
View-Dependent Multiresolution Model for Foliage

I. Remolar M. Chover J. Ribelles O. Belmonte
Dep. Lenguajes y Sistemas Informáticos

Universitat Jaume I
Campus Riu Sec

Spain 12071, Castellón

{remolar, chover, ribelles, belfern}@uji.es

ABSTRACT
Real-time rendering of vegetation is one of the most important challenges in outdoor scenes. This is due to the
vast amount of polygons that are used to model vegetable species. Multiresolution modeling has been
successfully presented as a solution to the problem of efficient manipulation of highly detailed polygonal
surfaces. In order to construct a multiresolution model, a simplification method must be used. The previously
introduced Foliage Simplification Algorithm, FSA, obtains different approximations of a tree model. This
automatic simplification method diminishes the number of polygons that form the crown while maintaining its
leafy appearance. In this paper a multiresolution model for trees based on this simplification algorithm is
presented. Its distinctive property is that the unit of information managed by this scheme is the leaf, four vertices
determining two triangles. This characteristic allows us an efficient manipulation of the results obtained by FSA.
Our multiresolution representation provides a wide, virtually continuous, range of different approximations that
represent the original tree. The main property of this scheme is that trees can be represented with variable
resolution: some regions in more detail while the rest is represented in less detail. Here we present the data
structures and the traversing algorithms, which favor the extraction of an appropriate level of detail for rendering.

Keywords
Tree Rendering, View Dependent Visualization, Multiresolution Modeling, Level of Detail, Real-Time Rendering.

1. INTRODUCTION
Many of the current interactive applications such as
flight simulators, virtual reality environments or
computer games take place in outdoor scenes. One of
the essential components in these scenes is the
vegetation. The lack of trees and plants can detract
from their realism. Tree modeling has been widely
investigated [Prus90] [Lint99], and its representation
has become very realistic. However, tree models are
formed by such a vast number of polygons that real-
time visualization of scenes with trees is practically
impossible.

Real-time visualization of vegetable species has not
been extensively explored. Although there are more
complex techniques, most of the applications make
use of image-based rendering approximations [Max96]
[Scha98]. However, geometry is necessary in others.
In this case, the most popular method of
representation is to use polygonal models. The
mathematical simplicity of this type of representation
makes it possible to render a great number of
polygons with the current graphics hardware.
However, due to the vast amount of polygons that
compose the tree models, it is necessary to use some
method that diminishes the number of polygons that
form the object, without loss of the appearance. The
most used techniques are occlusion culling or level of
detail (LoD) rendering.

In a previous work we presented the Foliage
Simplification Algorithm, FSA [Remo02], an
automatic method of generating different levels of
detail of a same tree without losing similarity with the
original model. It is the only automatic simplification
algorithm of foliage that diminishes the number of
polygons that form the crown while maintaining its
leafy appearance. The key to the algorithm is leaf
collapse.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation in the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Journal of WSCG, Vol.11, No.1., ISSN 1213-6972
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295549094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper a new continuous multiresolution model
is presented that allows us an efficient manipulation
of the results obtained by FSA. The View Dependent
Multiresolution Model for the Foliage VDF can
perform the interactive visualization of the trees. The
application can make a selection of the LoD in
running time in order to establish a balance between
the number of polygons with which the object will be
represented and the amount of time needed to
visualize it. In this paper, the data structure and the
extraction algorithm of the required level of detail is
presented.

VDF is the only scheme specially designed for the set
of isolated polygons that form the foliage in a tree.
The multiresolution models that have appeared up to
now deal with general meshes and do not work
properly with this kind of mesh. One of the main
properties of our multiresolution model is that the
trees can be represented with variable resolution,
thus allowing different LoDs to coexist in the crown.

In accordance with [Ribe02], our model would be
classified within the Hierarchical Representation
group. The schemes in this group can manage view-
dependent approximations of the objects, but none of
them can handle the information obtained from the
FSA. This is because the handled information in the
appeared multiresolution schemes are the vertices,
and in VDF are the leaves. [Hopp97] [Xia96] [ElSa99]
[ElSa99b] use methods based on the union of pairs of
vertices in the construction process simplification.
[Lueb97] uses a method based on vertex clustering-- a
set of vertices is collapsed into one vertex. Our model
manages leaves each formed by four vertices.

