
Applied and Computational Mechanics 4 (2010) 37–48

Modelling of the bladed disk vibration

with damping elements in blade shroud

J. Kellnera,∗, V. Zemana

a
Faculty of Applied Sciences, University of West Bohemia, Univerzitnı́ 22, 306 14 Plzeň, Czech Republic
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Abstract

The requirement for wide operation range of steam turbine can cause, that the blades work close to resonant

frequency. For decreasing of blade’s vibration there are placed damping elements in the blade shroud. These

elements are calculated for dissipation of the vibration energy. The analytical method of blade and bladed disk

modal analysis is introduced. The method enables to include blades both with and without damping elements in

shroud. The mathematical model of the bladed disk is prepared for including damping effects in contact planes.
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1. Introduction

The requirements on wide frequency operation range and mainly on higher efficiency of steam

turbine blades lead to thinner profile, which is better in term of computation of fluid dynamics

(CFD) but blade dynamic properties get worse. The purpose of damping elements is to decrease

potential high amplitudes of blade vibration, which may occur due to resonances or big acting

forces. The aim of this article is to develop suitable methodology for vibration modelling of

damped blades. The method is based on discretization of 3D rotating disk [1] and 1D blades [3]

by FEM. This contribution is the rudimentary step for research of dynamic behaviour of the

bladed disk with damping elements, which are placed between blade shrouds using the har-

monic (balance) linearization method. In future, the damping will be involve due to slip contact

interaction in inner couplings between blade shrouds.

2. The mathematical modelling of the disk with blade foots

The rotating bladed disk (see fig. 1) can be generally decomposed into a disk (subsystem D)

and separated blades (subsystems Bi, i = 1, . . . , r). Disk is clamped on inner radius to rigid

shaft rotating with constant angular velocity ω around its y axis. According to the derivation

presented in [2] the disk can be discretized in the rotating x y z coordinate system using linear

isoparametric hexahedral finite elements (see [1]). The equation of motion can be written in a

configuration space defined by the vector

qD =
[

. . . , u
(F )
j , v

(F )
j , w

(F )
j , . . . , u

(C)
j , v

(C)
j , w

(C)
j , . . .

]T

D
∈ RnD (1)
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Fig. 1. Scheme of the rotating bladed disk

of nodal j displacements (see fig. 1) in direction of rotating axis x, y, z. The disk nodes are

classified into free nodes (superscript F ) and coupled nodes (superscript C) on the outer and

inner surface of the blade foots. The mathematical model of the disk was derived in [1] using

Lagrange’s equations in the form

MDq̈D(t) + ωGDq̇D(t) +
(
KsD − ω2KdD

)
qD(t) = ω2fD , (2)

where MD, KsD and KdD are symmetric mass, static stiffness and dynamic softening ma-

trices, skew-symmetric matrix ωGD expresses gyroscopic effects and ω2fD is force vector of

centrifugal load.

The vector of generalized coordinates of the disk can be partitioned according to (1) as

qD =

[

q
(F )
D

q
(C)
D

]

, q
(F )
D ∈ Rn

(F )
D , q

(C)
D ∈ Rn

(C)
D . (3)

The displacements of the coupled disk nodes on condition of rigid blade foots modelled

as a disk part can be expressed by displacements of referential nodes Ri which are identical

with the first blade nodes j = 1 at blade foots (see fig. 1). This relation between coupled disk

displacements corresponding to blade i and blade displacements in referential node Ri is

⎡

⎢
⎣

u
(C)
j

v
(C)
j

w
(C)
j

⎤

⎥
⎦ =

⎡

⎣

cos αi 0 sin αi

0 1 0
− sin αi 0 cos αi

⎤

⎦

⎡

⎣

1 0 0 0 zj −yj

0 1 0 −zj 0 xj

0 0 1 yj −xj 0

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1

v1

w1

ϕ1

ϑ1

ψ1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

B,i

, (4)

or shortly

q
(C)
j = Tαi

Tjq1,i, i = 1, 2, . . . , r, (5)
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where xj , yj, zj are coordinates of the coupled disk node j on the rigid blade foots in coordinate

system xi, yi, zi of the blade i with the origin in the first blade node and αi is the angle between

the rotating disk axis x and the rotating blade axis xi. Coordinates of vector q1,i express the

referential node displacements in direction of blade rotating axes xi, yi, zi and small turn angles

of the blade cross section in node Ri.

