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ABSTRACT 

The analysis of blood flow patterns and the interaction between salient topological flow features and 

cardiovascular structure plays an important role in the study of cardiovascular function.  Flow velocity images 

acquired by Magnetic Resonance (MR) velocity imaging are generally subject to noise that are intrinsic to 

system hardware setup and those specific to patient movement in relation to imaging sequence designs. To 

improve the accuracy of the quantitative analysis of the evolution of topological flow features, it is essential to 

restore the original flow fields so that the associated critical points can be more reliably detected. In this study, 

we propose a total variation based variational method for the restoration of flow vector fields.  The method is 

formulated as a constrained optimisation problem by minimizing the total variation energy of the normalized 

velocity field subject to a constraint that depends on the noise level.  The effectiveness of this restoration method 

greatly depends on the choice of the regularization parameter in the formulation of the optimisation problem. A 

new computational algorithm based on the First Order Lagrangian method is proposed, which determines the 

optimal value of the regularization parameter while solving the minimisation problem. The proposed method has 

been validated with both simulated flow data and MR velocity maps acquired from patients with sequential MR 

examination following myocardial infarction. 
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1. INTRODUCTION 
The analysis of blood flow patterns and their 

interaction with cardiovascular structure plays an 

important role in the study of cardiovascular function 

[Yan98a].  In order to perform a systematic study 

and quantitative analysis of the flow patterns, several 

techniques for extracting important topological 

features depicted by MR velocity mapping 

techniques have been developed [Yan98b][Lod00].  

The success of these techniques depends greatly on 

the noise level of the MR images.  Flow velocity 

images acquired with MR velocity-mapping are 

subject to a certain amount of noise depending on the 

hardware of the MR system and the nature of the 

physiological movements of the patient during the 

imaging process.  In practice, the signal-to-noise 

ratio (SNR) is frequently compromised in order to 

increase the speed of the image acquisition.   

Previous research has shown that in order to achieve 

a comprehensive and integrated description of flow 

in health and disease, it is necessary to characterise 

and model both normal and abnormal flows and their 

effects [Yan98b].  This permits the establishment of 

links between blood flow patterns and the localized 

genesis and development of cardiovascular disease. 

To accommodate the diversity of flow patterns in 

relation to morphological and functional changes, the 

approach of detecting salient topological features 

prior to analytical analysis of dynamical indices of 

the fluid has been regarded an important way 
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forward. To this end, critical points associated with 

salient flow features have to be extracted such that 

the remaining flow field and its geometry and 

topology can be compactly described. To improve 

the accuracy of the quantitative analysis of the 

evolution of topological flow features, it is essential 

to restore the original flow fields so that the 

associated critical points can be more reliably 

detected. 

In recent years, restoration and denoising of vector-

valued image has drawn a lot of interest due to the 

general applicability to a wide variety of 

applications. They include multi-valued image 

restoration (colour image in particular) [Blo98], 

regularization of optical flows and tensor fields 

[Per98][Cou01].  Many of the existing methods are 

based on functional minimisations via a variational 

approach [Cha00] [Tsc01a] [Tsc01b], and Total 

Variation (TV) based method is one of the most 

commonly used technique. 

The selection of TV norm as the function to be 

minimised is due to the fact that it does not penalise 

discontinuities, thus edges and other topological 

features in the image can be preserved.  TV-based 

restoration methods have been demonstrated to be 

effective and superior to linear filtering methods for 

scalar images, and several researchers have extended 

TV norm to vector-valued image [Blo98][Cha01].  In 

particular, Chan and Shen [Cha00] have used the 

definition of TV-norm for the restoration of non-flat 

image features that do not reside on Euclidean space.  

Examples of commonly encountered non-flat image 

features include vector distribution from flow images 

and chromaticity features from colour images.  

Coulon et al. [Cou01] has applied this method to 

restore the principal diffusion direction (PDD) of 

Diffusion Tensor Magnetic Resonance (DT-MR) 

images. 

For restoration of the flow field reconstructed from 

MR flow velocity images, we attempt to restore the 

direction field (the phase of the velocity). We 

adopted the formulation proposed by Chan [Cha00] 

and formulated a new numerical scheme based on the 

First Order Lagrangian Method [Ber95] to restore the 

direction field with a much improved convergence 

behaviour.  

