
Silhouette Enhanced Point-Based Rendering

José Luiz Luz, Luiz Velho, Paulo Cezar P. Carvalho

IMPA–Instituto Nacional de Matemática Pura e Aplicada

Estrada Dona Castorina, 110, 22460

Rio de Janeiro, RJ, Brasil

{josell, lvelho, pcezar}@visgraf.impa.br

ABSTRACT

With the recent advances in the 3D scanning field, the size of datasets to be displayed has increased up to bil-

lions of points. Typically, we have a dense, unstructured set of points without connectivity information. Most

researchers have proposed the point-surfel association to represent the surface’s geometry and to render it using

a planar approximation for each point. This paper proposes an alternative approximation, where curved surface

elements (c-surfels) are employed, in order to get better adaptation to the surface to be rendered. We also use

texture mapping and blending, to produce a perceptually better visualization. Improvements caused by using

curved surfels instead of planar ones are especially noticeable at the object’s silhouette.

Keywords: Point-based Rendering, Graphics Data Structures, Texture Mapping.

1 INTRODUCTION

The problem of handling 3D datasets obtained from

real-world objects has drawn the attention of the re-

search community. Typically, we have a dense, un-

structured set of points (sometimes, billions of them)

without connectivity information. The techniques to

treat these datasets have evolved, especially due to re-

search on triangle meshes, since triangles are the most

popular modeling primitives. Nevertheless, with the

growing use of complex geometries the overhead asso-

ciated with polygonal meshes is reaching prohibitive

levels. As a consequence, other representations be-

come more attractive.

More recently, there has been a trend to use point-

based representations. Given the simplicity of points,

they seem natural for modeling and rendering. We can

obtain them from parametric representations (polygo-

nal meshes, splines patches, subdivision surfaces) and

non-parametric ones (implicit surfaces, fractals). Other

representations use directly the point samples, such as

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage and that copies bear this notice and the full citation on the

first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2005, January 31-February 4, 2005

Plzen, Czech Republic.

Copyright UNION Agency - Science Press

particle systems, volumetric data in medical images,

and image-based rendering.

Point-based representations can compensate for

their lack of connectivity information, by spatial prox-

imity between the points in a sufficiently dense sam-

ple, without causing loss of quality in the final im-

age. With the texture mapping technique introduced

by Catmull [Cat74] we can improve the visualization

while keeping the object fundamental geometry, get-

ting better results for planar surfaces or slightly curved

surfaces. Moreover, blending operations can be used

to reduce discontinuities in the texture mapping of over-

lapping surfaces.

This paper proposes an alternative approximation

where curved surface elements (c-surfels) are

employed, in order to get better adaptation to the sur-

face to be rendered. We also use texture mapping and

blending, to produce a perceptually better visualiza-

tion. Improvements caused by using curved surfels in-

stead of planar ones are especially noticeable at the

object’s silhouette.

We discuss related work in Sec. 2 and then de-

scribe the steps to build our primitives in Sec. 3. In

Sec. 4, point out some factors that contribute to the use

of c-surfels at the object’s silhouette and show some

results and applications, and in Sec. 5 we present some

conclusions, and discuss limitations and future work.

2 RELATED WORK

Levoy and Whitted [LT85] in 1985 proposed the use of

points as universal rendering primitives. The concep-

tual idea was to have a single element good enough

105

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295549008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to model and render any kind of object. The surface

could be represented by points, considering it differen-

tiable, and estimating the tangent plane and the normal

from a small set of neighboring points.

About a decade later, in 1998, Grossman and

Dayle [GD98] addressed object sampling from a set

of orthographic views. They used a hierarchy of depth

buffers to determine when a pixel is considered a hole

or not.

Various researchers have published their ideas rel-

ative to point rendering and modeling. In 2000 three

papers introduced the ground ideas for our work.

Pfister et al. [PZBG00] extended Grossman and

Dayle’s work by adding hierarchical level of detail

(LOD) control and hierarchical visibility culling. They

proposed the paradigm of surface elements (surfels) to

efficiently render complex geometric objects. Surfels

are primitives without explicit connectivity, with at-

tributes such as depth, texture color, and normal. The

objects are sampled from three orthogonal views and

the sampling is stored in a octree. When rendering,

the visible surfels and the holes are detected; the sur-

face attributes are interpolated at the pixels that have

samples.

Rusinkiewicz and Levoy [RL00] devised a ren-

dering system called Qsplat. It allows real-time view-

ing of models consisting of hundred of millions of

points samples. They used a bounding sphere hierar-

chy for hierarchical LOD control and culling and they

employed splatting for surface reconstruction. The

splats are oriented along the view plane and rendered

in a back-to-front order.