After reviewing previous work in section 2, section 3
briefly reviews the Foliage Simplification Algorithm.
The multiresolution model specially designed for this
kind of 3D models is studied in depth in section 4. In
section 5, the visualization algorithm is analyzed. This
section shows how we can visualize both variable
levels of detail and uniform ones. Section 6 presents
the results and in section 7 they are analyzed. Some
ideas for future research are discussed in this section.

2. RELATED WORK
The research conducted about vegetation could be
divided into two broad fields: the generation of plants
and trees, and their visualization. Vegetation
modeling has been extensively explored. The most
important works in this field are Lindermayer-systems
[Lind68] [Prus90], used for generating realistic models
of trees. Other solutions combine grammar-based
modeling with traditional techniques [Lint99]. Apart
from the great number of studies that have appeared
in the literature, some commercial applications have

been developed for modeling trees, such as Xfrog
(http://www.greenworks.de) (Figure 1), OnyxTree
(http://www.onyxtree.com) and AMAP
(http://www.bionatics.com).

Figure 1: Tree modeled with the commercial

modeling tool Xfrog: 89.533 triangles.

In contrast, real-time vegetation rendering continues
to be a problem at present. Image-based rendering is
one of the most widely used techniques due to its
simplicity. Different works have been presented in
this field, such as billboarding [Max96], Layered
Depth Images [Scha98], multi Z-buffers [Max96], etc.
[Mars97] proposes a representation of botanical
scenes by integrating polygonal representations of
large objects with tetrahedron approximations of the
less representative parts of the scene. Other solutions
have been proposed in the literature but very few of
them work with geometry.

Level of Detail rendering tries to reduce the
complexity of polygonal data sets in a smart manner.
A discrete set of levels of detail can be constructed
with several independent representations of the same
tree with different approximations. Simplified versions
of these objects can be obtained, in the case of using
L-systems, by limiting the number of polygons at the
time of generating the object.

As regards the continuous level of detail, the
multiresolution models that have appeared up to now
can be classified in three main groups, according to
their representation [Ribe02].

• Multi-triangulation [Flor97] [Pupp98] is a
structure that constitutes a general framework
for continuous multiresolution schemes. In spite
of these characteristics, the implementation
presented in [Flor98] is based on a vertex
decimation method.

• Incremental representations [Hopp96] [Pupo97]
[Hopp98] were mainly developed for application
in progressive transmission and interactive

visualization using approximations of uniform
level of detail.

• Hierarchical representations [Xia96] [Hopp97]
[Lueb97] [ElSa99] [ElSa99b] are mainly used to
create new approximations formed by several
levels of detail which coexist in different areas of
the surface.

The multiresolution models in the literature deal with
general meshes. VDF is specially designed for the
isolated polygons that represent the foliage. It could
be classified in the last group because it allows view
dependent visualization. All of the multiresolution
schemes in this group manage the vertices in the
mesh but the unit of information managed by VDF is
the leaf, four vertices representing two triangles.

3. REVIEW OF FOLIAGE
SIMPLIFICATION ALGORITHM
The method of simplification Foliage Simplification
Algorithm [Remo02] diminishes the number of
polygons that form the crown while maintaining its
leafy appearance (Figure 8). The key to the algorithm
is leaf collapse. Two leaves are transformed into a
single one, so that the area of the new leaf is similar to
the area formed by the two leaves initially. An error
function is used to determine which pair of leaves will
be simplified to create a new one.

From the list of the active leaves, the algorithm
repeatedly selects a pair that minimizes the error
function. These two leaves disappear and a new one
is obtained. The collapsed leaves are eliminated from
the list of actives and then the new leaf is evaluated
with the leaves that remain in the foliage.

The simplification method is characterized by two
elements: the measurement that specifies the cost of
collapsing two leaves, and the position of the vertices
that form the newly created leaf.