 

2. TV-BASED VARIATIONAL 

METHOD 
The restoration method in this study is formulated as 

a constrained optimisation problem that restores the 

original image by minimising the total variation 

energy of the normalized velocity field subject to a 

constraint depending on the noise level. It has been 

shown that the effectiveness of this restoration 

method greatly depends on the choice of a 

regularization parameter, which in practice is often 

conveniently fixed or determined empirically 

[Cha00]. This renders a major difficulty to the 

practical application of the technique as the restored 

image may converge to different results depending 

on the parameter settings. To avoid having to fix this 

parameter, we propose to use the First Order 

Lagrangian Method [Ber95] to derive the optimal 

value of this parameter while solving the 

minimisation problem. 

Let u0 denotes the direction field of the noisy 

velocity images, u denotes the clean direction field 

we want to restore and that u0 = u + n where n 

denotes the additive noise.  Assuming the variance of 

the noise n is σ2 and that its value is known, the 

restoration of the direction field of a velocity field 

can be formulated as a constrained optimisation 

problem by minimizing the following term 
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where ETV
  denotes the total variation (TV) energy of 

the whole image, e(u; α) denotes the energy at pixel 

α, Ω denotes the image domain and |Ω| the size of the 

image domain.  

This optimisation problem can be solved by solving 

the corresponding Tikhonov regularized [Tik97] 

unconstrained problem: 
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where λ is a regularization parameter known as the 

Lagrange Multiplier of the constrained optimisation 

problem, γ is a positive regularization parameter and 

is inversely proportional to λ.  This approach can be 

viewed as a penalty approach for the constrained 

optimisation problem.  Several computational 

algorithms [Vog96][Li96] have been proposed to 

solve this unconstrained problem and in most cases, 

the value of the regularization parameter is 

conveniently fixed. 

To solve the constrained optimisation problem, the 

First Order Lagrangian Method [Ber95] is used to 

solve the corresponding Lagrange system.  This First 

Order Lagrangian method finds both the minimal 



solution and the associated Lagrange Multiplier for 

the constrained optimisation.  The simplest of all 

Lagrange Methods is given by: 

 

 

 

where δs is a positive scalar step-size and L is the 

associated Lagrangian function 

 

 

 

 

and λ is the Lagrange Multiplier.  Note that at the 

optimal solution, L(u; λ) is same as ETV because at 

the minimal point, h(u) is equal to zero. 

 

3. NUMERICAL SCHEME FOR 

DISCRETE IMAGE DOMAIN 
The definition of the TV energy for direction (i.e. 

unit vector that lives on unit sphere S
2) and the 

numerical scheme of our proposed method can be 

defined as follows.  Let v denotes the original 

velocity vector and u denotes a normalized vector.  

We map the velocity vector v in R3 to unit vector u in 

S2 by setting u = v/|v|.  Note that this mapping f: 

R
3 → S2 is valid for 2D vector as well as we can 

consider a 2D vector as a 3D vector with the z-

component ignored.  Therefore, the following 

formulation applies to both 2D and 3D vector fields. 

The strength function e(u; α) at voxel α can be 

defined as: 

 

 

 

where Nα denotes the neighbourhood of pixel α, dl 

denotes the embedded Euclidean distance in S2 and is 

given by: 
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The total variation (TV) energy of the direction field 

is then: 

 

 

 

Therefore, the constrained optimisation problem 

becomes: 
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The corresponding Lagrange function, referred to as 

the constrained TV energy, is: 
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By computing the gradient of L(u; λ) w.r.t. u, the 

following equation can be derived 
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In order to compute the gradient of G(u) on S2, the 

gradient of G(u) on R
3 is projected onto the plane 

that is orthogonal to u, i.e., 
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And the gradient of L(u; λ) is: 
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Accordingly, the gradient of L(u; λ) w.r.t. λ becomes 
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Based on the above equations, the discrete form of 

the First Order Lagrangian Method can be written as 

follows:  
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4. RESULTS AND DISCUSSIONS 
In order to provide a detailed analysis of the 

performance of the proposed method, a synthetic 

data set simulating flow passing through a cylinder 

was used.  Gaussian noise is then added to the 

velocity distribution for examining the restoration 

process.   

