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ABSTRACT 
We present a mesh filtering method for surfaces extracted from binary volume data which guarantees a smooth 

and correct representation of the original binary sampled surface, even if the original volume data is inaccessible 

or unknown. This method reduces the typical block and staircase artifacts but adheres to the underlying binary 

volume data yielding an accurate and smooth representation. The proposed method is closest to the technique of 

Constrained Elastic Surface Nets (CESN). CESN is a specialized surface extraction method with a subsequent 

iterative smoothing process, which uses the binary input data as a set of constraints. In contrast to CESN, our 

method processes surface meshes extracted by means of Marching Cubes and does not require the binary vol-

ume. It acts directly and solely on the surface mesh and is thus feasible even for surface meshes of inaccessible 

or unknown volume data. This is possible by reconstructing information concerning the binary volume from 

artifacts in the extracted mesh and applying a relaxation method constrained to the reconstructed information.  
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1. INTRODUCTION 
The extraction and visualization of surface models 

from medical volume data (e.g. CT, MRI) is sup-

ported by any clinical workstation and medical visu-

alization software. For efficient and clear visualiza-

tion, surface models are often extracted from medical 

volume data. Iso-surfaces, extracted from binary seg-

mented volume data, suffer from aliasing and stair-

case artifacts. The human visual system is very sensi-

tive to such discontinuities, since they normally 

represent salient features for object detection and 

classification. To improve the quality of extracted 

iso-surfaces, three strategies exist: (1) filtering of the 

binary volume (at the voxel level), (2) applying an 

extended extraction mechanism (combining voxel 

and mesh level), and (3) filtering of the extracted 

surface mesh (see Figure 1). While the first two 

strategies enable artifact reduction constrained to the 

volume data, methods following the third strategy 

did not yet address such volume data constraints. 

Consequently, mesh filtering approaches can not 

guarantee that a resulting mesh is a correct represen-

tation of the volume data. But if the underlying vol-

ume data is inaccessible or unknown, mesh filtering 

is the only possible approach. 

This paper presents a surface mesh filtering approach 

that enables artifact reduction in iso-surface meshes 

extracted from binary volumes. The filtering process 

is constrained by information about the volume data. 

For this purpose, we reconstruct this information 

about the volume data from the iso-surface mesh. 

This strategy enables artifact reduction in iso-surface 

meshes constrained to the underling volume data, 

independent of the presence of the original volume 

data. The presented work splits up into two major 

parts. The first part deals with the extraction of in-

formation about the original volume data from a 

given iso-surface mesh. The second part adopts the 

technique of Constrained Elastic Surface Nets 

(CESN) [Gib98] for constrained smoothing of iso-

surface meshes extracted by Marching Cubes (MC).  

In Section 2, we discuss relevant previous work in 

the area of artifact reduction in iso-surfaces. Then we 

present our method for reconstructing volume data 

information from iso-surface meshes in Section 3 and 

smoothing of these meshes constrained to the volume 
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data in Section 4. In Section 5, we present applica-

tions and results of the proposed method and com-

pare them with the results of previous work. Section 

6 concludes and finally discusses the work presented. 

2. PREVIOUS WORK 
The most prevalent high-quality artifact reduction 

method at the voxel level is smoothing of the binary 

volume by means of a level-set method as described 

in [Whi00]. This method has several advantages: the 

volume is directly processed, no explicit surface rep-

resentation is needed, and no tuning of parameters is 

required. Complex implementation and relatively 

long calculation times are drawbacks of the level-set 

method. Since this method is confined to the voxel-

level, it is appropriate for volume rendering, but if 

surface rendering is the goal, extracted surfaces can 

still suffer from artifacts due to the subsequent ex-

traction process. 

Relevant mesh-extraction methods that include arti-

fact reduction are Precise Marching Cubes [All98], 

Constrained Elastic Surface Nets (CESN) [Gib98], 

and Dual Marching Cubes (DualMC) [Nie04]. 