Leaf Collapse Cost.
Given a set of candidate leaves to be collapsed, a pair
will be chosen so that the error function is
diminished. This function combines distance and
planarity between the pair of evaluated leaves.

Vertex placement.
The simplification algorithm does not introduce new
vertices in the model. The vertices of the new leaf will
be two vertices of each of the collapsed leaves. This
method will allow us to maintain an area similar to that
of the two original leaves.

4. MULTIRESOLUTION MODEL OF
THE FOLIAGE
The trees used in our study are modeled by the Xfrog
application [Lint99]. They are very realis tic, but are
generally made up of more than 50 000 polygons
each. This is a disadvantage when it comes to
generating images in an interactive way.

Trees can be separated into two different parts:

• the solid component of the tree, the trunk and
the branches, represented by triangle meshes.

• and the sparse component, the foliage or leaves,
formed by a set of independent polygons.

The multiresolution models that have appeared up to
now have been defined for general meshes, not for
isolated polygons. In this way, the trunk and
branches can be modeled by any of the existing
schemes, but they do not work properly with the
sparse component of the tree. The model presented in
this paper, VDF, allows us to represent the foliage
with different levels of detail.

Our multiresolution model is created from a sequence
of leave collapses determined off-line by FSA. The
basic data structure defined for the model is a binary
tree. Each collapsed pair of leaves conditions a
hierarchic relation. The node representing the new
leaf is the father of the nodes representing the
collapsed leaves. The data structure is created
bottom-up as a binary tree.

The leaf nodes of this structure are the polygons
representing the leaves of the tree with a maximum
degree of detail, and the root nodes are the polygons
needed to represent the foliage with a minimum
amount of detail. In this way, the structure is made up
of a “forest” of binary trees. Figure 2 shows an
example of the structure. Let F0 be the set of leaves
forming the original foliage, in this case only 9 leaves.
The root nodes correspond to the worst level of
detail, Fn. Eventually, this level of detail would be
represented by only 3 leaves.

Figure 2: Example of data structure of the
multiresolution model of the foliage of a tree.

Fn

F0 9

6 5

11

4

13

3 10

1 0

12

2

14

8 7

In order to define a multiresolution model, it is
necessary to establish the data structures to store the
information and the algorithms for accessing these
structures in order to retrieve this information in the
most efficient manner. These algorithms select the
most appropriate level of detail in real time and
following a criterion, such as distance from the
observer or importance of the object in the scene.

Basic Data Structure
The main data structures are shown in Figure 3.

All the geometry of the foliage is stored in Foliage.
The main function of this structure is to store a list of
all the vertices and leaves that compose the model. A
list of the leaves that are visualized in a determined
LoD, Actl, is also stored. To achieve a better
management of this list, it stores pointers to the first
and last one of the elements that compose it.

struct Foliage{

Vertex *Vertices;

Leaf *Leaves;

Active *Actl;

int beg,end;

}

struct Leaf{

int leafVertex[4];

leaf* father;

leaf* left;

leaf* right;

}

struct Active{

int index;

int prev;

int next;

}

Figure 3: Main C++ data structures

The structure Leaf stores the vertices that make up a
leaf, as well as the pointers necessary to maintain the
tree structure: a pointer to the parent leaf, and two
pointers to the two children leaves.

Finally, the structure Active maintains the fields
necessary to codify a doubly connected list of the
leaves that are visualizing in a certain LoD.

4.1.1 Storage cost
Let Fr be an arbitrary VDF representation; this stores
the basic elements that compose a tree, that are, its
vertices and polygons.

Let |Vr| and |Lr| be the number of vertices and leaves
stored in Fr, and V and L be the initial numbers of
vertices and leaves that composed the crown of the
tree. Note that in our multiresolution model:

|Vr| = V

as it does not add new vertices when performing the
leaf-collapse operation. Regarding the number of
leaves, let L be the initial number of leaves,

L = V / 4,

since each leaf is formed by 4 vertices independent of
the ones forming the other leaves.

In every leaf-collapse operation, two leaves disappear
and a new one is included. In this case L-1 new
leaves are added to the initial L .

Lr = L + (L-1) = 2L-1.