Schauffer and Jensen [JS00] used small surfels to

render point-based representations. They considered

these surfels as tangent plane approximations and em-

ployed ray tracing to interpolate per-point attributes.

3 POINT RENDERING

There are many approaches to render objects from its

point-based representation. We can distinguish two

different proposals. The first renders the primitives

as 0-dimensional points, while the second renders the

primitives considering an area for each point.

We can also classify the algorithms to render point-

based surfaces in two groups: those that do forward

mapping and those that do backward mapping. The

methods in the first group send points directly to ren-

dering pipeline and compute their contributions to the

pixels; thus we have projection from object-space to

image-space. Splatting [Räs02] is an example of this

type of algorithm. The methods in the second group

compute for each pixel in the image the object that

projects on it; therefore, we have projection from image-

space to object-space. Ray tracing and polygon texture

mapping are examples of this type of algorithm. Some

algorithms use a combination of both techniques.

Point rendering requires information about point

attributes such as position, normal, color, texture coor-

dinates, etc. We may also associate an element of sur-

face to a point, i.e. a surfel. The surface area at each

point can be considered circular and characterized by a

radius, that must be sufficiently large to ensure a hole-

free reconstruction. We can store other attributes for a

surfel, such as transparency and material properties.

In this paper we have as input a set of point sam-

ples on a smooth surface, which are assumed to be

sufficiently dense so that the distribution of the points

over the surface can be considered approximately uni-

form. We also assume that a normal is available at

each point, and, in some cases, textures coordinates

are also available. We do forward mapping and tex-

ture mapping, and regard each point as either a surfel

or curved surfel (c-surfel), with the same fixed radius

for all surfels which is computed before sending them

to the rendering pipeline.

3.1 Building our primitives

A topological surface is a subset S of an Euclidean

space R
3, which is locally homeomorphic to the Eu-

clidean space R
2, that is, for each point p ∈ S there is

a spherical neighborhood B3
ε ⊂ R

3 with center p, in

such a way that the subset B3
ε ∩S is homeomorphic to

the open unit disk in the Euclidean plane (Figure 1).

B2
1 =

{

(x, y) ∈ R
2;x2 + y2 < 1

}

Intuitively this definition says that a surface is

obtained by overlapping several deformed pieces of

the plane [VG03].

Figure 1: Homeomorphism

Let us represent these pieces by means of the func-

tion φ(r) (r ∈ [0, ε]), which is given by:

φ(r) =

{

0 , planar approximation

1 − e
−

(

r2

h2

)

2

, almost planar approximation

The expression “almost planar” is used to repre-

sent our c-surfel, and h is a constant which defines the

surfel curvature. From this function we can obtain a

106

plateau-like surface (gaussian approximation) or a pla-

nar one, defined by the points (r. cos θ, r. sin θ, φ(r))
(θ ∈ [0, 2π]), which allows one to use it as a local

approximation to a point, and allowing a perceptually

better adaptation to the surface (Fig. 2).

(a) (b)

(c) (d)

Figure 2: (a) planar surfel. (b) c-surfel. (c),(d) over-

lapping surfels

When we put these approximations on the surface

we obtain overlapping surfels (c-surfels). Therefore,

to give an appearance of continuity to the surface we

use texture mapping and blending operations.

3.2 Texture mapping and blending

We map to our surfels a single texture with only one

color, and opacity falling off radially according to a

gaussian approximation. The alpha-value of pixel (i, j)
(initially set to 1.0) is multiplied by a factor f(i, j)
given by:

f(i, j) = e−((i−x0)
2+(j−y0)

2)/d2

,

where

(i, j) - position at texture;

(x0, y0) - texture center;

d - radial fall-off factor.

We map the texture considering initially r ∈ (0, 1],
and using the function:

(r. cos(2kπ
n), r. sin(2kπ

n), φ(r))

↓

(1
2 cos(2kπ

n) + 1
2 , 1

2 sin(2kπ
n) + 1

2).

Where n is the number of sides of the surfel and

k is in the interval (0, n]. Thus, the surfel (c-surfel)

center corresponds exactly to the texture center in a

parametric space uv defined in [0, 1]x[0, 1], and trans-

parency is observed at the surfel border, as shown in

Figure 3. Further the surfel is scaled in according to

the computed radius.

Figure 3: mapped texture surfel.

To handle overlapping surfels we need to know

how to use alpha values to combine the currently pro-

cessed color and the one previously stored at color-

buffer.

