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Abstract

The study of bi-material notches becomes a topical problem as they can model efficiently geometrical or material

discontinuities. When assessing crack initiation conditions in the bi-material notches, the generalized stress in-

tensity factors H have to be calculated. Contrary to the determination of the K-factor for a crack in an isotropic

homogeneous medium, for the ascertainment of the H-factor there is no procedure incorporated in the calculation

systems. The calculation of these fracture parameters requires experience. Direct methods of estimation of H-

factors need choosing usually length parameter entering into calculation. On the other hand the method combining

the application of the reciprocal theorem (Ψ-integral) and FEM does not require entering any length parameter and

is capable to extract the near-tip information directly from the far-field deformation.
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1. Introduction

The study of bi-material notches becomes a topical problem as they can model efficiently ge-

ometrical or material discontinuities. When assessing conditions for a crack initiation in the

bi-material notches, the generalized stress intensity factors H are necessary to be calculated. In

contrast to the determination of the K factor for a crack in an isotropic homogeneous medium,

for the ascertainment of a generalized stress intensity factor (GSIF) there is no procedure incor-

porated in the calculation systems. The calculation of these fracture mechanics parameters is

not trivial and requires certain experience. Nevertheless the accuracy of the H-factors calcula-

tion directly influences the reliability of assessment of the stress concentrators. Direct methods

of estimation of H factors require choosing usually length parameter entering into calculation.

On the other hand the method combining the application of the reciprocal theorem (Ψ-integral)

and FEM does not require entering any length parameter and is capable to extract the near-tip

information directly from the far-field deformation where the numerical fields are more accu-

rate. The latter method can be readily applied to bi-materials composed of orthotropic materials

components. In the paper various methods of calculation of the GSIFs are presented, tested

and mutually compared. Recommendations for reliable evaluation of critical conditions of the

bi-material notches are suggested.
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2. Bi-material notch

The model of a bi-material notch is suitable to simulate a number of construction points from

which a failure is initiated. In the case of layered or fibre composite locations where the layers or

fibres touch the surface of the composite body the singular stress concentrations occur. The sin-

gular stress distribution is derived on the basis of Airy stress functions in the form of Williams’

expansion [10]. In most of the geometrical and material configurations of a bi-material notch

there are two terms of the expansion with the real stress singularity exponents p1 and p2 in the

interval (0; 1). Contrary to a crack in a homogeneous material, the exponents differ from 1/2

and, furthermore, each singular term includes both normal and shear mode of loading, see [4]

for detail. Then the singular stress components can be written in the polar coordinates:

σmij =
H1√
2π

r−p1Fij1m +
H2√
2π

r−p2Fij2m , (1)

where for {i, j} = {r, θ} and for each singular term k = 1, 2:

Frrkm = (2 − pk)(−amk sin((2 − pk)θ) − bmk cos((2 − pk)θ) +

+3cmk sin(−pkθ) + 3dmk cos(−pkθ))

Fθθkm = (p2
k − 3pk + 2)(amk sin((2 − pk)θ) + bmk cos((2 − pk)θ) +

+cmk sin(−pkθ) + dmk cos(−pkθ))

Frθkm = (2 − pk)(−amk cos((2 − pk)θ) + bmk sin((2 − pk)θ) +

+cmk cos(−pkθ) − dmk sin(−pkθ))

The subscript m differentiates the materials 1 and 2 where the stresses are determined. The

values Hk are the generalized stress intensity factors that follow from the numerical solution of

the studied geometry with given materials and boundary conditions [4, 3, 7]. The numerical cal-

culation of the values Hk is necessary step for the final determination of the stress distribution.

Numerical approaches to calculation of GSIFs have varying level of difficulty and accuracy. In

the following paragraphs the direct methods and the method combining the application of the

reciprocal theorem and FEM are described.

3. Direct methods of the generalized stress intensity factors Hk determination

Direct methods compare the results of some appropriate magnitude from a numerical solution

with its analytical representation.

