
Managing dynamic entities in mobile, urban virtual

environments

Antti Nurminen
antti.nurminen@hut.fi

Helsinki University of Technology

ABSTRACT

Mobile networked virtual environments (mNVE’s) are a new, emerging type of virtual environments. Mobile 3D maps that sup-

port dynamic entities and communication between clients are a subcategory of mNVE’s, intended for navigation and location-

based information browsing. Models and entities portrayed in 3D maps represent real environments and entities, such as

buildings, vehicles and people. Our main contribution is in developing a lightweight and scalable scheme for real dynamic en-

tity management and visibility culling by exploiting geometry of urban environments, the honesty of locally positioned clients

and the lack of interference between clients. We bind moving entities to a topological network consisting of street segments,

crossings and larger areas, all associated to precalculated visibility cells. Our system reduces visibility determination to a sim-

ple cell occupation logic, performed at smart clients or proxies. In this scheme, servers act as fast message passing switches,

managing client subscription and query tables, simply forwarding state update messages. Computational scalability is ensured

by transferring computations to client side, and networking scalability by spatially localized servers, which allow roaming by

subscribing to each others’ neighboring visibility cells.

Keywords: 3D maps, mobile networked virtual environments, 3D user interfaces

1 INTRODUCTION AND RELATED

WORK

Mobile 3D graphics API’s, mobile 3D hardware and

cellular networks have reached the point where im-

plementations of advanced, networked and graphically

rich applications are possible on mobile devices. De-

spite these developments, mobile devices are still thin,

and cannot directly present large and detailed, dy-

namic worlds. We attack this challenging optimiza-

tion problem and develop a scalable mobile platform

for visualizing static and dynamic objects in urban en-

vironments with near real time tracked real world en-

tities, rendering the scene at interactive refresh rates,

and in a realistic manner.

Our work has connections to networked virtual envi-

ronments and computer graphics optimizations in gen-

eral. We discuss previous work, and exploit the fea-

tures of our environment to create a lightweight and

scalable solution, based on precalculated cell-to-object

and cell-to-cell visibilities, topological data structures

and client-side logic for positioning decisions and dis-

tributing position updates.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech Republic

1.1 Mobile maps

Maps are representations of real environments. The

level of abstraction may vary, from symbolic 2D rep-

resentation to realistic 3D. Most commercial mobile

maps, such as TomTom [Tom06], have been designed

for navigational purposes, and may feature static

location-based information, such as restaurants, mu-

seums, and other points of interest. 2D map views are

based on static raster pictures, or real-time rendered

vector graphics. A currently popular view mode in car

navigation systems is the perspective 2D view, por-

traying 2D street networks from the street level with

a perspective transformation. Mobile map research

projects have yielded prototypes with various nav-

igational features and interaction methods, support-

ing multimedia and online searches [Che00, Pos02,

Bau01].

The key idea in 3D maps, in contrast to 2D maps,

is the direct recognizability of the environment - when

rendered in full 3D, including buildings and all other

features of the environment, the virtual scene should

match the real world, facilitating unambiguous navi-

gation.

The first attempts at creating mobile, interactive

3D maps faced severe technical limitations. Without

3D hardware, and without optimizations, for example

the 3D City Info project attempted to use a realistic

VRML city model, but had to perform the first field

experiments with pre-rendered images on web pages

[Rak01]. The TellMaris project applied simple spatial

culling, and was able to render low resolution textured

models at interactive rates [Prz05], but without routing

Journal of WSCG 113 ISSN 1213-6972

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295548903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


or online search capabilities. With visibility informa-

tion embedded in VRML models, and low resolution

textures, Burigat and Chittaro [Bur05] achieved 4-5fps

for a city square model, with information content re-

trievable from the model. These prototypes did not

support progressive model downloading, nor dynamic

entities.