Precise Marching Cubes [All98] extended the origi-

nal Marching Cubes (MC) [Lor87] by trilinear inter-

polation and adaptive error-controlled refinement of 

surface patches inside surface-containing cells. As a 

result, the precision as well as the smoothness of the 

extracted iso-surfaces could be improved. Unfortu-

nately, this method creates a lot more triangles, re-

quires much longer calculation time than MC and is 

not well suited for binary volumes. 

Constrained Elastic Surface Nets (CESN) [Gib98] is 

the mesh extraction method closest to our work. It is 

dedicated to visualize binary volume data smoothly 

and precisely. In contrast to MC, [Gib98] uses an 

extraction scheme that builds a surface by connecting 

the centers of all cells that contain the surface to 

quadrilateral patches. In a second step, this initial 

surface is iteratively relaxed while all vertices are 

constrained to remain in their original surface cell. 

This method creates a well smoothed surface repre-

sentation of the original binary volume. A compa-

rable method is proposed by [Nie04]. His Dual 

Marching Cubes (DualMC) approach also connects 

adjacent surface cells to quadrilateral surface patches 

and then iteratively relaxes the extracted surface con-

strained to the binary volume. The major differences 

are a smoother initial surface extracted by means of 

an adapted extraction method and another relaxation 

scheme compared to CESN. While the methods by 

[Whi00], [Nie04], and [Gib98] enable appropriate 

artifact reduction, all methods discussed so far re-

quire the original binary volume data.  

On the mesh-level, numerous mesh filtering and 

smoothing approaches exist, ranging from simple 

Laplacian filters to more complex Mean Curvature 

Flow and further advanced anisotropic filtering ap-

proaches (for example see [Baj03], [Des99], 

[Tau95]). Despite the diversity, all methods aim at 

noise reduction. Advanced methods additionally at-

tempt to preserve salient features and edges. Reduc-

tion of staircase artifacts is usually not a goal of sur-

face mesh smoothing approaches. Nevertheless, to 

smooth surfaces suffering from such artifacts all 

edge-preserving filtering methods are not appropri-

ate. Staircase and block artifacts would be interpreted 

as salient features and preserved by those methods. 

Furthermore, smoothing methods that yield shrink-

age and deformation of the mesh are not appropriate 

for anatomical and pathological structures. 

[Tau95] introduced a signal processing driven two-

stage Laplacian mesh filter (λ/μ-Filter) that first 

smoothes the mesh with a positive smoothing factor 

and then with a negative one. This strategy avoids 

shrinkage and [Tau95] showed that it behaves like a 

low-pass filter, if a large number of iterations is ap-

plied. Applying this filter can significantly reduce 

aliasing artifacts [Tau95]. A similar method has been 

presented by [VMM99], where in the second stage 

all vertices are moved back towards a linear combi-

nation of their original location and the inverse dis-

placement of their neighbors. Unfortunately, in prac-

tice, finding the right parameters to smooth a specific 

object is tedious. While well chosen parameters can 

also yield shrinkage (see Figure 2b), wrong parame-

ters will degenerate the mesh. In an empirical study, 

[Bad06] showed that even these non-shrinkage ap-

proaches are not appropriate to reduce artifacts in all 

iso-surface meshes without significant shrinkage and 

distortion. 

In essence, none of the mesh-filtering techniques can 

ensure a correct representation of the original binary 

volume. Furthermore, considerable parameter tuning 

is required to avoid strongly distorted results. In con-

trast, filtering of the binary volume or filtering of the 

voxel-level 

binary volume 
filtering of 

binary volume

mesh-level 

mesh extraction mesh filtering 

Figure 1: Surface extraction pipeline: Reduction of artifacts in iso-surfaces extracted from binary volume data is 

possible on the voxel-level (filtering of binary image), a combination of voxel- and mesh-level (as part of the 

mesh extraction process) as well as on the mesh-level (filtering of the mesh) which is the focus of this paper. 
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mesh constrained to the volume data as part of the 

mesh extraction process can yield smooth and correct 

results. Furthermore, a constrained smoothing proc-

ess converges against a surface of minimal area 

within the given constraints and requires no tuning of 

parameters. Unfortunately, these approaches require 

the original binary volume data. 