3.1. Tangential stress

The tangential stress σθθ is used here as the appropriate magnitude for the comparison. If the

stress distribution is described by a combination of H1 and H2, it is necessary to solve the

system of two equations. To achieve this, the values of σθθ following from the finite element

method are determined for two different directions θ1, θ2. Then knowing the analytical relations

e.g. for σθθ (1) we solve the system of equations for H1 and H2:
[

r−p1Fθθ1m(θ = θ1) r−p2Fθθ2m(θ = θ1)
r−p1Fθθ1m(θ = θ2) r−p2Fθθ2m(θ = θ2)

] [

H1

H2

]

=

[

σmθθ(r, θ1)
σmθθ(r, θ2)

]

, (2)

The valid values of H1, H2 are then determined by an extrapolation of the solutions (2) into

r = 0. The dependence of GSIF Hk on the polar coordinate r and the extrapolation into the

notch vertex is shown in fig. 1.
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Fig. 1. Extrapolation of H1 and H2 values into the notch tip (r = 0)

3.2. Generalized strain energy density factor

For combined mode of loading it is suitable to use strain energy density (SED) approach to

describe crack behaviour and to estimate the GSIFs as well. In the early 70s Sih [9] showed that

damaging of a material could be estimated using strain energy density factor S that is defined

by following equation:

S = r · dW/dV = r

∫ ε

0

σ dε , (3)

In the same way the generalized strain energy density factor (SEDF) Σ is defined for the

case of a bi-material notch. Limiting only to plane problems we can obtain the relation for the

distribution of the SEDF Σ that in contrast to a crack, depends on the radial distance r. Because

of the dependency of Σ on r, mean value over a certain distance d will be considered in the

following [4]. For material m it is:

Σm =
1

d

∫ d

0

Σmdr (4)

=
H2

1

16Gmπ

(

d1−2p1

2 − 2p1

U1m +
d1−2p2

2 − 2p2

h2
21U2m +

d1−p1−p2

2 − p1 − p2

2h21U12m

)

,

where

U1 = [(F 2
rr1m + F 2

θθ1m)(km + 1) + 4F 2
rθ1m + 2Fθθ1mFrr1m(km − 1)]

U2 = [(F 2
rr2m + F 2

θθ2m)(km + 1) + 4F 2
rθ2m + 2Fθθ2mFrr2m(km − 1)]

U12 = [(Frr1mFrr2m + Fθθ1mFθθ2m)(km + 1) + 4Frθ1mFrθ2m+

+ (Fθθ1mFrr2m + Fθθ2mFrr1m)(km − 1)]

and km = (1 − νm)/(1 + νm) for plane stress and km = (1 − 2νm) for plane strain, Gm is

shear modulus and νm is the Poisson ratio. h21 = H2/H1 denotes ratio of the generalized stress

intensity factors.

The integration distance d enters the calculations as a structural parameter or a parameter

related to the mechanism of rupture.

The values H1 and H2 can be determined from the mean value of the SEDF. Here the two

unknown parameters are calculated from the two following conditions. First the ratio h21 is
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Fig. 2. Numerically gained distribution of the mean value of the generalized strain energy density factor

with its minimum in the direction θ0

gained from the numerically ascertained angle θ0 of minimum of the mean value of the gener-

alized SEDF Σm, see fig. 2. For the minimum of Σm it must be satisfied the condition of the

first derivation equal to zero:

(

d2−2p1

2 − 2p1

∂U1m

∂θ
+

d2−2p2

2 − 2p2

h2
21

∂U2m

∂θ
+

d2−p1−p2

2 − p1 − p2

2h21

∂U12m

∂θ

)

θ0

= 0 , (5)

From two possible solutions h21 to the quadratic equation (5) we take only one that satisfies

positive the second derivation, and thus it implies the minimum.

Finally knowing the ratio h21 = H2/H1 the value of GSIF H1 is determined as:

H1 =

[

1

Σm8dGm

(

d2−2p1

2 − 2p1

U1m +
d2−2p2

2 − 2p2

h2
21U2m +

d2−p1−p2

2 − p1 − p2

2h21U12m

)]
−1

2

. (6)

The value Σm in (6) results from the numerical solution; d is a distance at which the value

of SEDF is approximated. The value of d has to be chosen considering the failure mechanism.

For the brittle fracture d relates to a grain size and thus it can express the increment of a crack.

On the other hand for the fatigue loading d can be chosen as the plastic zone size. The value of

the coefficient H2 is determined reciprocally from: H2 = h21H1.