The color c at position (x, y) in the final image

is computed as a normalized weighted mean of con-

tributions from mapped texture colors (surfels). The

normalization is necessary since the weights (alpha

values) do not necessarily constitute a partition of the

unity at screen-space, due to irregular surfel position

and the truncation of the ideal alpha mask (Figure 4).

(a) no blending. (b) blending.

Figure 4:

We have:

c(x, y) =

∑

i ci.wi(x, y)
∑

i wi(x, y)

ci - ith polygon color

wi(x, y) - weight at position (x, y)

We sort the points before rendering their corre-

sponding surfels, since ordering affects smoothness at

the final image, and we use a multipass rendering due

to the interaction between blending and Z-buffering.

Figure 5: incorrect occlusion and blending

107

3.3 Visibility

Rusinkiewicz and Levoy [RL00] proposed a multipass

rendering in OpenGL to ensure that both occlusion and

blending happen correctly (Fig. 5). For the first pass,

we render the surfel with an offset zo away from the

viewer. We do this only into the depth buffer. For

the second pass we turn off the depth offset allowing

depth comparison, without updating the depth buffer

and writing to color-buffer. This steps blend together

with the correct occlusion all surfels within a depth

range zo of the surface.

3.4 Surfel size

We need to compute the correct size of the surfels,

which will be the same for all of them. To compute the

size of the surfels we use eigenanalysis of the covari-

ance matrix of a local neighborhood (Principal Com-

ponent Analysis - PCA) to estimate local surface prop-

erties, as proposed by Pauly [MPK02]. Given a point

cloud P =
{

pi ∈ R
3
}

, the covariance matrix C for a

sample point p is given by

C =





pi1 − p

. . .

pik
− p





T

·





pi1 − p

. . .

pik
− p



 , ij ∈ Np

where p is the centroid of the neighbours pij
of p, and

Np is the index set of the k-nearest neighbours of the

sample p. The principal components are the solutions

to the following eigenvector problem:

C · vl = λl · vl , l ∈ {0, 1, 2}

We use the eigenvalues and their corresponding

eigenvectors to do a space partition. Since eigenvalues

give a measure to the variation of the points in Np,

we take the eigenvector corresponding to the greatest

eigenvalue, and define a splitting plane in a BSP-tree,

that we use to perform hierarchical clustering.

Assuming that λ0 ≤ λ1 ≤ λ2, the eigenvalue λ0

describes the variation along the surface normal. We

define

σn(p) =
λ0

λ0 + λ1 + λ2
,

as the surface variation at point p in a neighborhood of

size n. If σn(p) = 0 all points lie in the plane. Then

we use that as a subdivision criterion to locate clus-

ters with exactly three non-collinear points (Figure 6).

The size of the surfel corresponding to a cluster is the

diameter of the smallest circle circumscribed to its as-

sociated triangle. Since we assume that our sample

is approximately uniformly distributed, we expect that

the triangles have approximately the same area, and

use the average of all surfel sizes as a common size

used in the rendering process. But if we have regions

with uneven distribution, holes can appear on the sur-

face.

Figure 6: triangles on the surface obtained by cluster-

ing

4 VISUALIZING WITH OUR SURFELS

We associate to each point either a planar surfel or

a c-surfel, which are constructed, and stored. Then

they are oriented, translated and scaled accordingly to

the point attributes. Some factors contribute to obtain

good results when using c-surfels, Among them we

can highlight the following ones:

• Overlapping c-surfels provides a better local ap-

proximation to the points on the surface, since

they have an associated mesh, which provides

more details;

• All normals in the c-surfel have the same orienta-

tion as the normal at the point; thus shading and

blending operations give an appearance of conti-

nuity to the rendered surface.

Figure 7 shows a result using only c-surfels. However,

as the c-surfel have a mesh, the computational cost due

to rendering them can become high, depending on the

number of polygons of the mesh. The table 1 shows

the performance of our unoptimized C implementa-

tion for different c-surfels (Pentium IV 1.4 GHz 512

RAM).

c-surfel

24 polygons 60 polygons 200 polygons

Igea 1.06 fps 1.00 fps 0.41 fps

(134.345 points)

Table 1: different c-surfel resolutions

Instead of using only c-surfels, we propose to use

both planar and curved surfels, and since using flat sur-

fels at the silhouettes of the object may result in less

108

(a) igea (134.345 points).

Figure 7:

precise rendering (Figure 8), we use c-surfels at the

silhouette points (and close to them) and flat ones for

the rest of the surface as illustrated in Figure 9.