Since extracted surfaces still bear information about 

the original volume data, we first address the prob-

lem of smoothing iso-surface meshes by detecting 

properties of the underlying volume in the extracted 

surface meshes. This information can then be used to 

constrain the mesh smoothing. 

3. RECONSTRUCTION OF VOLUME 

DATA INFORMATION 
In this section, we discuss how to reconstruct volume 

data information from iso-surface meshes. First, we 

discuss the basics of iso-surface extraction from bi-

nary volumes and derive legal assumptions about 

extracted surfaces. According to these assumptions, 

we present methods to reconstruct information about 

the underlying volume data from iso-surface meshes. 

3.1 Iso-Surface Extraction from Binary 

Volumes 
A binary volume from medical volume data (e.g. a 

segmentation result from CT or MRI data) is a three-

dimensional, axis-aligned, regular grid with constant 

distances in each dimension (∂x, ∂y, ∂z) and with 

only two possible values (e.g. background and fore-

ground) at each grid point. An iso-surface represent-

ing the border between foreground and background 

is defined as the surface located at the center between 

adjacent grid points with different values. The MC 

extraction method [Lor87] iterates cells defined by 8 

grid points (voxels) over the whole volume and 

searches for cells containing the surface. Then, for 

each of these surface cells (with at least one fore-

ground and one background labeled voxel) surface 

vertices are created. MC creates vertices exactly lo-

cated at the midpoint of the edges of these surface 

cells (see Figure 3). Other methods act similar but 

may also create vertices inside the cells. Explaining 

each extraction algorithm in detail is beyond the 

scope of this paper. Thus, we will further refer to the 

Marching Cubes extraction scheme and its case table 

as illustrated in Figure 3. 

In general, all common surface extraction methods 

create vertices that are located either inside or at the 

edge of the cells containing the surface. Therefore, 

we assume that each mesh vertex can be moved in-

side its cell or on its cell edge respectively without 

creating incorrect iso-surface representations of the 

binary volume. Exactly this effect is used by CESN 

to smooth the surface constrained to the cells in 

which each surface vertex is located. 

For mesh smoothing without the original binary vol-

ume, cell size and cell centers have to be recon-

 

Figure 3: Marching Cubes case table. Concerning 

binary volumes: iso-surface vertices are only 

created at the midpoint of cube edges. 

  

Figure 2: Extracted surface model of human bones from a binary segmented CT data set. (a) Marching Cubes 

result (104K triangles, 52k vertices); (b) surface (a) filtered by means of the λ/μ-Filter [Tau95] (with λ ≈
0.7143, μ ≈ -0.7692 and 110 iterations in 9.9 sec.) and corresponding distance map to (a) (max distance = 0.91); 

(c) surface (a) filtered by the proposed diamond-constrained method (stopping threshold of 0.002 achieved af-

ter 110 iterations in 7.4 sec.) and corresponding distance map to (a) (max distance = 0.29). (Distance measure is 

the symmetric Hausdorff-distance given as fraction of the cell diagonal)

(a) (b) (c)
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structed from the surface mesh. In the next sections, 

we present methods to reconstruct information about 

the volume data from iso-surface meshes. Since this 

is related to the extraction process used to extract a 

surface, we will explain cell size, cell center, and cell 

edge detection for Marching-Cubes (MC)-extracted 

meshes. We also give hints on easy adoption of this 

method for other extraction methods. 

3.2 Cell Size Determination 
The cell size of the original binary volume has an 

effect on the distance of extracted surface vertices. 

Here we use this relation to derive cell size from ver-

tex distances. 

