohen, M. F. Unstructured lumigraph

rendering. In SIGGRAPH’01 Proceedings, pp. 425–432.

2001.

[Cur96] Curless, B. and Levoy, M. A volumetric method

for building complex models from range images. In

SIGGRAPH’96 Proceedings, pp. 303–312. 1996.

[Deb96] Debevec, P. E., Taylor, C. J., and Malik, J.

Modeling and rendering architecture from photographs:

A hybrid geometry- and image-based approach. In

SIGGRAPH’92 Proceedings, pp. 11–20. 1996.

[Deb98] Debevec, P. E., Borshukov, G., and Yu, Y.

Efficient view-dependent image-based rendering with

projective texture-mapping. In 9th Eurographics

Rendering Workshop, pp. 105–116. 1998.

[Hei99] Heidrich, W. High-quality Shading and Lighting

for Hardware-accelerated Rendering. Ph.D. thesis,

University of Erlangen, Computer Graphics Group,

1999.

[Lau94] Laurentini, A. The visual hull concept for

silhouette-based image understanding. IEEE Trans.

Pattern Anal. Machine Intell., 16(2):pp. 150–162, 1994.



(a) (b) (c) (d)

Figure 7: More rendering results. The object in (a)-(c) is reconstructed from 6 views. (a) Wireframe visual hull.

(b) Flat shaded visual hull. Different color corresponds different source camera. (c) Textured visual hull with

visibility handling. (d) Two textured visual hulls reconstructed from 4 views.

[Lok01] Lok, B. Online model reconstruction for

interactive virtual environments. In Proceedings 2001

Symposium on Interactive 3D Graphics, pp. 69 – 72.

2001.

[Mat00] Matusik, W., Buehler, C., Raskar, R., Gortler,

S. J., and McMillan, L. Image-based visual hulls. In

SIGGRAPH’00 Proceedings, pp. 369–374. 2000.

[Mat01] Matusik, W., Bueler, C., and McMillan, L.

Polyhedral visual hulls for real-time rendering. In

Proceedings of 12th Eurographics Workshop on

Rendering, pp. 115–125. 2001.

[Moe96] Moezzi, S., Katkere, A., Kuramura, D. Y., and

Jain, R. Reality modeling and visualization from

multiple video sequences. IEEE Computer Graphics and

Applications, 16(6):pp. 58–63, 1996.

[Nar98] Narayanan, P., Rander, P., and Kanade, T.

Constructing virtual worlds using dense stereo. In Proc.

of the Sixth ICCV , pp. 3–10. 1998.

[Pee00] Peercy, M. S., Olano, M., Airey, J., and Ungar,

P. J. Interactive multi-pass programmable shading. In

SIGGRAPH’00 Proceedings, Computer Graphics

Proceedings, Annual Conference Series, pp. 425–432.

2000.

[Saw02] Sawhney, H., Arpa, A., Kumar, R., Samarasekera,

S., Aggarwal, M., Hsu, S., Nister, D., and K.Hanna.

Video flashlights – real time rendering of multiple

videos for immersive model visualization. In Debevec,

P. and Gibson, S., (eds.), Proceedings of 13th

Eurographics Workshop on Rendering, pp. 163–174.

Springer Wien, New York, NY, 2002.

[Seg] Segal, M. and Akeley, K. The OpenGL Graphics

System: A Specification (Version 1.4). Silicon Graphics,

Inc., http://www.opengl.org/∼developers/documentation

/version1_4/glspec14.pdf.

[Seg92] Segal, M., Korobkin, C., van Widenfelt, R.,

Foran, J., and Haeberli, P. Fast shadows and lighting

effects using texture mapping. In SIGGRAPH’92

Proceedings, pp. 249–252. 1992.

[Sze93] Szeliski, R. Rapid octree construction from

image sequences. CVGIP: Image Understanding,

58(1):pp. 23–32, 1993.

[Sze97] Szeliski, R. and Shum, H.-Y. Creating full view

panoramic image mosaics and environment maps. In

SIGGRAPH’97 Proceedings, pp. 251–258. 1997.

[Tau95] Taubin, G. A signal processing approach to fair

surface design. In SIGGRAPH’95 Proceedings, pp.

351–358. 1995.

[Ved98] Vedula, S., Rander, P., Saito, H., and Kanade, T.

Modeling, combining, and rendering dynamic

real-world events from image sequences. In Proc. 4th

Conference on Virtual Systems and Multimedia

(VSMM98), pp. 326–332. 1998.

[Wil78] Williams, L. Casting curved shadows on curved

surfaces. In SIGGRAPH’78 Proceedings, pp. 270–274.

1978.