(a) flat surfels at the silhouette.

(b) c-surfels at the silhouette.

Figure 8:

Then if the angle between the vector from a point

p to the observer’s eye and the normal at this point is in

the interval [90o − ε, 90o + ε] (ε ∈ [0o, 20o]), we use

a c-surfel for this point, otherwise we employ a flat

surfel. The table 2 shows some time measures using

planar surfels with 6 sides, and c-surfels formed by 24

polygons.

We can see that using c-surfels at the object’s sil-

houette does not increase the cost significantly, when

comparing to the all planar case. Therefore, their use

seems a good option to enhance the level of details at

these regions. Some rendering results are shown in the

figure 10.

When we have texture coordinates available for

the points, we can do texture mapping by blending

the texture image colors: given the texture coordinates

we verify the corresponding color in the texture-space,

and map it to the surfel (Figure 11).

Figure 9: surfel and c-surfels

Model planar surfel c-surfel planar surfel

+

c-surfel

Igea 1.22 fps 1.06 fps 1.18 fps

(134.345 points)

Ball joint 1.08 fps 0.96 fps 1.03 fps

(137.059 points)

Budha 0.35 fps 0.3 fps 0.33 fps

(389.347 points)

Table 2: using planar and almost planar approxima-

tions

5 CONCLUSIONS

We proposed the use of curved surfels and texture

blending to visualize a set of point samples, by ex-

ploring the adaptation to the surface when the c-surfels

overlapping each other, which provides more details

because of their mesh. Since the associated computa-

tional cost can be high, we used these c-surfels only at

the models silhouette, without increasing the overhead

very much.

In future work we intend to improve the tech-

nique to handle difficult regions, such as those with

high-curvature, perhaps storing a curvature informa-

tion for each point, estimated in terms of its local neigh-

borhood, and use that to adapt the surfel curvature.

6 ACKNOWLEDGMENTS

The authors are partially supported by CNPq research
grants. This research has been developed in the VIS-
GRAF Laboratory at IMPA. VISGRAF is sponsored
by CNPq, FAPERJ, FINEP and IBM Brasil.

109

(a) budha (389.347 points). (b) hand (327.323 points).

(c) ball joint (137.059 points). (d) rabbit (44.691 points).

Figure 10:

110

(a) texture-mapped sphere. (b) texture-mapped torus.

Figure 11:

7 REFERENCES

[Cat74] E. E. Catmull. A Subdivision Algorithm for

Computer Display of Curved Surfaces. PhD the-

sis, Department of Computer Science, Univer-

sity of Utah, 1974.

[GD98] J. P. Grossman and William J. Dally. Point sam-

ple rendering. Eurographics Rendering Work-

shop 1998, pages 181–192, 1998.

[JS00] Henrik Wann Jensen and Gernot Schauffer. Ray

tracing point sampled geometry. In Springer-

Verlag, editor, Rendering Techniques 2000,

pages 319–328. Eds. Peroche and Rushmeier,

2000.

[LT85] Marc Levoy and Whitted Turner. The use of

points as a display primitive. Technical Report

85-022, University of North Carolina at Chapel

Hill, 1985.

[MPK02] Markus Gross Mark Pauly and Leif P. Kobbelt.

Efficient simplification of point-sampled sur-

faces. In Proceedings IEEE Visualization 2002,

pages 163–170, Computer Society Press, 2002.

[PZBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen Van

Barr, and Markus Gross. Surfels: Surface el-

ements as rendering primitives. In Proceed-

ings of ACM SIGGRAPH 2000, pages 335–342.

ACM Press/ ACM SIGGRAPH/ Addison Wes-

ley Longman, 2000.

[Räs02] Jussi Räsänen. Surface splatting: Theory, ex-

tensions and implementation. Master’s thesis,

Dept. of Computer Science, Helsinki University

of Technology, 2002.

[RL00] Szymon Rusinkiewicz and Mark Levoy. QS-

plat: A multiresolution point rendering sys-

tem for large meshes. In Proceedings of ACM

SIGGRAPH 2000, pages 343 – 352. ACM

Press/Addison-Wesley Publishing Co, 2000.

[VG03] L. Velho and J. Gomes. Fundamentos de

Computação Gráfica. Impa, Rio de janeiro,

2003.

111

	IPC_2005.pdf
	!_J_WSCG_2005_Vol_13_No_1-3_Numbered_Final.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	J_WSCG_2005_No_1-3.pdf
	L07-full.pdf
	D67-full.pdf
	G03-full.pdf
	F53-full.pdf