4. Ψ-integral method

GSIF can also be determined using the so-called Ψ-integral [2]. This method is an implication of

the Betti’s reciprocity theorem which in the absence of the body forces states that the following

integral is path independent:

Ψ(u,v) =

∫

Γ

[σkl(u)nkvl − σkl(v)nkul] ds , k, l = 1, 2. (7)

The contour Γ surrounds the notch tip and u,v are two admissible displacement fields.

Major advantage of the integral (7) is its path independency for the case of the multimaterial

wedges.

To apply the Ψ-integral, it is convenient to derive the displacement field u and v using

the Lekhnickii-Eshelby-Stroh (L.E.S.) formalism which allows expressing displacements and
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resultant forces T along the material interfaces from the complex potential theory. For the case

of the orthotropic bi-material notch, one can write

um,i = 2Re

{

2
∑

j=1

Am,ijfm,j(zm,j)

}

, Tm,i = −2Re

{

2
∑

j=1

Bm,ijfm,j(zm,j)

}

, (8)

where

Am =

[

sm,11µ
2
m,1 + sm,12 sm,11µ

2
m,2 + sm,12

sm,12µm,1 + sm,22/µm,1 sm,12µm,2 + sm,22/µm,2

]

,

(9)

Bm =

[

−µm,1 −µm,2

1 1

]

,

sm,ij are elements of the compliance matrix, µm,i are the material eigenvalues and m differenti-

ates the materials of the notch. The potentials fm,j(zm,j) are considered in the form

fm,j(zm,j) = φm,jz
1−p
m,j , j, m = 1, 2, (10)

where p is the stress singularity exponent and zm,j = x + µm,jy. The compatibility equations

are automatically satisfied by (8) and the application of the boundary conditions of the joint,

i.e. the stress free conditions along the notch faces and the displacement and stress continuity

conditions along the bimaterial interface, leads to the eigenvalue problem whose solution are

eigenvectors φm,i corresponding to the eigenvalue (exponent) p. It can be proved [8], that if

p, φm,i is the solution of the eigenvalue problem mentioned above, it exists the so-called auxil-

iary solution p∗, φ∗

m,j of the same eigenvalue problem, where p∗ = 2 − p. If the displacements

u and v in (7) are chosen so that e.g. u corresponds to the regular solution p, φm,i and v to the

auxiliary solution p∗, φ∗

m,j and vice versa, the Ψ-integral is nonzero. The other combination of

the solutions u and v gives zero value of the Ψ-integral.

The isotropic materials are from L.E.S. point of view degenerated because the complex

numbers µm,1 = µm,2 = i are double roots of the characteristic equation of each material m.

The complex coordinates zm·i = x+µm,iy reduce to the single value z = x+iy and the matrices

Am and Bm are singular so that L.E.S. representation is unable to define the various fields. In

this circumstance, it is useful to introduce Mushkhelishvili’s complex potentials ϕ(z) and ψ(z)
which allow to express the displacement field u and resultant forces T as follows

−2iGm(um,1 + ium,2) = κmϕm(z) − (z − z)ϕ′

m(z) − ψm(z)
(11)

Tm,1 + iTm,2 = ϕm(z) − (z − z)ϕ′

m(z) − ψm(z) ,

where κm = 3 − 4νm for plane strain and (3 − νm)/(1 + νm) for plane stress, νm and Gm

are Poisson’s ratio and shear modulus of material m, respectively. With a view to relate the

potentials ϕ(z) and ψ(z) in (11) with fm,j(zm,j) in (8), the equation (11) can be rewritten into

the form (8), [1], where

Am =
1

4Gmi

[

κmi −i
κm 1

]

, Bm =
1

2

[

i −i
1 1

]

, (12)

and

fm,1(z) = ϕ(z) = φm,1z
1−p ,

fm,2(z) = ψ(z) + (z + z)ϕ′(z) (13)

= φm,2z
1−p + (z + z)(1 − p)φm,1z

−p m = 1, 2.
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Following (7) the displacement field anywhere around the notch tip can be written as

um(r, θ) = um(0) + H1r
1−p1um,1(θ) + H2r

1−p2um,2(θ) + . . . , (14)

where um(0) is the rigid body motion, dots represent non-singular terms of the expansion, r and