When dynamic entities and message passing be-

tween clients are introduced to mobile 3D maps, they

can be viewed as a subset of mobile networked envi-

ronments (mNVE’s), where the 3D content represents

real environments, and the entities represent real peo-

ple and vehicles. In this sense, such mobile 3D maps

are real virtual environments. Figure 1 presents our

case, an urban environment with tracked, dynamic en-

tities.

1.2 Networked virtual environments

Networked virtual environments (NVE’s) are simu-

lated worlds, where multiple users can interact with

the shared environment, and each other. NVE’s in-

clude text-based games such as multi-user dungeons

(MUDs), teleoperation applications, massive mili-

tary combat simulators and immersive, shared envi-

ronments such as collaborative virtual environments

(CVE). First NVE’s were military simulators, such

as the SIMNET [Joh87], but academic use and en-

tertainment industry soon adapted similar technolo-

gies. The most popular NVE’s are currently network

games, such as the massive multiplayer online role-

playing game (MMORPG) World of Warcraft (WoW)

or the first-person shooter (FPS) Counter-Strike, with

millions of users.

Most NVE’s include a 3D front-end. Large, in-

creasingly more realistic environments easily exceed

the capabilities of any given 3D hardware. Smart al-

gorithms are required to reach interactive rendering

speeds. The two fundamental methods are visibility

culling and level of detail (LOD). Visibility determi-

nation methods remove those objects from the render-

ing pipeline that are not visible in the current view,

and LOD techniques use screen space metrics to de-

termine how accurately objects need to be rendered.

LOD methods include optimization of both geometry

and surface detail (shaders, textures).

Networking requirements of NVE’s depend on the

application. For example, a networked chess would

only involve two players, whereas a military simula-

tion or a MMORPG might need to scale up to hun-

dreds of thousands of units or players. In a client-

server model, even a chess server could be exhausted,

if it was required to serve a million concurrent clients.

As the games are independent, scalability can be ad-

dressed by simply increasing the number of servers. If

the world allows users to interact, as in military simu-

Figure 1: Real dynamic entities: GPS tracked public

transportation

lations or games, message passing must be facilitated,

and independent servers are not sufficient.

Interest management [RMa95] and communication

visibility [Cap97] techniques have been developed to

minimize network traffic between clients. Common

solutions utilize various area-of-interest (AOI) based

approaches and direct visibility, but the related com-

putation and decision making is performed at server

side, causing a potential computational bottleneck. In

the Player/Ghost model, transmissions are optimized

by honest Players, which send updates only when a

locally computed extrapolated state deviates from the

real one significantly [Bla92].

1.3 Network topologies

Network topology has a significant impact on the po-

tential scalability of NVE’s, both computationally and

network-wise. Client-server solutions often require

the server to maintain a simulation of the entire world,

and typically server-to-client network traffic rises lin-

early with the number of clients. For example, one

of the most popular networked first person shooter

games, Counter-Strike, was observed to follow this

rule very accurately [Far04]. Client-server solutions

are considered good for event- and behavior-rich envi-

ronments, where persistency and consistency are im-

portant, but the server and the network easily become

bottlenecks. Common client-server FPS games allow

only 32–64 simultaneous users per server.

Peer-to-peer (P2P) network based systems could

scale infinitely, if each client would perform only a

small part of the whole world simulation, and transmit

its data only to a limited number of other clients. In

the NPSNET-IV military simulator, clients distributed

their states to every participating client, and a maxi-

mum of 300 Players was reached on a 10Mbit/s ether-

net [RMa95].

In a P2P system, every participating unit must be

honest. In addition, resolving parallel actions, where

client states diverge, is difficult [Mar06]. P2P net-

works suit the situation where divergence of client

states is unlikely, and which require computational

scalability.

Journal of WSCG 114 ISSN 1213-6972



2 VISIBILITY OF STATIC SCENES

Complex models can be rendered at interactive rates

even in lightweight systems, given that the complex-

ity is reduced by rendering only the actually visible

parts of the model, using appropriate levels of de-

tails. Naturally, the run time computations required

to achieve such an output-sensitive situation should

be minimal. The classical scenario has been a walk-

through of a static, densely occluded scene, a situation

usually found indoors. [Coh03] provides a compre-

hensive survey of such methods. In these applications,

the world is typically divided into a hierarchical struc-

ture, and various culling techniques applied to select

the parts of the scene currently in view.