The complete transformation between displacements of coupled nodes of the disk on the

blade foots and the referential nodes Ri of all blades can be expressed in the matrix form
⎡

⎢
⎢
⎣

...

q
(C)
j
...

⎤

⎥
⎥
⎦

=

⎡

⎢
⎣

...

. . . Tαi
Tj . . .

...

⎤

⎥
⎦

⎡

⎢
⎣

...

q1,i

...

⎤

⎥
⎦⇒ q

(C)
D = TD,RqR . (6)

The global transformation rectangular matrix TD,R ∈ Rn
(C)
D ,nR describes the linkage between

the disk (D) and the blade rim (R). Coordinates of vector qR express displacements of the blade

nodes j = 1, 2, . . . , N (see below) in coordinate systems xi, yi, zi (see fig. 1) in order of blades

(for i = 1, 2, . . . , r)

qR =
[
qT

B,1 qT
B,2 . . .qT

B,r

]T
∈ RnR , nR = 6Nr, (7)

where r is the blade number.

For illustration we present in table 2a number of lowest natural frequencies of the nonrotat-

ing centrally clamped modeled disk (see fig. 2) with rigid blade foots but without blades. The

nodes which lie on the inner radius are fixed in all directions. The mode shapes corresponding

to natural frequencies are characterized by the number of nodal diameters (ND) and the number

of nodal circles (NC). the modal values of the disk with foots modelled as flexible differ from

the disk model with rigid foots very small [4].

Table 1. Parameters of model

Disk width 9 mm

Disk outer radius 252.5 mm

Number of blades 60 pcs

Length of blade 205 mm

Width of blade 20 mm

Hight of blade 10 mm

Shroud mass 0.078 kg

Table 2. Modal analysis of the disk with rigid blade foots

Frequencies of disk

with blade foots

[Hz] shape

1 234,8 1 ND

2 234,8 1 ND

3 249,8 1 NC

4 306,7 2 ND

5 306,7 2 ND

6 599,3 3 ND

7 599,3 3 ND

3. The blade rim with damping elements in shroud

The single blades are modelled as one dimensional continuum linked with rigid shroud body in

its centre of gravity of last blade profile. The mathematical model of the uncoupled blade i with

shroud in configuration space of its blade node displacements (in the direction of rotating axes

xi, yi, zi and of small angular displacements of the blade cross sections)

qB,i = [. . . , uj, vj, wj, ϕj, ϑj , ψj, . . .]
T
B,i ∈ RnB , i = 1, 2, . . . , r; j = 1, 2, . . . , N (8)

39



J. Kellner et al. / Applied and Computational Mechanics 4 (2010) 37–48

Fig. 2. Scheme of the disk with blade foots

has the form [3, 5]

MBq̈B,i(t) + ωGBq̇B,i(t) +
(
KsB + ω2KωB − ω2KdB

)
qB,i(t) = ω2fB , (9)

where blade matrices MB, KsB, KdB and GB have an identical meaning with matrices of the

disk and matrix ω2Kω,B expresses a centrifugal blade stiffening. (Shortly, the deformation en-

ergy gained due to extension in centrifugal array can be expressed by matrix of blade centrifugal

stiffening [5]-Appendix 1.) The matrix KdB is result of modelling of 1D continuum in rotating

coordinate system.

In this first modelling task is supposed, that the damping element is fast connected on the

sloping side with blade i+1 because the frictional force here is much higher than on the straight

(radial) side of the damping element. This model in the first step of modelling respects only a

contact stiffness between blade i and damping element connected with following blade i+1 on

the radial area. This contact stiffness is defined by contact stiffness matrix between blades i and

i + 1
K

(B)
C = diag (0 0 kζ kξξ kηη 0)ξi,ηi,ζi

, (10)

expressing the constraint for the circumferential displacement and two rotations by means of

contact stiffness kζ in normal direction to radial area ξiηi and two flexural stiffnesses kξξ, kηη .

This contact stiffness matrix is expressed in local contact coordinate system ξi, ηi, ζi placed

in central contact point Bi of the i-th blade shroud. The coupling (deformation) energy between

two adjacent blades i and i + 1 (see fig. 3 is, in this contact coordinate system, expressed as

Ei,i+1
C =

1

2

(
qBi

− qAi+1

)T

ξi,ηi,ζi
K

(B)
C

(
qBi

− qAi+1

)

ξi,ηi,ζi
, (11)

where qBi
, qAi+1

are vectors of blade i displacements in point Bi and blade i +1 displacements

in pointAi+1 expressed in coordinate system ξi, ηi, ζi. The difference between qBi
− qAi+1

represents the relative motion of contact areas between two adjacent blades i and i + 1.

