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Abstract— In many image processing applications, fast con-
volution of an image with a large 2D filter is required. Field
Programable Gate Arrays (FPGAs) are often used to achieve
this goal due to their fine grain parallelism and reconfigurability.
However, the heterogeneous nature of modern reconfigurable
devices is not usually considered during design optimization. This
paper proposes an algorithm that explores the implementation
architecture of 2D filters, targeting the minimization of the re-
quired area, by optimizing the usage of the different components
in the heterogenous device. Experiments show that the proposed
algorithm can achieve on average 55% reduction in the required
area when compared to current techniques.

I. INTRODUCTION

In recent years, many image processing applications have
appeared in the literature that require the use of large 2D
filters. Moderate size examples can be found in face detec-
tion/recognition applications [1] where kernels with size of
23 × 23 pixels are used, and some more extreme examples
can be found in medical imaging where applications require
kernels with size of up to 63×63 pixels [2]. At the same time,
real-time implementation is often required, making the use of
hardware acceleration a necessity [3].

FPGAs are often used to achieve this goal due to their
fine grain parallelism and reconfigurability. Modern FPGAs
are heterogenous devices, often targeting the DSP community,
and thus providing a mixture of resources that can be used
by DSP applications. The two main silicon cores that are
usually included in the recent devices are embedded RAMs
[4] and embedded multipliers [5]. The first one provides fast
distributed memory access, while the second one provides high
speed accurate multiplication.

Current techniques for 2D filter optimization for a modern
reconfigurable device, such as word-length optimization [6]
and singular value decomposition [7], do not take into account
the heterogeneity of the device. However, research concerning
the exploitation of heterogeneity for a particular application
has recently started to appear in the literature. In [8], the
authors propose an approach for exchanging embedded RAMs
for multipliers, whereas in [9] the authors propose an algo-
rithm that identifies part of the circuit that can be implemented
in embedded RAMs.

In line with this direction, the proposed algorithm departs
from the current methods of 2D filter implementation by
providing an approach that makes explicit use of the het-
erogeneity of the device targeting to designs that use less
area. Furthermore, it provides a framework which allows the

designers to move their designs to different points in the three
dimensional design space of embedded RAMs, embedded
multipliers, and 4-input look-up tables (4-LUTs), keeping the
arithmetic error in the filter approximation at the same level.

II. RELATED WORK

The paper focuses on the case where designs with high
throughput are required, but design latency is of secondary
importance. For this reason, only pipelined techniques for
implementation of a 2D convolution filter are considered. A
common technique for implementation of such a filter on an
FPGA is to use constant coefficient multipliers and a number
of embedded RAMs. The constant coefficient multipliers are
often implemented as shift/add combinations using 4-LUTs
and, to further optimize the design, the coefficients are some-
times transformed using canonic signed digit recoding, which
reduces the required logic [10].

Another technique exploits potential separability of a 2D
filter into two 1D filters by using the Singular Value Decom-
position (SVD) [7] to express the original filter as a linear
combination of separable filters. Using this technique, the
initial filter can be implemented as a set of 1D filters where
half of them are applied to the rows of the image, and the
other half to the columns. By decomposing the 2D filter, the
number of necessary multiplications may be reduced, at the
expense of using more embedded RAMs. The number of levels
of decomposition that are required depends on the separability
properties of the filter and the arithmetic accuracy for storing
intermediate results.

In this paper, we propose a novel algorithm which optimizes
a 2D convolution filter implementation in a heterogenous
device, given a set of constraints regarding the number of
embedded multipliers and 4-LUTs. The algorithm estimates
an approximation of the original 2D filter which minimizes
the mean square error and at the same time meets the user’s
constraints on resource usage.

Researchers have explored algorithms that minimize the
area cost of a filter by representing the coefficients using an
appropriate number of bits such that the final error at the
output of the filter is bounded by a user defined value [6].
These methods perform an exploration of the design space at
a lower level than the proposed approach, since they do not
consider altering the computational structure of the filter. The
proposed technique is thus complementary to these previous
approaches.
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Fig. 1. Diagram of the decomposition with N = 2

III. ALGORITHM DESCRIPTION

The proposed algorithm takes as input the impulse response
of a 2D filter F with size m×m and a set of constraints for
the available embedded multipliers M and slices1. It produces
as output an approximation of the filter which minimizes the
mean square error and at the same time meets the set of
constraints. The main idea behind the algorithm is to explore
the separability of the input 2D filter and decompose it to a
set of separable filters (Ai) and a non-separable one (E):

F =
N∑

i=1

Ai + E (1)

A diagram of the decomposition is illustrated in Figure 1,
where the number of decomposition levels is N = 2. The
separability exploration of the filter is performed using the
singular value decomposition algorithm [7] which decomposes
a matrix into a linear combination of the fewest possible
separable matrices. The algorithm implements the first K =
�M−N