Using MC, vertices are only created at cell edges. 

With the assumption of axis-aligned grid lines, the 

distance between adjacent mesh vertices in each di-

mension can only take three different values: 0, ½∂h, 

∂h (see Figure 4a). Here, ∂h represents the extent of 

the cell in the current dimension. Thus, we determine 

the cell properties ∂x, ∂y, and ∂z by finding two dif-

ferent non-zero distances in each dimension. 

 

3.3 Cell Center Determination 
To determine surface cell centers from a MC-

extracted surface, one defined MC cell case has to be 

identified within the mesh. For simplicity, we de-

cided to search for a cell of case 1 (see Figure 3). 

This is realized by searching for the vertex with the 

lowest x-, y-, and z-position.  

 

With this strategy, we find vertex minV and its corre-

sponding cell of case 1 as illustrated in Figure 4b. 

Since we know the position of vertex minV and the 

case of the cell, the coordinates of the cell center c 

are given by equation (1) as illustrated in Figure 4b. 

c[x,y,z] = [minV.x, minV.y - ½∂y, minV.z - ½∂z] (1) 

Independent of the extraction method from one 

known cell center c, it is now possible to determine a 

cell center c(v) for each mesh vertex v. The position 

of the cell center for vertex v can be determined ac-

cording to equation (2) for the x-dimension. The 

other dimensions are treated similarly. 

c(v).x = c.x + { round[ (c.x – v.x) / ∂x ] × ∂x } (2) 

As a special property of MC-extracted iso-surfaces, 

their vertices can not be clearly associated with 

solely one cell center. Since vertices are positioned at 

the cell edges, each vertex can be associated with 

four neighboring cell centers. At this stage, it is suf-

ficient to find one associated cell center. In Section 

4.2, we will return to this problem. 

3.4 Cell Edge Determination 
Since MC creates vertices at cell edges, we have to 

determine the cell edge where each vertex is located. 

As illustrated in Figure 4a, there are 12 possible ver-

tex locations. The distance in each dimension be-

tween a vertex and its associated cell center can be 

easily used to determine the cell edge where the ver-

tex is located (see Figure 4b). The following pseu-

docode encodes each cell edge with a number as il-

lustrated in Figure 4a: 

 

The presented cell size, cell center, and cell edge 

determination methods yield sufficient information 

about the original binary volume. It must be noted 

that the presented determination methods have to be 

extended for arbitrarily rotated, skewed or otherwise 

manipulated surface meshes.  

The gathered information can now be used to con-

strain vertex displacement during smoothing and it 

could even be used to reconstruct the binary volume 

FOR all vertices v ∈ Mesh DO 
  FOR all n ∈ Neighbors(v) DO 
    d = |v – n| 
    IF d.x > 0 THEN 
      add d.x to {sorted x-distances} 
      (Note: The distance is only added
             if it is not in list yet) 
    END IF 
    IF d.y > 0 THEN 
      add d.y to {sorted y-distances} 
    END IF 
    IF d.z > 0 THEN 
      add d.z to {sorted z-distances} 
    END IF 
  END FOR 
  IF each sorted distance list has two 
     entries THEN terminate processing 
END FOR 

FOR all vertices v ∈ Mesh DO 
  IF v.x < minV.x THEN 
    minV = v 
  ELSE IF v.x = minV.x THEN 
    IF v.y < minV.y THEN 
      minV = v 
    ELSE IF v.y = minV.y THEN 
      IF v.z < minV.z THEN 
        minV = v 
      END IF 
    END IF 
  END IF 
END FOR 

FOR all vertices v ∈ Mesh DO 
  d = c(v) – v 
  IF d.x = 0 THEN      //x-direction
    case(v) = 1 
    IF d.y < 0 THEN case(v)  = 3 
    IF d.z < 0 THEN case(v) += 1 
  ELSE IF d.y = 0 THEN //y-direction
    case(v) = 5 
    IF d.x < 0 THEN case(v)  = 7 
    IF d.z < 0 THEN case(v) += 1 
  ELSE IF d.z = 0 THEN //z-direction
    case(v)  =  9 
    IF d.x < 0 THEN case(v)  = 11 
    IF d.y < 0 THEN case(v) += 1 
  END IF 
END FOR 
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itself. Since we focus on mesh smoothing, we further 

investigate the reduction of aliasing artifacts in iso-

surfaces with this additional information. 