To analyse the sensitivity of the regularization 

parameter, the existing variational method with 

various fixed lambda values was used to restore the 

noisy synthetic data.  The results are shown in Figure 

1.  It is found that when the value of lambda is set to 

be the optimal value (which is 2.5 in this case), the 

restoration result is at its optimum and comparable to 

that of our newly proposed method. As expected, 

when the value of lambda is too small, the image is 

over-smoothed; whereas when the value of lambda is 

too big, the image is under-smoothed.  The result 

clearly demonstrates the advantage of the proposed 

method in converging automatically to the optimal 

solution without explicitly presetting the 

regularization parameter. 





Ω−⋅∆+= ∑

Ω∈

+ 2021 ),(
2

1
σλλ

α
αα uudt l

nn





+∏⋅∆+= ∑

∈

+

αβ
αβ

β
ααα λ

α

N

n

u

nn uuwttuu 01





+=

);(

1

);(

1

βα
β
α

ueue
wt

 To assess the convergence behaviour of the 

proposed technique, Figure 2 shows the results with 

different number of iterations. From these images, it 

is apparent that the algorithm converges at about 100 

iterations. As a reference, the corresponding 

constrained and unconstrained energy is provided in 

Figure 3, which clearly indicates that both energy 

terms converge to the same value.  The value of 

lambda is also plotted against the number of 

iterations, as shown in Figure 4. 

 

 

 

Figure 1    Comparison of TV-based variational method with different values of lambda using

the synthetic dataset.  (a) Original noise-free image; (b) with added noise; (c-f) images restored 

with TV-based variational method (c) with lambda determined by First Order Method, (d) with

lambda = 0.1, (e) with lambda = 2.5 (optimal value) and (f) with lambda = 20. 



 

Figure 2    The results of applying the First Order method on the synthetic data.   Shown here 

are the intermediate results at (a) 20 iterations, (b) 50 iterations, (c) 100 iterations, (d) 200

iterations, (e) 300 iterations and (f) 500 iterations. 

Figure 3  A plot of the constrained and unconstrained energy against no. of iterations for the

synthetic dataset. 

 

 

 

 

 

 

 



Figure 4    A plot of the value of lambda against the no. of iterations for the synthetic dataset. 

 

 

 

 

 

 

 

 

 

 

Figure 5   A plot of the RMS error against the value of lambda chosen for the variational 

method.  The minimum point of this curve is at lambda = 2.5, which is the same value as 

found by the First Order method. 

 

 

 

 

To verify that the value of regularization parameter 

found by the proposed method is the optimal value, 

experiments with a range of lambda values were 

used with RMS error of the result shown in Figure 

5. The optimal value of lambda found empirically 

coincides with the value obtained by the First Order 

method, justifying the robustness of the proposed 

technique.  

After validating our method using the synthetic 

dataset, the proposed method was applied to MR 

flow velocity data acquired from six patients with 

sequential examination following myocardial 

infarction.  Clinical studies have shown that 

dilation of left ventricle may occur after myocardial 

infarction [Bra01] and this topological change of 

the left ventricle will significantly disturb the flow 

pattern in the chamber [Yan98b].  In a patient with 

dilated left ventricle, early diastolic inflow through 

the mitral valve was directed towards the posterior 

free wall rather than the apex of the ventricle.  This 

is illustrated in the flow pattern reconstructed from 

MR velocity data as shown in Figure 6.  The 

corresponding flow pattern reconstructed from MR 

velocity data restored by the proposed method is 

illustrated in Figure 7.  It is obvious that the flow 

depicted in the restored flow pattern is more 

consistent and the restored flow pattern is easier to 

interpret visually than the unprocessed one.  Hence, 

this restoration method can generate a better 

description of the flow for visual assessment in 

clinical flow studies. 



Figure 7  (a) A horizontal long axis MR image showing the left ventricle (LV) and right

ventricle (RV) of the heart.  (b-f) The flow pattern reconstructed from restored MR velocity

data at different phases of the cardiac cycle. 

Figure 6  (a) A horizontal long axis MR image showing the left ventricle (LV) and right

ventricle (RV) of the heart.  (b-f) The flow pattern reconstructed from MR velocity data at

different phases of the cardiac cycle. 



5. CONCLUSIONS 
We have demonstrated that the TV-based variational 

method is effective in restoring velocity field and 

that the choice of the regularization term greatly 

affects the restoration result. The proposed new 

computational scheme based on the First Order 

Lagrangian method is proven to be simple and 

effective. The main advantage of this method is that 

it converges to the optimal solution so that no 

explicit or empirically defined stopping criteria are 

needed, thus greatly enhances its practical 

applicability.     
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