Most visibility algorithms aim for conservativeness,

where the method ensures that all visible geometry is

rendered, with the risk of including some occluded ge-

ometry. The possible degree of aggressivity in visibil-

ity determination depends on the application, and the

situation. In practice, even an approximate solution

may provide sufficient quality.

2.1 Spatial subdivision

Visibility algorithms are tied to the underlying spatial

subdivision algorithm. For static indoor scenes, the bi-

nary space partition algorithm (BSP) [Fuc80] has been

popular. A BSP tree structure can directly represent a

correctly created B-rep model, avoiding any external

data structures, and can also be used for fast collision

detection [Ar00].

Octree based spatial subdivision algorithms divide

the space into a hierarchy of volumes. 2D spatial data

can be divided to a hierarchy of quads using quadtrees.

Octrees and quadtrees usually serve as separate, as-

sisting data structures. They provide good localiza-

tion, and the hierarchical structure suits various culling

schemes, such as view frustum culling.

The hierarchical Z-buffer algorithm[Gre93] utilizes

both an object-space octree, and image-space Z buffer

hierarchy. The hierarchical occlusion map (HOM)

stores opacity and occluder distance information sep-

arately [Zha98], creating potential occluders in a pre-

process.

2.2 Potentially visible sets

The concept of potentially visible sets (PVS) was de-

veloped in the seminal work by Airey [Air90] and

Teller [Tel92]. In this scheme, the world is divided to

cells, connected to each other through portals, open-

ings between the cells such as doorways. Cell-to-

cell or cell-to-object (or cell-to-polygon) visibilities

are precomputed, and at run time, the objects deemed

visible from the current cell are rendered. [Tel92] also

defines detail objects, which are discarded as non-

occluding, small objects. Later research improves

upon this work. For example, [And00] defines the

hardly visible set, objects that contribute only little

to the scene and can be discarded. In city scenar-

ios, [Cap97] classifies visibility into graduated visi-

bility sets, for objects of varying visibilities. The vis-

ibility precomputation is also associated with the re-

quired level of detail of the models: the vLOD system

[Chh05] binds these aspects together.

Potentially visible sets are a very powerful tool for

visibility culling. Lookup functions have minimal

overhead in fetching precomputed visibilities, given

sufficiently simple visibility list compression algo-

rithms. With PVS systems, there is no need for expen-

sive computations or view dependent scene structure

rearrangements, such as BSP tree reconfigurations.

For our case, with free viepoint, we subdivide our

space to 3D voxels (view cells), and apply a cell-to-

object PVS algorithm, using façades and roofs as ob-

jects. A precomputation stage creates visibility lists

and compresses them into difference clusters. Our

static object culling scheme is described in [Nur06].

3 VISIBILITY OF DYNAMIC OB-

JECTS

Dynamic objects are not part of the static world,

and their visibilities cannot be simply preprocessed.

[Chr92] asserts three requirements for an algorithm

supporting dynamic 3D scenes, the abilities to

1. Change the camera view

2. Add objects to the scene

3. Delete objects from the scene

A dynamic entity is then managed by deleting it

from the old position, transforming it, and inserting

back to the scene. This introduces significant over-

head, a problem long recognized. In the context of

managing dynamic objects within BSP based urban

scenes, Fuchs suggested to divide static and dynamic

objects to separate BSP trees, where the static BST

trees would not intersect the paths of dynamic objects

[Fuc83].

In addition to the insertion overhead, visibility

would need to be determined each frame. Sudarsky

and Gotsman offer a possible relief: each moving

object is replaced by a temporary bounding volume

(TBV), which contains the object during a validity pe-

riod [Sud97]. During this time, run time visibility cal-

culations rely on the TBV. A TBV is created based on

a priori knowledge of the object’s behavior. For ob-

jects with well known trajectories, sweep surfaces can

be used.