4. CONSTRAINED ARTIFACT RE-

DUCTION IN SURFACE MESHES 

In this section, we discuss different schemes to con-

strain vertex displacement during smoothing. We 

derive these schemes from different levels of infor-

mation about the volume data. We start by relying 

only on the cell size (e.g. voxel spacing) and proceed 

by adding more and more information about the vol-

ume data (see Section 3 for determination of this 

information). Furthermore, we derive a scheme to 

reduce artifacts in iso-surface meshes extracted from 

binary volume data by means of Marching Cubes. 

4.1 Cell-Size-Constrained Smoothing 

Assuming that all surface vertices are located inside a 

cell of the original discrete volume data, we state that 

the location of each vertex exhibits a discretization 

error of plus/minus one half of the cell size ±½(∂x, 

∂y, ∂z). Consequently, we assume that the original 

object surface as well as a smooth surface representa-

tion of it is located within the given range of ±½(∂x, 

∂y, ∂z) around each surface vertex. Now we can con-

strain the position of each vertex to that range around 

its original location.  

For simplicity of the smoothing procedure, we itera-

tively move each vertex v towards a position sv equi-

distant to its neighbors. If sv is outside the given 

range around the original vertex position vo, the dis-

placement vector from vo to sv is clipped at the bor-

der of the allowed range. This position is then used 

as the new vertex position v. Relaxation is stopped 

when the maximum occurring vertex displacement 

maxDispl in one iteration is lower than a given stop-

ping threshold. 

 

This strategy yields smooth results, but the underly-

ing assumption is only fulfilled if all vertices are lo-

cated in the center of the surface cells. This explains 

why CESN need to extract a mesh with vertices at 

cell centers only. For all other extraction processes, 

this method can yield incorrect representations of the 

binary volume as illustrated in Figure 5a. 

With a maximum error to the original surface mesh 

of one half of the cell diagonal, this method can also 

be applied to MC-extracted surfaces if the precision 

is still adequate for the desired application. Consider-

ing the very low computation times (cell size deter-

mination included) and its error bound, this smooth-

ing scheme can be considered as superior to most of 

the traditional mesh smoothing approaches (for re-

sults and comparison see Section 5). 

4.2 Cell-Center-Constrained Smoothing 
To guarantee a correct representation of the original 

volume data for surface meshes with vertices that are 

not located at cell centers, the vertices of those 

meshes have to remain inside their original surface 

cells. Thus, the algorithm from Section 4.1 has to be 

changed by replacing the original vertex location vo 

by the cell center c(v) (recall Section 3.3) for each 

vertex v. This method works well for all iso-surface 

meshes extracted by methods that create surface ver-

tices inside surface cells (for example DualMC 

[Nie04]). This condition is not fulfilled for MC-

extracted surfaces. Here, vertices are located at cell 

WHILE maxDispl > stoppingThreshold DO 
  maxDispl = 0 
  FOR all vertices v ∈ Mesh DO 
    sv = equi-distant location between 
         neighbors of v 
    dv = sv – vo //displacement vector 
    IF |dv.x| > ½δx THEN clip(dv.x, ½δx) 
    IF |dv.y| > ½δy THEN clip(dv.y, ½δy) 
    IF |dv.z| > ½δz THEN clip(dv.z, ½δz) 
    v = vo + dv 
    maxDispl = max(maxDispl, ||dv||) 
  END FOR 
WHEND 

(a)  (b)

minV

c

 

Figure 4: Cell size and cell center determination: (a) 

12 possible vertex locations per cell with illus-

trated distance between vertex 5 and 4. (b) Ver-

tex minV with minimal x-, y-, and z-position 

and illustrated distance to cell center. 