Let us suppose that the storage cost of an integer,
real or pointer is one word. The current
implementation is not optimised for space, so each
leaf would therefore have a cost of 7 words and each
vertex of 3. In this case:

3|Vr| + 7|Lr| = 3V + 7(2L-1) ≅ 3V + 7V/2 ≅ 6V

Summarizing, we can say that the storage cost of VDF
is O(V).

5. VISUALISATION OF FOLIAGE
The main algorithm defined for accessing these
structures uses a list of active leaves Ls that enables
us to know which leaves are visualized in the current
level of detail. The basic idea consists in checking Ls,
verifying that every leaf in this set is valid for the
required level of detail. If this is not true, it is
necessary to apply one of the following operations
(Figure 4):

• collapse. The leaves are drawn in the worst
detailed zone and they have to be collapsed.

• split. The leaf is not valid, because it is in the
most detailed zone. It has to be refined.

collapse

split

collapse

split

Figure 4: Operations that can be performed in this
model.

VDF has been designed in order to achieve a view
dependent visualization. Despite the fact that it is
possible to obtain different uniform levels of detail.
These will be used when the tree is outside a certain
zone of interest and it is not necessary to visualize it
with much detail. We will now see an analysis of each
one of the cases.

Variable Levels of Detail

5.1.1 Selective refinement algorithm
The validity criteria of the leaves depend on the
application. A criterion decides which part of the
object is simplified and which part is refined. The user
could decide interactively which regions should be
displayed with higher or lower detail, or the
application could also take the decision. Several
authors [Hopp97][Xia97][Lueb97][ElSan99] have
defined criteria about the automation of the selection
of the areas to be represented in higher detail, such as
local illumination, view frustum, screen-space
projection, etc. The solutions proposed in the
literature can easily be added to our scheme, since
our algorithm is independent of the criteria to be
used.

The core of the traversal algorithm is summarized
below in Figure 5.

for each leaf l ∈ Ls

{

 if(not(Criteria(l))){ //COLLAPSE

 if(HaveFather(l)){

 if(not(Criteria(sister)){

 ready = TRUE

 if(not isActive(sister))

 ready = ForceCollapse(sister)

 if ready collapse (l);}

 }

 }

 else { //SPLIT

 nodoSplit = CheckSplit (l);

 if (nodoSplit != NOTFOUND)

 ForceSplit (l,nodoSplit);

 }

}

Figure 5: Pseudocode of the extraction algorithm of
the required level of detail.

In order to obtain a visualization dependent on the
view, the list of active leaves will be checked. If the
checked leaf is not in the zone of interest, two
requirements will be verified in order to apply the
collapse operation. First of all, it is necessary for this

leaf not to be a root node. Next, it is verified that the
leaf-sister is active and it is not in the zone where
maximum detail is required. If all these conditions are
fulfilled, these two leaves will not be visualized in the
following level of detail and will be replaced by their
parent leaf. In our model, it is not necessary to check
before performing an operation if this one maintains
the continuity in the mesh as it happens in
multiresolution models for arbitrary meshes.

On the other hand, if the checked leaf is in the zone
where maximum level of detail is required, it will be
verified whether it fulfills the conditions to perform
the split operation. This active leaf must have
children and it is only necessary for one of them to be
in the zone of the crown where more detail is desired.
If this is so, this leaf will not be active and it will not
be visualized in the following level of detail, being
replaced by its children.

The Criteria function is TRUE if the evaluated leaf
belongs to the zone that must have more detail. If it is
in the coarsest zone, the preconditions are evaluated
in order to perform a collapse transformation. The
ForceCollapse function is called when the sister of
the candidate leaf is also in this zone, but it is not
active. In this case, some of its descendants are
drawn in the current level of detail. This function
checks its descending active leaves and evaluates
whether they are in the minimum detail zone. If they
are, they will be collapsed. This process is repeated
until the sister-leaf is active. If any of its descending
leaves are in the zone of interest, the function returns
FALSE, indicating that the target collapse cannot be
performed.