θ are polar coordinates and r1−p1um,1(θ) and r1−p2um,2(θ) are basis functions corresponding to

the coefficients H1 and H2, respectively, derived from (10) for the case of orthotropic materials

or from (13) for the case of isotropic materials. Due to the orthogonality conditions that satisfy

regular and auxiliary solutions the GSIFs H1 and H2 can be computed as follows

H1 =
Ψ(um, r2−p∗

1u
∗

1)

Ψ(r2−p1u1, r2−p∗
1u∗

1)
, H2 =

Ψ(um, r2−p∗
2u

∗

2)

Ψ(r2−p2u2, r2−p∗
2u∗

2)
. (15)

Since the exact solution um(r, θ) in (14) is not known, a finite element solution can be used

as an approximation for um(r, θ) to obtain an approximation for H1 and H2.

5. Stability criteria suggestion

For the final assessment of a construction with a bi-material notch it is necessary to check the

stability of the notch. Determination of the stability conditions of notches means to find the ex-

ternal loading under which a crack is initiated in the notch tip. The classic fracture mechanics

approach of comparison of the stress intensity factor KI with its critical value KIcrit (repre-

sented by fracture toughness KIC or by the fatigue threshold value KIth) is generalized to the

following relation:

Hk(σappl) < Hkcrit(Mm) . (16)

The value Hk(σappl) follows from the numerical solution and its determination is described in

the previous paragraphs. The critical value Hkcrit depends on the critical material characteristic

KIC or KIth and has to be deduced with help of a controlling variable L, see [6]. The detail of

derivation of critical values of the H-factor can be found in [4].

Then the critical applied stress is gained from the critical value of Hkcrit:

σcrit = σappl

H1crit

H1(σappl)
. (17)

Where σappl is the external loading stress applied in the numerical solution for the value H1.

The crack will not be initiated in the bi-material wedge tip if the applied stress is lower than the

critical stress:

σappl < σcrit . (18)

6. Numerical example

The numerical study is performed on the rectangular bi-material notch loaded as shown in

figure 3.

Within the numerical study the methods of calculation of GSIF were tested for varying

combination of the material components expressed by Young’s moduli. The results of both

presented direct methods are compared. Fig. 4 shows the dependence of the values of GSIFs

H1 and H2 on the ratio of moduli E1/E2 ∈ 〈0.012 5; 10〉.
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Fig. 3. Rectangular bi-material wedge used in the numerical example, a detail of a FEM mesh

Fig. 4. Values of generalized stress intensity factors H1,H2 gained from the mean value of the general-

ized strain energy density factor (SEDF) and from the tangential stress (STT)

7. Conclusions

The results of GSIFs ascertained by means of two presented direct methods on the basis of two

variables match well each other. Both methods give reliable input parameters to assessment

of composite structures. The advantage of the direct methods is that they can be easily used

with standard finite element calculation systems. The method gaining GSIFs in the two steps –

from the supposed angle of potential crack initiation and from the mean value of the particular

variable – can be easily programmed and thus automated. The two-step approach described

here by means of mean value of generalized SEDF can be analogically derived for the mean

value of tangential stress as well.

On the other hand the direct methods require choice of usually length parameter entering

into calculation. It can be the choice of the region of the linear part suitable for the extrapolation

of H-factor values (section 3.1) or the choice of the region for averaging the SEDF values.

This handicap can be exploited for the optimization of the numerical processes by allowing

entering structural parameters (e.g. grain size) or parameters connected with the loading type

(e.g. plastic zone size, a crack increment) into calculations.

The method combining the application of the reciprocal theorem (Ψ-integral) and FEM is

capable to extract the near-tip information directly from the far-field deformation where the

numerical fields are more accurate. Thus the Ψ-integral method can help with the option of
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the unknown length parameter. Further the latter method can be readily applied to bi-materials

composed of orthotropic materials components.

Note that for the final evaluation of the bi-material notch it is further necessary to determine

critical applied stress on the basis of critical values of the generalized stress intensity factors.

These approaches are described within suggestion of stability criteria, see e.g. [4]. When the

critical applied loading is determined it is suitable to keep the same controlling variable for the

GSIFs estimation as well as for the stability criterion suggestion.
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