(a)  (b)  (c) 

Figure 5: Incorrect Results: (a) vertices are allowed 

to move ±½(∂x, ∂y, ∂z); (b) vertex v1 is con-

strained to remain inside its associated cell c1

and v2 to remain inside c2 – To get a correct re-

sult, at least one vertex (v1 or v2) has to be con-

strained to c3. However, whether v1 or v2

should be selected, depends on their neighbors. 

(c) 3d case where 6 vertices have to be con-

strained to 8 cell centers. 
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edges and are associated with four neighboring cell 

centers. As illustrated in Figure 5b, it is crucial which 

of those four cell centers is used for constraining a 

vertex. If it is not the correct one, constrained 

smoothing as described above can yield an incorrect 

representation of the original volume data. 

Solving this assignment problem is not trivial. If one 

vertex has been assigned to one of its associated cell 

centers, the determination of the appropriate cell cen-

ter for its neighboring vertices depends on the previ-

ous decision and on the decisions for all their 

neighbors. In 3d space, this assignment problem may 

also be insolvable in some cases. Figure 5c illustrates 

an example case with eight cells and only six verti-

ces. Here all possible solutions leave two cell centers 

unassigned which may lead to incorrect representa-

tions. Thus, cell-center-constrained smoothing that 

guarantees a correct representation of the underlying 

volume data is not possible for surfaces extracted by 

means of MC.  

4.3 Cell-Edge-Constrained Smoothing 
To keep as close as possible to the original MC-

extraction process and to guarantee correct represen-

tations of the underlying volume data, we constrain 

vertices to their cell edges where they are located. In 

Section 3.4, we presented a method to determine the 

exact cell edge where a vertex is located. Here we 

can simplify this method to distinguish only between 

cell edges in x-, y-, and z-direction. With that infor-

mation for each vertex and the determined cell size, 

we can constrain vertices to move along their cell 

edge by a maximum of one half of the cell size in 

edge direction. This also speeds up the smoothing 

procedure since only the x-, y-, or z-component of a 

vertex according to the cell edge has to be calculated 

in each smoothing step. 

 

 

With this approach, each surface vertex remains at 

the cell edge where it was created. This strongly fa-

vors correctness over smoothness and forces the sur-

face to retain small details. As a consequence, this 

method does not yield surfaces as smooth as possible 

with the other approaches (see Section 5). However, 

results are much smoother than an original MC-

extracted surface and a correct representation of the 

original volume data is guaranteed in contrast to 

standard mesh smoothing approaches. 

4.4 Diamond-Constrained Smoothing 
Since cell-edge-constrained smoothing of MC-

extracted surfaces does not yield well smoothed re-

sults, we derive a new constrained method that al-

lows significant artifact reduction in MC-extracted 

iso-surface meshes while maintaining a correct repre-

sentation of the original binary volume. 

As Figure 6a illustrates in 2d space: Vertices created 

at the edge of a cell can be moved arbitrarily inside a 

rotated square or rhomboid centered at the cell edges 

while the resulting surface remains a correct repre-

sentation of the binary data. We rely on this property 

and constrain vertices of MC-extracted surfaces to 

remain inside a diamond-shaped region as illustrated 

in Figure 6b. The diamond is centered at the vertex v 

with extents in x-, y-, and z-direction equal to the cell 

size in these directions. 

To define these diamonds, we only need to recon-

struct the cell size as described in Section 3.2. Then, 

the plane equations of the eight faces of the diamond 

can be pre-computed and re-used for each vertex. We 

use the standard equation ax + by + cz + D = 0 to 

represent the faces as planes, where n=(a,b,c) repre-

sents the normal of the plane and D its distance from 

the center of the diamond. Since D is equal for all 

faces, we only store a single D and the normal of 

each of the eight faces. 