2m � decomposition levels using embedded multipliers,
while the remaining N − K stages are implemented using
a combination of embedded multipliers and slices. The non-
separable filter component, E, is always implemented using
only slices. Thus, the decomposition of the filter can be written
as:

F =
K∑

i=1

Ai +
N∑

i=K+1

Ai + E (2)

For example, let us assume a filter F with size 23× 23, 100
available multipliers and N = 3. The algorithm determines
K = 2 and decomposes F as follows. It implements the
masks A1 and A2 using only multipliers. As these are
separable masks they need only 2×23 multipliers per level of
decomposition for a total of 92. These are implemented using
the embedded multipliers, while mask A3 is implemented
using a combination of the remaining multipliers and slices.
Finally, the non-separable component E is implemented using
only slices.

1A slice is a term used by Xilinx, one of the two major FPGA manufactur-
ers, to denote a combination of two 4-LUTs together with additional circuitry
to support efficient arithmetic.

The algorithm can be divided into three stages. The multi-
plier allocation stage, the decomposition stage and the refine-
ment stage. An overview of the algorithm is given in Figure
2. Each stage is described in detail below.

A. Multiplier allocation stage

In this stage, the algorithm determines the number of levels
of decomposition K that can be implemented using only
embedded multipliers. The algorithm decomposes the input
filter F using the SVD algorithm into a set of separable masks
as:

F = UΛVT

=
N∑

i=1

λiuivi
T (3)

where U and VT are orthogonal matrices and Λ is a diagonal
matrix containing the eigenvalues λi. The eigenvalues are
sorted in descending order, thus λ1 ≥ λ2 ≥ ... ≥ λN . ui and
vi correspond to the ith columns of the U and V matrices
respectively. The algorithm reserves the appropriate embedded
multipliers for the multiplications by λi and implements the
first K masks using the remaining embedded multipliers.

In order to take into account the error inserted due to
quantization, the algorithm updates the input filter F at each
level of the decomposition as:

F← F− uqvq
T (4)

where uq and vq correspond to the quantized vector of coeffi-
cients

√
λiui and

√
λivi respectively. The SVD decomposition

is repeated to the updated filter F until the first K masks
are estimated. In this way, the decomposition of each filter
stage is optimized, given the quantization of the coefficients
for the previous levels. The algorithm then proceeds to the
decomposition stage.

B. Decomposition stage

In the decomposition stage the algorithm further decom-
poses the remaining input filter into a set of separable masks
and a non-separable mask using the SVD algorithm. The rest
of the available embedded multipliers are assigned to some of
the coefficients, as described below, while the remaining coef-
ficients are represented using only one non-zero signed digit,
allowing the associated multiplications to be implemented cost
free in bit parallel hardware.

The algorithm first allocates the available embedded mul-
tipliers to the coefficients of the vectors ui and vi by taking
into account the coefficients from all the remaining levels
of the decomposition. The actual allocation is performed
only for selected coefficients of the first level of the new
decomposition. The rest of the coefficients for that level are
quantized as before. Due to the fact that the coefficients are
quantized, the eigenvalue of that level of decomposition is then
re-evaluated to correct for the quantization effects. The new
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λ is calculated using the following system of linear equations
[11]:

Fvi = λiui

FT ui = λivi (5)

The filter F is updated using (4), which has been adapted
in order to accommodate the λ parameter, and the process is
repeated for the remaining separable decomposition levels.

The final level, which is the non-separable mask E, is
formed by the resulting filter F where all the coefficients are
quantized as before. This mask is actually the error term of
the initial input filter F and its approximation using a set of
separable masks and fixed-point arithmetic.

C. Refinement stage

In the refinement stage, the algorithm assigns extra bits
to the coefficients that have the largest error due to the
quantization process, in order to minimize the error of the
approximation. The quantization is performed using canonic
signed digit representation [10]. The addition of extra bits is
constrained by the number of available slices.

In the case where the algorithm selects to update a coeffi-
cient that belongs to the stage J of the decomposition, then
a new eigenvalue λJ is estimated according to (5) using the
values already estimated for the rest of the coefficients, and the
whole algorithm is repeated starting from the decomposition
stage for the next level of decomposition. This is required be-
cause the slice allocation of the later stages of decomposition
for minimizing the error in the approximation, depends on the
values of the previous levels. The algorithm terminates when
one of the constraints is violated. Figure 2 summarizes the
steps of the algorithm. The final approximation to F is given
by:

F ≈
N∑

i=1

Âi + Ê (6)

where Âi and Ê are the quantized Ai and E respectively.