The TBV eliminates the need to perform scene

management and visibility determination every frame.

TBV’s can be used in several run time occlusion

culling algorithms, as they simply replace the object

geometry. However, the method’s efficiency is depen-

dent on the underlying culling technique, and insertion

Journal of WSCG 115 ISSN 1213-6972



overhead. Unfortunately, current dynamic entity visi-

bility culling algorithms don’t offer lightweight pre-

computation based solutions for urban environments

with unrestricted viewpoints. In addition, the TBV va-

lidity period depends on viewpoint motion: it can be

determined accurately only for a static viewpoint.

4 MANAGEMENT OF DYNAMIC

REAL WORLD ENTITIES

A real city is populated by pedestrians, bicyclists, cars,

public transportation and possibly other types of vehi-

cles. We consider all these entities as detail objects,

which do not contribute to visibility. In the follow-

ing, we develop a view independent dynamic entity

management and culling scheme using predetermined

visibilities.

4.1 Topological entity management

We assume that all real entities in an urban environ-

ment are restricted to areas or paths, which can be

extracted from existing map databases. As a conse-

quence, we also assume that only physical positions

are updated, not virtual, freely flying cameras. Pedes-

trians use sidewalks and walk in parks or market-

places, while vehicles are restricted to essentially one-

dimensional streets and occasional parking lots. Taxis,

buses and bicycles can have their own dedicated lanes,

and trams and subways use rails. Furthermore, public

transportation is generally limited to predefined routes.

In the context of increasing GPS accuracy, [Cuy03]

proposes to constrain vehicle paths to streets. Fol-

lowing this idea, we create topological street networks

(possibly separate for each entity type, if suitable data

exists), connecting areas such as parks and market-

places to the network. We limit potential navigable ar-

eas to this network of street segments (figure 2) and ar-

eas (figure 4). Similar work has been done in [Whi07],

with the addition of indoor topologies, for navigation

purposes.

The resulting network consists of nodes (crossings

and areas), edges between nodes (street segments), and

can be viewed as an adjacency graph. We use inci-

dence lists as internal data structures. Such a list con-

tains pointers from nodes to adjacent edges and vice

versa. Street segment geometry is stored to edges, and

area geometry to nodes. The position of an entity can

now be given by an edge ID, and the one-dimensional

position along the street segment, or by a node ID, and

the two-dimensional position within the area. Nodes

that are associated to crossings do not hold area geom-

etry.

A dynamic entity is now managed by tracking its

position within this topological network. For initial

placement, a quadtree provides a good external struc-

ture to localize closest street segments and areas. We

Figure 2: Pedestrians projected onto a street network.

then test if the entity lies within one of the closest ar-

eas, and if not, project it to the nearest street segment.

When the entity moves, its position on the network is

constantly verified. Each entity holds its locally mea-

sured position (for example, a GPS position) and the

inferred position within the network.

4.2 Visibility cells

To build a system where dynamic entity visibility can

be predetermined, we create static virtual visibility

cells reflecting the geometry of street segments and

areas. For any visible cell, we assume that entities

occupying them are visible as well, in the cell-to-cell

visibility manner. In pursue of conservativeness, visi-

bility cells should cover all occupiable space. In prac-

tice, we use a constant value for cell width, estimating

the widest possible street. For the height, we use the

height of the tallest possible entity. We construct the

cells as sweep volumes along the street geometry. For

each area, a single large visibility cell is constructed

as an extruded volume, again using the height of the

tallest entity (figure 4).