During each smoothing step we can determine the 

vertex displacement vector dv from v to its relaxed 

position sv and clip dv with the appropriate face of 

//cell edge constrained mesh smoothing 
WHILE maxDispl > stoppingThreshold DO 
  maxDispl = 0 
  FOR all vertices v ∈ Mesh DO 
    IF case(v) = x_edge THEN 
      sv.x= equi-distant position between
            neighbors in x-direction only
      dv.x= sv.x – vo.x //distance vector
      IF |dv.x|> ½δx THEN clip(dv.x, ½δx)
      v.x = vo.x + dv.x 
      maxDispl = max(maxDispl, |dv.x|) 
    ELSE IF case(v) = y_edge THEN 
    ... 
    ELSE IF case(v) = z_edge THEN 
    ... 
    END IF 
  END FOR 
WHEND 

//determine cell edge type simplified 
FOR all vertices v ∈ Mesh DO 
  d = c(v) – v 
  IF d.x = 0 THEN      case(v) = x_edge
  ELSE IF d.y = 0 THEN case(v) = y_edge
  ELSE IF d.z = 0 THEN case(v) = z_edge
  END IF 
END FOR 

(a)  (b)

px

py
pz

 

Figure 6: Vertices created at cell edges are con-

strained to a rhomboid in 2d (a) and to a dia-

mond-shaped region in 3d (b) to ensure correct 

representations of the binary volume. 
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the diamond to find the new constrained position of 

v. To determine the appropriate face for clipping we 

check the sign of the displacement vector compo-

nents. Then we calculate the intersection point of the 

displacement vector and the determined diamond 

face. If there is an intersection, we use this point as 

the new location of the current vertex. 

With this approach, fast, converging, and volume-

data-constrained artifact reduction in surface meshes 

extracted from binary volumes can be performed at 

the mesh-level. In contrast to previous work, it re-

constructs information about the underlying volume 

data and constrains the smoothing process to yield 

correct representations of the binary volume inde-

pendent of the presence of the original volume data. 

 

 

 

5. RESULTS 

We used the MeVisLab SDK [MeV06] to implement 

the proposed methods: cell-size-constrained, cell-

edge-constrained and diamond-constrained smooth-

ing as well as CESN for comparison. Each method 

facilitates the same extended Winged-Edge-Mesh 

data structure for fast triangle mesh processing. Thus, 

computation times of the smoothing step can be com-

pared between the different methods. 

Figure 7 compares the results of the different 

smoothing approaches by means of a MC-extracted 

surface from a synthetic binary volume representing 

a binary sampled sphere with a diameter of 60 units. 

Furthermore, computation time (t in sec.), number of 

iterations (i), remaining percentage of original vol-

ume (V in %) as well as the maximum symmetric 

Hausdorff-distance to the MC-extracted surface 

(maxD as fraction of the cell diagonal) are given in 

the figure caption. For all smoothing examples we 

used a stopping threshold of 0.002 units. 

As can be seen in Figure 7b, cell-size-constrained 

smoothing yields the best smoothing results but no 

correct representation of the underlying volume data 

(recall Section 4.1). Nevertheless, this method limits 

the maximum possible deviation to the initial mesh to 

one half of the cell diagonal which is superior to pre-

vious mesh smoothing approaches (see Figure 2b).  

Correct representations are guaranteed by cell-edge-

constrained (Figure 7c) and diamond-constrained 

smoothing (Figure 7d), while the diamond-constraint 

approach yields much better smoothing. In contrast 

to other mesh-smoothing approaches, the error is 

limited to the cell size in each dimension, artifacts 

are significantly reduced, and a correct representation 

is guaranteed. Similar results can only be achieved 

by CESN (Figure 7e), but that requires the binary 

volume. 