The translation of blade local coordinate systems from point Ci to point Bi and from point

Ci+1 to point Ai+1 is expressed by translation matrices

RT
X =

⎡

⎣

0 zX −yX

−zX 0 xX

yX −xX 0

⎤

⎦ , X = Ai+1, Bi. (12)
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Fig. 3. Scheme of two adjacent blades and damping element

The translated local coordinate system is then rotated so, that the contact coordinate axis ξi is

the radial according to bladed disk axis of rotation yf .

The vector of displacements in point Bi in the contact coordinate system is

qBi ξi,ηi,ζi
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

uBi

vBi

wBi

ϕBi

ϑBi

ψBi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

ξi,ηi,ζi

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

τB 0

0 τB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

uBi

vBi

wBi

ϕBi

ϑBi

ψBi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

xi,zi,yi

⎫

⎬

⎭
uBi

⎫

⎬

⎭
ϕBi

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

qBi xi,yi,zi
,

(13)

where the rotation matrix τB between coordinate systems is specified by angle δB between

radial axis xi of blade passing through point Ci and radial axis ξi passing through point Bi.

τB =

⎡

⎣

cos δB 0 − sin δB

0 1 0
sin δB 0 cos δB

⎤

⎦ . (14)

Analogously the vector of displacements of point Ai+1 in this contact coordinate system is

defined as

qAi+1 ξi,ηi,ζi
=

[
τA 0

0 τ A

]

qAi+1 xi+1,yi+1,zi+1
, (15)

where

τ A =

⎡

⎣

cos δA 0 sin δA

0 1 0
− sin δA 0 cos δA

⎤

⎦ . (16)
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The vector of blade i displacements in point Bi in coordinate system xi, yi, zi is defined by

generalized displacements of point Ci and by matrix of translation RB

qBi xi,yi,zi
=

[
uBi

ϕBi

]

xi,yi,zi

=

[
E RT

B

0 E

] [
uCi

ϕCi

]

xi,yi,zi

=

[
E RT

B

0 E

]

qCi
. (17)

According to (13) this vector in the contact coordinate system ξi, ηi, ζi has the form

qBi ξi,ηi,ζi
=

[
τB 0

0 τB

] [
E RT

B

0 E

]

︸ ︷︷ ︸

TB

qCi xi,yi,zi
. (18)

Analogously, the vector of blade i + 1 displacements in point Ai+1 in the contact coordinate

system ξi, ηi, ζi is expressed as

qAi+1 ξi,ηi,ζi
=

[
τA 0

0 τA

] [
E RT

A

0 E

]

︸ ︷︷ ︸

TA

qCi+1 xi+1,yi+1,zi+1
. (19)

We can now express the coupling energy, defined in (11)by means of generalized coordinates

of i-th and i + 1-th blades in the form

Ei,i+1
C =

1

2

(
TBqCi

− TAqCi+1

)T
K

(B)
C

(
TBqCi

− TAqCi+1

)
. (20)

After multiplying the previous equation and from identity
∂Ei,i+1

C

∂q
R

= K
(R)
Ci

qR we obtain the

stiffness matrix of coupling between two adjacent blades i and i + 1 in the form

qT
Ci

qT
Ci+1

K
(R)
Ci

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

...
...

...

· · ·

KB,B

︷ ︸︸ ︷

T
T
BK

(B)
C TB · · ·

−KB,A

︷ ︸︸ ︷

−T
T
BK

(B)
C TA · · ·

...
...

...

· · ·

−KA,B

︷ ︸︸ ︷

−T
T
AK

(B)
C TB · · ·

KA,A

︷ ︸︸ ︷

T
T
AK

(B)
C TA · · ·

...
...

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

qCi

qCi+1

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

qB,i

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

qB,i+1

, (21)

where qB,i and qB,i+1 are the vectors of all generalized displacements of blade i and i-th. Vec-

tors qCi
and qC,i+1 are the vectors of generalized displacements in the last node N on blade i

and i-th, respectively.
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The whole coupling stiffness matrix between all blades (here 60 blades) is then

qT
C1

qT
C2

qT
C3

qT
C59

qT
C60

K
(R)
C

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

· · · KA,A + KB,B · · · −KB,A · · · · · · · · · −KA,B

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

· · · −KA,B · · · KA,A + KB,B · · · −KB,A · · · · · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