We observe that generally crossings seem to be

more visible than the streets at urban canyons (the an-

tipenumbra of crossings tends to be larger than that

of the streets between buildings). Even if a piece of

a cell would be visible at a junction, the entire street

would be deemed visible. Therefore, we make a minor

modification to the shape of the virtual cells, and the

network, where the nodes would otherwise be located

only at the centers of crossings and areas. We split

each street segment near a crossing, and use the short

pieces to create a virtual cell reflecting the junction ge-

ometry. For example, in a T crossing, three short seg-

ments are connected to one node, constituting a single

T shaped visibility cell (figure 2). An entity on any of

these small segments would occupy only this particu-

lar visibility cell. We store pointers to the edges and

nodes in the associated visibility cells.

Journal of WSCG 116 ISSN 1213-6972





and let them compute their position on the topologi-

cal network. They also publish their dead reckoning

scheme, so other clients can extrapolate their position.

This is utilized in the Player/Ghost manner, so that a

client sends its position and cell occupation updates

only when its locally computed extrapolated position

exceeds an error threshold. When a client senses un-

expected, emergent behavior, such as stopping, it can

immediately send a state update. Updates are also trig-

gered when new validity periods are calculated.

In our scheme, a server can avoid dead reckoning

and position projection computations altogether, sim-

ply updating its master tables, and forwarding state

changes when ever it receives such data from the smart

clients. For entities where our client software is not

installed, such as public transportation with external

tracking network interfaces, separate proxies can be

used to scale the system up.

4.6 Networking scalability

When the amount of concurrent users reach millions,

the local network at server side may become con-

gested, despite our optimization efforts. We overcome

this by limiting servers spatially, and increasing the

number of servers, which are distributed to different

subnetworks. Neighboring servers subscribe to each

others’ cells that lie at their shared border. If the

density of users is very high, local mobile networks

may become a bottleneck. In this case, motion ex-

trapolation can be extended to cover several visibility

cells, although crossings pose a problem, unless a pri-

ori knowledge on entity paths is available. For exam-

ple, public transportation usually follows static routes,

but pedestrians may choose any direction.

4.7 Privacy

Privacy issues are addressed by a buddy system; users

can choose whether they publish their identities or not,

and their target audience. However, unless they pub-

lish their identities, they will not be able to identify

other users.

5 DYNAMIC ENTITIES: A REAL

WORLD CASE

We have utilized our developments for a real case.

We gathered map data, public transportation schedule

data, and obtained access to an interface for a public

transportation tracking system. For practical purposes,

we expected to use GPS for positioning, with accuracy

of 5m or worse, and update rates of 1Hz or less.

The system was built upon our current mobile 3D

map system, the m-LOMA platform. m-LOMA uti-

lizes regular 3D view cell subdivision and precalcu-

lated cell-to-object visibilities and contribution culling

for static geometry, with building façades and roofs as

atomic objects. Our city model consists of about 200

individually textured and 100 flat colored buildings,

from the city center of Helsinki, Finland. The texture

detail varies between 10–20cm. The model runs at 30–

200fps in recent smart phones with 3D hardware sup-

port, such as the Nokia N93 and N95, simultaneously

rendering up to 50 textured buildings, and 50–100 flat

colored, distant buildings. The system relies on ex-

plicit memory management at run time, optimized for

LOD textures. The 3D models and textures can be pro-

gressively downloaded over mobile networks using a

pipelined binary XML protocol over TCP. The engine,

its network scheme and performance are described in

[Nur06, Nur07]. The presented dynamic entity man-

agement system replaces the early system described in

[Nur06].

5.1 Map data and public transportation

Our map data covers street geometry, building out-

lines, parks, etc. Area data is given as polylines. Only

the centerlines of streets is provided. No sidewalk data

is available. The data is not topological and contains

errors. After manual cleaning, a topological, slightly

simplified street network was created to cover the city

center. Visibility cells were instanced based on the re-

sulting network. On average, 5–6 cells were needed

for each city block. This increased the size of our vis-

ibility lists, but not prohibitively. For a geometrically

complex 3D city model, this increase would be even

less significant.