Procedure CheckSplit(l){

 n= NOTFOUND;

 if HaveChild(l)

 if(Criteria(l.left)or
Criteria(l.right)

 n=l.left

 else {

 n=CheckSplit(l.left)

 if (n == NOTFOUND)

 n=CheckSplit(l.right)

 }

 return (n)

}

Figure 6: Pseudocode of the CheckSplit procedure.

As regards the operation split, the CheckSplit
function (Figure 6) deals with the sub-tree formed by
the descendants of the checked node l. The
procedure evaluates its descendants until it finds a

node n that is in the zone of interest. When this
happens, the function ForceSplit refines all the
descendants of node l, until the activation of this leaf
n is achieved.

5.1.2 Examples
Figure 7 shows an example of view-dependent
visualization.

Figure 7: Example of variable resolution in the

foliage, which is more detailed in front of the plane.

Figures 11 and 12 show further results of different
resolutions in the same crown. The foliage of this tree
was initially formed by 20.376 leaves, that is, 40.752
triangles. The validity criteria used in these cases
have been:

• a sphere centred in the crown. The leaves inside
this sphere are visualized with the minimum level
of detail (Figure 11).

• a plane that vertically divides the crown. The
foliage in the zone nearest the observer will be
visualized with the maximum level of detail,
whereas the zone behind the plane has a coarser
resolution (Figure 12).

Uniform Levels of Detail
Sometimes an uniform level of detail is required by the
application. If the tree is completely outside the zone
of interest, this will have to be drawn with the worst
level of detail in all its crown. The LoD will increase at
the same time the viewer moves towards the tree.

In spite of this, the model has been designed to
obtain view dependent visualization and different
uniform LoDs can be obtained according to the
interest of the tree in the scene. For this reason,
special functions have been designed to obtain a
representation of foliage with a certain number of
leaves.

Should leaves have to be collapsed, this will be a
linear process. The model checks the active leaves
until it finds the ones that fulfill these conditions:

• not being root of a binary tree structure, and

• its leaf-sister is active as well.

In this case, the collapse operation could be
performed. This process will stop when the actual
LoD has the number of leaves required by the
application or when the minimum level of detail has
been achieved.

In the other case, if the application requires a higher
level of detail, the process would be similar. Crossing
the list of active leaves, it is only necessary to verify
that this leaf has children. If this is so, this leaf would
be eliminated from the active list and its children
would be added.

5.1.3 Examples
Figure 8 shows some examples of uniform resolution
in the foliage of a tree.

Figure 8: Different simplifications of the foliage in a

tree.

Different levels of detail of the tree in Figure 1 are
presented in Figure 10.

Time Complexity
In general, the algorithm traverses the active leaf list,
performing the split or collapse operations. Let FA and
FB be two different levels of detail of the same crown
with |LA| and |LB| number of leaves respectively, and Fn
the coarsest representation. The computational cost
for transforming FA into FB, is in the worst case
O(|LA|+|LB|). This refinement, FA Fn FB could
possibly require O(|LA|) collapse and O(|LB|) split
operations. Considering as constant the cost of
performing these operations, the bottleneck of the
refinement algorithm is the traversal of the active leaf
list.

For continuous view changes, |LB| is normally similar
to |LA|, and the simple traversal of the active vertex list
is the bottleneck of the incremental refinement
algorithm. Note that the number of active leaves is
typically much smaller than the number L of original
leaves.

6. RESULTS
The developed method has been implemented with
OpenGL on a PC with Windows 2000 operating
system. The computer is a dual Pentium Xeon at
1.8GHz. with a graphical processor NVIDIA Quadro4
with 64MB.

The tree used in our experiments is the one shown in
Figure 1 formed by 88.443 polygons. Its foliage was
initially formed by 20.376 leaves, that is, 40.752
triangles and its trunk by 47.691 polygons.

The trunk and the branches have been represented
using our previous multiresolution model for general
meshes Multiresolution Triangle Strips [Belm02].

The tests measure the frames per second in a scene
where the number of trees are increased. The camera
follows a circular path around this scene.

The foliage is rendered using three methods:

• Geometry: every tree in the scene is represented
with the maximum level of detail.