· · · · · · −KA,B · · · KA,A + KB,B · · · −KB,A

≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

· · · · · · · · · · · · KA,A + KB,B · · · −KB,A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

· · · −KB,A · · · · · · · · · −KA,B KA,A + KB,B

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

. (22)

This contact stiffness matrix connects the blades together into a blade rim, whose equation

of motion is

MRq̈R(t) + ωGRq̇R(t) +
(

KsR + K
(R)
C + ω2KωR − ω2KdR

)

qR(t) = ω2fR , (23)

where all matrices (except K
(R)
C are block-diagonal in the form

XR = diag (XB, XB, . . . , XB) , X = M , G, Ks, Md, Kω. (24)

The contact stiffness matrix K
(B)
C defined in (10) depends on geometric and material char-

acteristics of damping element. Mentioned above, the frictional force is much higher on the

slopping side, so at the first time the damping element is considered fast connect here. The

normal force in the contact on radial straight side is

N0 =
mT rω2

tan δα
, (25)

Fig. 4. Scheme of the damping element
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where mT is the damping element mass, ω = πn
30

is the angular velocity and r is radius of

damping element centre of gravity. The contact stress is

σ[MPa] =
N0 [N ]

Aef [mm2]

, Aef =

hef
︷︸︸︷

hγh

bef
︷︸︸︷

bγb ·106, (26)

where h is axial and b is radial damping element proportions and Aef is the effective contact

area (see fig. 4), defined by real size of contact area, i.e. the high h multiply by coefficient γh

etc.

The contact normal stiffness in direction ζ is

kζ =
N0

δ
· 106[N/m], (27)

where contact deformation δ[µm] = cσp in µm is defined, according to [6], by contact defor-

mation coefficient c and contact exponent p. Moments of flexion around axes ξi and ηi can be

expressed as

Mξ = 2

∫ hef /2

0

kIbefdη η2ϕ =
1

12
kIbefhef
︸ ︷︷ ︸

kζ

h2
efϕ,

Mη = 2

∫ bef /2

0

kIhefdξ ξ2ϕ =
1

12
kIbefhef
︸ ︷︷ ︸

kζ

b2
efϕ, (28)

where unit contact stiffness kI is supposed constant and the angles of relative turning of interface

surfaces are marked as ϕ and ϑ. Two flexural contact stiffnesses are then

kξξ =
1

12
kζ (hγh)

2 , kηη =
1

12
kζ (bγb)

2 . (29)

4. The modelling of bladed disk with damping elements in blade shroud

The motion equations of the fictive undamped system assembled from uncoupled subsystems –

the central clamped disk with rigid blade roots and blade rim with damping elements in shroud –

in the configuration space

q =

[(

q
(F )
D

)T (

q
(C)
D

)T

qT
R

]T

(30)

can be formally rewritten as

Mq̈(t) + ωGq̇(t) +
(
Ks + ω2Kω − ω2Kd

)
q(t) = ω2f . (31)

According to mathematical models (2) and (23), all matrices have the block-diagonal form

X = diag (XD, XR) , X = M , G, Kd,

Ks = diag(KsD, KsR + K
(R)
C ), Kω = diag(0, KωR) (32)

and f =
[
fT

D, fT
R

]T
. The vector of generalized coordinates q(t) of the real bladed disk in

consequence of the couplings (6) can be transformed into new vector q̃ in the form

⎡

⎣

q
(F )
D

q
(C)
D

qR

⎤

⎦ =

⎡

⎣

E 0

0 TD,R

0 E

⎤

⎦

[

q
(F )
D

qR

]

or shortly q = T q̃. (33)
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The mathematical model of the central clamped bladed disk with damping elements in blade

shroud in the configuration space q̃ takes the form

M̃ ¨̃q(t) + ωG̃ ˙̃q(t) +
(

K̃s + ω2K̃ω − ω2K̃d

)

q̃(t) = ω2f̃ , (34)

where X̃ = T T XT , X = M , G, Ks, Kd, Kω and f̃ = T T f .

5. Modal analysis of bladed disk

The results of blade and shrouded blade modelling was compared with results from commercial

software ANSYS. For illustration we present in tab. 3 a number of lowest natural frequencies of

the one modeled blade with shroud fixed in the first node on the rigid disk with rigid blade roots.

The DOF number of 1D blade model is 36 without reduction (see fig. 5). The first and second

natural frequencies are sufficiently accurate, moreover the influence of rotation is practically

same also for higher frequencies.