Public transportation data was provided in a collec-

tion of files in a proprietary format. We integrated

multiple road polylines, simplified route geometry,

and extracted bus stop positions. Unfortunately, the

route data was very inaccurate, randomly misaligned

to the street data, containing various loops, zig-zag

shapes etc. It is stored in the local public transporta-

tion organization’s internal database, and exported ev-

ery time a schedule change occurs, so manual editing,

without access to the database, would only prove a

temporary solution. The public transportation track-

ing system provides estimates of arrival for the bus and

tram stops with a granularity of one minute. It has a

SOAP interface, and suffers from a latency of several

seconds. Less than half of buses, but all trams, are

equipped with this tracking system.

5.2 Simulation: real entity behaviors

Entities were assigned behaviors and related param-

eters for dead reckoning and validity period calcula-

tions set. The basic behaviors reflect the method of

movement. Our current system supports pedestrians,

one-part vehicles such as buses and cars, and two-part

vehicles such as trams. The related parameters de-

fine their length (including 0 for pedestrians and bicy-

clists), maximum speed, lateral position offsets, col-

lision avoidance schemes, collision distance thresh-

Journal of WSCG 118 ISSN 1213-6972



old, and timeouts for solving dead locked situations,

including temporary acceptance of collisions and en-

tity deletion. We also specify spawn times based on

schedule data. The lateral position offset allows us to

randomize pedestrian locations, and vehicles can be

shifted to virtual lanes.

5.3 Simulator implementation

We implemented a simulator based on existing sched-

ule and route data to the m-LOMA system. Public

transportation vehicles were modeled, and behaviors

programmed. A fast bounding box test provides colli-

sion avoidance: vehicles wait at crossings and let the

first arrivers pass first. The speed of the vehicles is

approximated by the distance to the next stop, given

the estimated times of arrival, and limited by the max-

imum speed. The lateral offset for vehicles was set to

3 meters to emulate street lanes.

The proprietary schedule and route data were stored

to compact files, providing ETA’s for each stop at each

route. At run time, a Python script, installed at a proxy

server, queries the SOAP positioning interface a few

times a minute, discards the overhead (over 95% of the

data), and forwards only those ETAs for vehicles that

are actually traced. A set of timeouts are frequently

used to resolve collisions. Vehicle motion is not al-

ways parallel to actual streets due to the route data

inaccuracies. For visibility cell occupation determina-

tion, vehicles on these routes are projected to the street

segments, which were parsed from the more accurate

road database. These two data sets do not coincide

everywhere, so currently we run the simulation with

buses and trams placed on the route data set.

The first version of the system has been running in a

local science park on a desktop computer (see figure 1)

consecutively over a year. We have recently ported the

system to mobile devices. At most a few dozen public

transportation vehicles occupy our modeled city cen-

ter at a time, which is no burden to our system, es-

pecially due to the poor granularity of tracking. Our

system allows tracking and distribution of position up-

dates of the entire local public transportation fleet, but

visibility culling is meaningless outside the 3D mod-

eled area.

Rendering the scene at full speed in a smart phone

consumes batteries fast. We have implemented a con-

figurable tick rate to scale power consumption down.

In addition, a separate toggle button can be used to

pause the entire simulation.

6 CONCLUSIONS AND FUTURE

We have presented a lightweight and efficient visibil-

ity culling and message reduction mechanism for dy-

namic entities based on precalculated, static visibility

cells, exploiting geometrical properties of urban en-

vironments. Relying on the real world to solve con-

sistency issues, the scheme combines the best parts

of P2P networks and client-server architectures: po-

sitioning computations and decision making processes

are performed at client side, while a server manages

global visibility and subscription look-up tables and

acts as a fast state update passing switchboard. The

system is truly scalable, as the only potential bottle-

neck, server-side networking, can be extended by spa-

tially limited servers, which exchange borderline data.

However, situations where a very high number of dy-

namic entities occupy a small area pose a problem. If

a viewpoint is high above ground level, looking down,

visibility optimizations are of no use, and both mo-

bile networking and local rendering resources become

a bottleneck.