• Uniform levels of detail: The tree nearest the
viewer is always represented with full detail.
This detail is diminished as the trees are situated
far away from the viewer.

• Variable levels of detail: The same as the
previous test, the tree nearest the viewer is
always represented with full detail. The interest
zone has been determined by a sphere centred in
the foliage. Leaves inside this sphere are
represented with the worst detail, and the rest of
the foliage with the highest. As the trees are
situated far from the viewer, the radius of the
sphere is incremented.

Figure 9 shows the results for these test.

As we can see in this chart, multiresolution modelling
increases the number of frames visualized per second.
This is because the number of polygons that are
drawn diminishes extraordinarily without reducing the
realism of the scene. In the chart is shown that frame
rate improves with the use of view-dependent
visualization. This allows us to render a foliage with
different level of details, depending on the interest of
the tree in the scene.

In figure 13, a scene of our test is shown. For more
information and colour images, please visit
http://graficos.uji.es/trees.

0

2

4

6

8

10

12

14

16

13 25 37 49 61 73 85 97 109 121

Number of Trees

fp
s

Geometry Uniform Variable

Figure 9: Results of the experiments.

7. CONCLUSIONS AND FUTURE
WORK
In this paper has been presented a multiresolution
model specially designed for the foliage in trees, VDF.
This is the only scheme specially designed for the set
of isolated polygons that form the foliage in a tree.
The multiresolution models that have appeared up to
now deals with general meshes and they do not
properly work with the crown in a tree. VDF provides
a wide range, virtually continuous, of different
approximations that represent the original tree
without loss of leafiness. The main property of this
scheme is that trees can be represented with variable
resolution: some regions in more detail while the rest
of it is represented in less detail.

Using multiresolution models of the trees allows us to
adjust the level of detail to the application
requirements. In this way, fewer polygons are used to
draw distant objects. Due to the great amount of work
that has been carried out in image-based rendering,
the next step is to combine the multiresolution
modeling with this technique, particularly the
dynamic generation of impostors. Drawing a smaller
number of polygons will lead to a reduction in the
cost of impostor generation. Trees will be rendered
using dynamic impostors that take advantage of the
frame-to-frame coherence inherent in three-
dimensional scenes. Impostors avoid the need to
redraw all the geometry of the scene continuously.
The remote trees are drawn with an impostor that has
been generated with few polygons. When trees are
close to the viewer, the front parts will be drawn with
geometry and the rear side with impostors.

Another line of research we are currently working
on is the improvement of the realistic representation
of trees taking illumination into account. We are
developing solutions based on the use of light maps.
On the other hand, the visualization of scenes with
many trees requires the use of techniques such as
hierarchical subdivision of scenes [Shad96],
occlusion-culling methods and multi-layered
impostors [Deco99]-- topics that are all currently
being studied.

8. ACKNOWLEDGMENTS
This work was supported by the Spanish Ministry of
Science and Technology grant TIC2001-2416-C03-02.

9. REFERENCES
[Belm02] Ó. Belmonte, I. Remolar, J. Ribelles, M.

Chover, M. Fernández, “Efficient Implementation
of Multiresolution Triangle Strips”, Proc. of the
Computational Science 2002 Conference, vol. 2,
pp. 111-120, 2002.

[Deco99] X. Decoret, G. Schaufler, F. Sillion, J.
Dorsey, “Multi-layered impostors for accelerated
rendering”, Eurographics’99, 18(3), 1999.

[Flor97] L. De Floriani, E. Puppo, P. Magillo, “A formal
approach to multiresolution hypersurface
modeling”, Straber W., Kein R., Rau R., editors,
Geometric modeling:theory and practice,
Berlin:Springer, 1997.

[Flor98] L. De Floriani, P. Magillo, E. Puppo, “Efficient
implementation of multi-triangulations”,
Proceedings of IEEE Visualization ’97, pp. 103 –
110, 1997.

[ElSa99] J. El-Sana, A. Varshney, “Generalized View-
Dependent Simplification”, Proc. of
EUROGRAPHICS’99, pp. 131-137, 1999.