Table 3. Modal analysis of the blade with shroud in different FEM softwares

Frequencies of blade with shroud

ANSYS MATLAB ANSYS MATLAB

0 rpm 2 000 rpm

142 141 153 151

282 282 288 286

970,5 1 003 981,5 1 011

1 536 1 533 1 537 1 533

1 907 1 969 1 913 1 974

Fig. 5. Model in Ansys (left picture) and model scheme in MATLAB (right picture)

The next step of the testing of the presented method was modal analysis of blade rim, i.e. the

blades with shroud connected by contact stiffness matrix K
(C)
R of damping elements.The results

of modal analysis in the form of the some few lowest natural frequencies of the the blade rim

fixed in the first nodes of all blades into rigid disk with rigid blade roots are presented in tab. 4.
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Table 4. Modal analysis of the blade rim

Frequencies of blade rim

Fixed in 1st nodes Fixed in 1st nodes

of blandes of blandes

0 rpm 2 000 rpm

[Hz] number [Hz] number

142 60× 151 60×
291 1× 295 1×
618 2× 620 2×

1 003 60× 1 011 60×
1 068 2× 1 069 2×
1 390 2× 1 392 2×

All blades of the blade rim with damping elements are connected with disk rigid foots in

the first nodes and the mathematical model (34) of the bladed disk is used for testing. Its modal

analysis is performed for undermentioned parameters:

δa = 20◦ (angle of damping element slope)

δA = 3.45◦ (angle between radial blade axis xi+1 and axis ξi)

δB = 2.55◦ (angle between radial blade axis xi and axis ξi)

mT = 0.008 6 kg (mass of damping element)

rT = 0.465 5 m (distance of the centre of gravity of damping element from the rotation axis)

c = 3 (contact deformation coefficient )

p = 0.5 (contact exponent)

b = 0.006 m (radial proportion of damping element)

h = 0.02 m (axial proportion of damping element)

γb = 0.5 (coefficient of contact area reduction in radial proportion)

γh = 0.5 (coefficient of contact area reduction in axial direction).

The some few lowest natural frequencies of the central clamped blade disk with damping

elements in the blade shroud are presented in tab. 5. The corresponding mode shapes are char-

acterized by the number of nodal diameters ND and nodal circles NC, i.e. the number of lines

(resp. circles) with zero amplitude. The graphic demonstration of mode shapes is available

but in this paper in gray-scale there are presented for illustration only chosen shapes depicted

without shroud and damping elements (see fig. 6–8).

Table 5. Eigenfrequencies of bladed disk – clamped on inner radius

Frequencies of bladed disk

Clamped in inner disk radius

0 rpm 2 000 rpm

[Hz] number shape [Hz] number shape

69,5 2× 1 ND 75,9 2 1 ND

71,7 1× 1 NC 78,3 1 1 NC

84,6 2× 2 ND 91,2 2 2 ND

113,2 2× 3 ND 121,8 2 3 ND

125,5 2× 4 ND 135,0 2 4 ND

130,1 2× 5 ND 140,0 2 5 ND
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Fig. 6. Mode shape corresponding to eigen-

frequency 69,5 Hz – 1 ND for non-rotating

bladed disk

Fig. 7. Mode shape corresponding to eigen-

frequency 71,7 Hz – 0 ND for non-rotating

bladed disk

Fig. 8. Mode shape corresponding to eigenfrequency 125,5 Hz – 4 ND for non-rotating bladed disk

6. Conclusion

The presented method and the corresponding developed software enables to create small com-

putational consuming model of the bladed disk for nonlinear task. The disk is modelled as a

three dimensional rotating continuum and blades as a one dimensional continuum with rigid

shroud connected by damping elements. The displacements of the coupled disk nodes on the

rigid blade foots are eliminated by means of displacements in the first blade nodes. The con-

tact stiffnesses of a damping elements supported between blade shroud are respected in slid-

ing interface surfaces. In presented stage of modelling the contact surfaces are considered as

smooth. The method allows to introduce continuously distributed centrifugal and gyroscopic

effects which influence the bladed disk modal properties. Modal values of particular compo-
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nents of the complete model were compared with modal values calculated using commercial

software. The modal accurance is good. The model is prepared for including damping effects.

In future, the forced vibration and its graphical representation will be done. The model does

not use the cyclic symmetry and is prepared for system with different blades (with and without

shroud).

The new approach to bladed disk vibration modelling was tested for undamped modeled

bladed disk with sixty blades and damping elements. From a modal analysis follows that the

developed software in MATLAB code based on presented methodology is acceptable for a

modelling of damping effects.
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