IV. COST MODEL

The presented algorithm explores the cost of a 2D filter
design in the three dimensional space of embedded RAMs,
embedded multipliers, and slices, while simultaneously min-
imizing the error in the approximation of the original filter.
The cost model for the embedded multipliers and embedded
RAMs is straightforward. For the number of slices for the
required multiplications and the adder-trees that are required
by the design, an upper bound estimate is derived from the
number of non-zero bits in the canonic signed digit encoding,
since it provides a fast but a reliable estimate of the required
number of slices.

V. PERFORMANCE EVALUATION

For the evaluation of the proposed algorithm, we focus on
the ability of the algorithm to find a design that fits in a given
area of the reconfigurable device. Such devices are manufac-
tured by regular repetition of a silicon tile, thus the relation

Algorithm: Optimized 2D filter design for N levels
of decomposition
Set Foriginal ← F
Calculate levels with only multipliers K = �M−N

2m �
Multiplier allocation stage

FOR j = 1 : K
Using SVD estimate: F =

∑
i λiuiv

T
i

Quantize uq =
√

λ1u1 and vT
q =

√
λ1v

T
1

Set Âj ← uqv
T
q

Update F as: F← F− Âj

END
Set ds = K + 1
Decomposition stage

FOR j = ds : N
Using SVD estimate: F =

∑
i λiuiv

T
i

Determine coeff. to allocate embedded muls
Quantize the coeff. of uq ← u1 and vq ← v1

Estimate and quantize new λq ← λ1 using (5)
Set Âj ← λquqv

T
q

Update F as: F← F− Âj

END
Quantize the coefficients of F and set Ê← F

IF constraints are violated THEN EXIT
Refinement stage

Find the coefficient c that is not allocated to an
embedded multiplier and has the largest
approximation error
Assign extra bit for its representation
Let c belongs to the J th level of the decomposition
IF J == N THEN update Ê
ELSE update ÂJ

IF constraints are violated THEN EXIT
IF J == N THEN

GOTO Refinement stage
ELSE

Estimate F← Foriginal −
∑J

i=1 Âi

Set ds = J + 1
GOTO Decomposition stage

Fig. 2. Outline of the algorithm

between the number of slices, the number of embedded RAMs
and embedded multipliers gives an indication for the relative
number of resources that are found in the device in an area
of a certain size. The device that is used for the evaluation of
the algorithm is the XC2V8000 high-end FPGA from Xilinx.
It contains 168 embedded 18× 18 multipliers, 168 embedded
RAMs and 46,592 slices. Since we are interested in finding a
design that fits in a given area of the device, the max operator
is used to map the cost from the three dimensional space onto
one dimension, i.e.

Total cost = max
(

#RAMs

168
,
#MULs

168
,
#slices

46592

)
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Fig. 3. Plot of the eigenvalues of the masks
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Fig. 4. Area usage of the design versus achieved mean square error

For comparison, we test the proposed algorithm against a
direct implementation of the 2D filters using constant coeffi-
cient multipliers. The comparative design is also optimized by
using canonic signed digit representation for the coefficients.

The performance of the proposed algorithm depends on the
separability properties of the filter under investigation. Thus,
two 2D filters of size 21×21 pixels with different separability
properties are considered in order to assess the performance of
the algorithm. Figure 3 illustrates the separability properties
of the two filters by plotting their first five eigenvalues as a
function of levels of decomposition. According to the figure,
MaskA is less separable than MaskB. Figure 4 shows the
total cost as a percentage of the area of the device, using
the proposed method and the direct implementation using
canonic signed representation, versus the minimum square
error that can be achieved for the filter approximation. It can
be concluded that the proposed algorithm reduces the total

cost by between 34% and 70% (mean 55%). The proposed
algorithm has less effect on MaskA than on MaskB since the
former is less separable. However, an improvement between
34% and 55% (mean 47%) is still obtained. Also, for the
MaskB curve, clear jumps can be seen in the mean square error
wherever the algorithm has inserted an extra decomposition
level. This is because its eigenvalues are reduced substantially
for up to the third level of the decomposition, whereas in
the case of MaskA they do not decrease as much after the
first level. Moreover, the proposed algorithm was applied to
optimize the filters that are used in [3]. An improvement
by a factor of 30% on average was obtained. In the worst
case, where the separability property of the mask is poor, the
algorithm will behave as well as the current techniques.

VI. CONCLUSION

This paper presents a novel 2D filter methodology for
heterogenous devices. The main point of departure from the
current algorithms for efficient 2D filter implementation is that
it explores the computational structure of the filter according
to the different types of available resources in the device.
Experiments with filters with size up to 21 × 21 and vari-
ous separability properties have been performed. The results
indicate a reduction in the total cost by a factor between 34%
and 70% (mean 55%). Future work will involve the use of
word-length optimization techniques [6] to further enhance the
performance of the algorithm.
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