[ElSa99b]] J. El-Sana, E. Azanli, A. Varshney, “Skip
Strips: Maintaining triangle strips for view-
dependent rendering”, Proc. of Visualization’99,
pp. 131-137, 1999.

[Heck97] P. Heckbert, M. Garland, “Survey of
Polygonal Surface Simplification Algorithms”,
Siggraph’97 Course Notes, 1997.

[Hopp96] H. Hoppe, “Progressive meshes”,
Proceedings of SIGGRAPH’96, pp. 99-108, 1996.

[Hopp97] H. Hoppe, ''View-dependent refinement of
progressive meshes'', Proc. of SIGGRAPH'97, pp.
189-198, 1997.

[Hopp98] H. Hoppe, “Efficient implementation of
progressive meshes”, Computer & Graphics, 22(1),
pp. 27-36, 1998.

[Lint99] B. Lintermann, O. Deussen. “Interactive
modeling of plants”. IEEE Computer Graphics and
Applications, 19(1), 1999.

[Lueb97] D. Luebke and C. Erikson, “View-Dependent
Simplification of Arbitrary Polygonal
Environments”, Proc of SIGGRAPH’97, pp. 202-
210, 1997.

[Mars97] D. Marshall, D. Fussell, A. T. Campbell III,
"Multiresolution Rendering of Complex Botanical
Scenes", Graphics Interface '97, pp. 97-104, 1997.

[Max96] N. Max, K. Ohsaki. “Rendering trees from
precomputed Z-buffer views”, Eurographics
Workshop on Rendering 1996, pp. 165-174, 1996.

[Popo97] J. Popovic, H.Hoppe, “Progressive simplicial
complexes”, Proceedings of SIGGRAPH’97, pp.
217-224, 1997.

[Prus90] P. Prusinkiewicz, A. Lindenmayer, “The
algorithmic beauty of plants”, New York, Ed.
Springer-Verlag, 1990.

[Pupp97] E. Puppo, R. Scopigno, “Simplification, LOD
and Multiresolution – Principles and
Applications”, Eurographics’97, Tutorial Notes,
1997.

[Pupp98] E. Puppo, “Variable resolution
triangulations” Computational Geometry, 11(3-4),
pp. 219-238., 1998.

[Remo02] I. Remolar, M. Chover, O. Belmonte, J.
Ribelles, C. Rebollo, “Geometric Simplification of
Foliage”, Eurographics'02 Short Presentations, pp.
397-404, 2002.

[Ribe02] J. Ribelles, A. López, Ó. Belmonte, I. Remolar,
M. Chover. "Multiresolution Modelling of
Arbitrary Polygonal Surfaces: A
Characterization", Computers & Graphics,
26(3),pp.449-462, 2002.

[Scha98] G. Schaufler. “Per-object image warping with
layered impostors.” Eurographics Rendering
Workshop 1998, pp. 145-156, 1998.

[Shad96] J. Shade, D. Lischinski, D. Salesin, T.
DeRose, J. Snyder, “Hierarchical image Caching
for Accelerated Walkthroughs of Complex
Environments”, Proceedings of Siggraph’96, pp.
75-82, 1996.

[Xia96] J. Xia., A. Varshney, “Dynamic view-
dependent simplification for polygonal models”,
Proc. of IEEE Visualization’96, pp. 327-334, 1996.

[Xia97] J. Xia, J. EL-Sana, A. Varshney, “Adaptive
Real-Time Level-of-Detail-Based Rendering for
Polygonal Models”, IEEE Transactions on
Visualizations and Computer Graphics 3(2), pp.
171-183, 1997.

a) b) c) d)
Figure 10: Different uniform leve ls of detail of the same tree. a) 13.420 polygons, b) 1.558 polygons and c) 472

polygons. These levels of detail are shown in d) depending on the distance to the viewer.

a) b) c) d)
Figure 11: View dependent levels of detail. Criteria used for determining the interest area is a sphere. a) and b)

27.136 polygons, c) and d) 13.680 polygons.

a) b) c) d)
Figure 12: View dependent levels of detail. Criteria used: a plane. a) and b) 24 768 polygons, c) and d)18.406

polygons.

Figure 13: Approximation movement towards a tree