Precomputed visibilities exchange run time compu-

tations to larger memory consumption, but the increase

of visibility lists is acceptable. Even where small

buildings cannot occlude moving entities, the draw-

back in not significant: the number of virtual visibil-

ity cells is still much less than the number of building

façades we use for static visibility calculations.

We have implemented a mobile 3D map with pro-

gressive content download, applying an efficient XML

based binary protocol, static visibility preprocessing

and buddy tracking, running a near real time tracked

public transportation simulation. The current public

transportation tracking system does not push our sys-

tem to its limits. In addition, we have tracked only a

few pedestrians at a time. Our local public transporta-

tion organization is implementing a direct GPS track-

ing based system, which we will integrate as soon as

it becomes available. Until that happens, we will per-

form artificial benchmarks to acquire quantitative per-

formance statistics.

In near future, we will utilize the presented sys-

tem in managing a different type of dynamic entities,

namely a swarm of cleaning robots in an indoor envi-

ronment.

ACKNOWLEDGEMENTS

The author wishes to thank Nikolaj Tatti for his heroic

programming efforts, Ville Helin for implementing the

first system, Heikki Vuolteenaho for Symbian pro-

gramming, Ilpo Ruotsalainen for network program-

ming and Mikko Rasa for initial simulator program-

ming. This work was supported in part by EU Interreg

IIIA, EU FP6 ICT, and City of Helsinki.

REFERENCES

[Air90] Airey, J. M. Increasing Update Rates in

the Building Walkthrough System with Automatic

Model-Space Subdivision and Potentially Visible

Set Calculations. PhD thesis, UNC Chapel Hill,

1990.

Journal of WSCG 119 ISSN 1213-6972



[And00] Andújar, C., Navazo, I., and Brunet, P. Inte-

grating occlusion culling and levels of detail through

hardly-visible sets. Computer Graphics Forum,

Vol. 19, No. 3, pp. 499–506, 2000.

[Ar00] Ar, S., Chazelle, B., and Tal, A. Self-

customized BSP trees for collision detection. Com-

putational Geometry, Vol. 15, No. 1-3, pp. 91–102,

2000.

[Bau01] Baus, J., Kray, C., and Kruger, A. Visualiza-

tion of route descriptions in a resource-adaptive nav-

igation aid. Cognitive Processing, Vol. 2, No. 2-3,

pp. 323–345, 2001.

[Bla92] Blau, B., Hughes, C. E., Moshell, M. J., and

Lisle, C. Networked virtual environments. In SI3D

’92 conf.proc., pp. 157–160, ACM Press, 1992.

[Bur05] Burigat, S., and Chittaro, L. Location-aware

visualization of VRML models in GPS-based mo-

bile guides. In Web3D ’05 conf.proc., pp. 57–64,

ACM Press, 2005.

[Cap97] Capps, M. V., and Teller, S. J. Communica-

tion Visibility in Shared Virtual Worlds. In WET-

ICE ’97 conf.proc., pp. 187–192, IEEE Computer

Society, 1997.

[Che00] Cheverst, K., Davies, N., Mitchell, K., Fri-

day, A., and Efstratiou, C. Developing a context-

aware electronic tourist guide: some issues and ex-

periences. In CHI ’00 conf.proc., pp. 17–24, ACM

Press, 2000.

[Chh05] Chhugani, J., Purnomo, B., Krishnan, S., Co-

hen, J., Venkatasubramanian, S., Johnson, D. S., and

Kumar, S. vLOD: High-Fidelity Walkthrough of

Large Virtual Environments. IEEE Trans.on VCG,

Vol. 11, No. 1, pp. 35–47, 2005.

[Chr92] Chrysanthou, Y., and Slater, M. Computing

Dynamic Changes to BSP Trees. Computer Graph-

ics Forum, Vol. 11, pp. 321–332, 1992.

[Coh03] Cohen-Or, D., Chrysanthou, Y. L., Silva,

C. T., and Durand, D. A Survey of Visibility for

Walkthrough Applications. IEEE Trans.on VCG,

Vol. 09, No. 3, pp. 412–431, 2003.