Figure 8 shows smoothing results for a clinical data-

set containing a segmented aneurysm (vessel pathol-

ogy) achieved by the proposed diamond-constrained 

smoothing on the mesh level (Figure 8c) and by 

CESN on the mesh extraction level (Figure 8b). 

Since quantitative and visual results are very similar 

to each other, MC-extraction and subsequent dia-

mond-constrained smoothing may also be used as an 

alternative to CESN on the mesh-extraction level. 

6. CONCLUSION 

We presented a strategy for artifact reduction in sur-

face meshes extracted from binary volume data that 

acts (independently from the volume data) directly 

and solely on the surface mesh. In contrast to previ-

ous mesh filtering approaches, our method uses the 

volume data properties inherent in an extracted sur-

face mesh to constrain the filtering process which 

requires no parameter tuning and yields smooth, con-

verging, and correct representations. In detail, we 

presented the diamond-constrained mesh filtering 

method for surfaces extracted from binary volumes 

by means of Marching Cubes. Results are compara-

ble to CESN, while in contrast to our method, CESN 

require the volume data and a specialized surface 

extraction scheme.  

//diamond clipping 
diamondClipping(dv) { 
  //Determine diamond face vector dv is 
  //pointing at. 
  IF dv.x > 0 THEN face = 4 ELSE face = 0
  IF dv.y > 0 THEN face = face + 2 
  IF dv.z > 0 THEN face = face + 1 
  //determine if dv has to be clipped 
  denom = |n[face].dot(dv)| 
  IF denom > D THEN //clip dv 
    t = D / denom 
    dv = dv × t 
  ENDIF 
  RETURN dv 
} 

//diamond generation 
//face normals: 
n[7] = (py – px).cross(pz – px) 
n[7] = n[7] / ||n[7]|| 
n[0] = -n[7] 
... 
// face-center distance 
// D = | t × Pn.dot(Rd) | 
// t = 1;  Pn = n[7];  Rd = (px, 0, 0);
D  = | 1 × n[7].x × px | 

//diamond constrained mesh smoothing 
WHILE maxDispl > stoppingThreshold DO 
  maxDispl = 0 
  FOR all vertices v ∈ Mesh DO 
    sv = equi-distant position between 
         neighbors of v 
    dv = sv – vo //distance vector 
    dv = diamondClipping(dv) 
    v  = vo + dv 
    maxDispl = max(maxDispl, ||dv||) 
  END FOR 
WHEND 
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In spite of the correctness and visual quality of arti-

fact reduction in surface meshes by our method, it 

would be much better to reduce or avoid artifacts at 

an earlier stage of the surface extraction pipeline 

(recall Figure 1). 

A still open surface mesh filtering problem is artifact 

reduction in elongated surface parts with a diameter 

of only one voxel, since such structures may collapse 

to a single point or line during smoothing. Thus, fu-

ture work may focus on an appropriate treatment of 

such fine structures.  
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(a) (b) (c) (d) (e) 

Figure 7: Surface of a binary sampled sphere (diameter: 60 units): (a) original MC result (35k triangles, 17k verti-

ces); (b) cell-size-constrained smoothing ([incorrect representation], t=2.0, i=147, V=95.5%, maxD=0.5); (c) cell-

edge-constrained smoothing (t=1.3, i=76, V=99.6%, maxD=0.29), (d) diamond-constrained smoothing (t=1.3, 

i=76, V=99.2%, maxD=0.24), (e) CESN (t=1.4, i=102, V=97.6%, maxD=0.39). (stopping threshold = 0.002) 

Figure 8: Surface representation of an aneurysm data 

set: (a) original MC-extracted surface (53k triangles, 

26k vertices), (b) CESN result (t = 2.5 sec., i = 93, V = 

89.9%, mD = 0.41), (c) diamond-constrained result (t = 

2.6 sec., i = 59, V = 97.1%, mD = 0.28). (stopping thresh-

old = 0.002). 

(a) 

(b) 

(c) 
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