[Cuy03] Cuyi, Y., and Ge, S. S. Autonomous vehi-

cle positioning with GPS in urban canyon environ-

ments. IEEE Trans. on RA, Vol. 19, No. 1, pp. 15–

25, February 2003.

[Far04] Färber, J. Traffic Modelling for Fast Action

Network Games. Multimedia Tools Appl., Vol. 23,

No. 1, pp. 31–46, 2004.

[Fuc80] Fuchs, H., Kedem, Z., and Naylor, B. On vis-

ible surface generation by a priori tree structures. In

SIGGRAPH ’80 conf.proc., Vol. 14, No. 3, pp. 124–

133, 1980.

[Fuc83] Fuchs, H., Abram, G. D., and Grant, E. D.

Near real-time shaded display of rigid objects. In

SIGGRAPH ’83 conf.proc., pp. 65–72, ACM Press,

New York, NY, USA, 1983.

[Gre93] Greene, N., Kass, M., and Miller, G. Hi-

erarchical Z-buffer visibility. In SIGGRAPH ’93

conf.proc., pp. 231–238, ACM Press, New York,

NY, USA, 1993.

[Joh87] Johnston, R. The SIMNET visual system. In

ITEC’87 conf.proc., pp. 264–273, ITEC, 1987.

[Mar06] Marsh, J., Glencross, M., Pettifer, S., and

Hubbold, R. A Network Architecture Supporting

Consistent Rich Behavior in Collaborative Interac-

tive Applications. IEEE Trans. on VCG, Vol. 12,

No. 3, pp. 405–416, 2006.

[Nur06] Nurminen, A. m-LOMA - a mobile 3D city

map. In Web3D ’06 conf.proc., pp. 7–18, ACM

Press, 2006.

[Nur07] Nurminen, A. Mobile, hardware-accelerated

urban 3D maps in 3G networks. In Web3D ’07

conf.proc., pp. 7–16, ACM Press, 2007.

[Pos02] Pospichil, G., Umlauft, M., and Michlmayr,

E. Designing LoL@, a Mobile Tourist Guide

for UMTS. In Proceedings of Mobile HCI 2002,

pp. 140–154, Mobile HCI, Springer-Verlag, 2002.

[Prz05] Przybilski, M., Campadello, S., and Saridakis,

T. Mobile, on Demand Access of Service-Annotated

3D Maps. In IASTED SE’05 conf.proc., pp. 448–

452, IASTED, 2005.

[Rak01] Rakkolainen, I., Timmerheid, J., and Vainio,

T. A 3D City Info for mobile users. Computers and

Graphics, Vol. 25, No. 4, pp. 619–625, 2001.

[RMa95] R.Macedonia, M. A Network Software Ar-

chitecture for Large Scale Virtual Environments.

PhD thesis, Naval Postgraduate School, Monterey,

California, June 1995.

[Sud97] Sudarsky, O., and Gotsman, C. Output-

sensitive rendering and communication in dynamic

virtual environments. In VRST ’97 conf.proc.,

pp. 217–223, ACM Press, 1997.

[Tel92] Teller, S. J. Visibility Computations in Densely

Occluded Polyhedral Environments. PhD thesis,

Univ. of California at Berkeley, 1992.

[Tom06] TomTom. TomTom, MOBILE navigation.

http://www.tomtom.com, 2006.

[Whi07] Whiting, E., Battat, J., and Teller, S. Topol-

ogy of Urban Environments. In CAAD Futures’07

conf.proc., 2007.

[Zha98] Zhang, H. Effective occlusion culling for the

interactive display of arbitrary models. PhD thesis,

Univ. of North Carolina at Chapel Hill, Chapel Hill,

NC, USA, 1998.

Journal of WSCG 120 ISSN 1213-6972


	wscg2008_Journal_Numbered.pdf
	C31-full.pdf
	C31-full.pdf

	G23-full.pdf


