
Automatic Camera Pose Initialization,

using Scale, Rotation and Luminance Invariant

Natural Feature Tracking

Rafael Bastos
ADETTI/ISCTE

Av. Forças Armadas
Edifício ISCTE

 1500, Lisbon, Portugal

Rafael.Afonso.Bastos@gmail.com

Miguel Sales Dias
Microsoft/ISCTE

Av. Forças Armadas
Edifício ISCTE

 1500, Lisbon, Portugal

Miguel.Dias@microsoft.com

ABSTRACT

The solution to the camera registration and tracking problem serves Augmented Reality, in order to provide an

enhancement to the user’s cognitive perception of the real world and his/her situational awareness. By analyzing

the five most representative tracking and feature detection techniques, we have concluded that the Camera Pose

Initialization (CPI) problem, a relevant sub-problem in the overall camera tracking problem, is still far from be-

ing solved using straightforward and non-intrusive methods. The assessed techniques often use user inputs (i.e.

mouse clicking) or auxiliary artifacts (i.e. fiducial markers) to solve the CPI problem. This paper presents a novel

approach to real-time scale, rotation and luminance invariant natural feature tracking, in order to solve the CPI

problem using totally automatic procedures. The technique is applicable for the case of planar objects with arbi-

trary topologies and natural textures, and can be used in Augmented Reality. We also present a heuristic method

for feature clustering, which has revealed to be efficient and reliable. The presented work uses this novel feature

detection technique as a baseline for a real-time and robust planar texture tracking algorithm, which combines

optical flow, backprojection and template matching techniques. The paper presents also performance and preci-

sion results of the proposed technique.

Keywords

Camera Pose Initialization, Feature Detection and Tracking, Augmented Reality, Texture Tracking, scale invari-

ant, rotation invariant, luminance invariant.

1. INTRODUCTION
The Camera Pose Initialization (CPI) problem has

been a research topic of considerable interest and

constant growth in the areas of augmented reality and

automatic panoramic images generation. This issue

can also be defined as camera calibration problem,

where the goal is to compute the intrinsic and extrin-

sic parameters of the real camera, aiming object reg-

istration or user tracking applications. There are a

variety of different methods to accomplish this goal,

with the first ones being introduced in 1992 by

Caudel and Mitzell [Cau92]. We can find among

these tracking methods, techniques based on circular

or square fiducial markers [Art07], colored objects

segmentation [Dia04] [Din04] and natural feature

extraction [Kat03] [Yua06] [Che06].

Vision-based tracking systems have been using in-

formation related to the acquisition and identification

of simple geometric primitives in the scenes, such as

planes [Sim02] or even a combination of different

techniques [Mar02]. The proliferation of vision-based

tracking techniques is due to the fact that they work

well in real time and are not expensive, since there is

only one main cost involved: the processor’s cost.

We propose a novel and automatic approach to the

CPI problem, based on scale, rotation and luminance

invariant natural feature extraction and tracking. This

method operates without the need of any kind of extra

information, like fiducial markers [Art07] [Kat03], to

compute the CPI. The feature matching procedure has

been optimized using a heuristic clustering algorithm,

which has revealed to be efficient and reliable.

As a test case for evaluating our proposed feature

extracting and matching method, we have developed

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy oth-

erwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech

Republic.

Journal of WSCG 97 ISSN 1213-6972

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295548901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a texture tracking algorithm. Our texture tracking

algorithm combines known methods such as template

matching, homography computation, and texture re-

construction by back projection and optical flow

computation. The algorithm is completely automated

and produces real-time efficient tracking.

This paper is organized as follows. After the Intro-

duction of section 1, we present some related work

(section 2), followed by the presentation of our fea-

ture extraction technique (section 3). In section 4, we

detail our heuristic feature clustering algorithm and,

in Section 5, we describe our texture tracking algo-

rithm as a test case for our proposed feature extrac-

tion and matching method. Finally, in section 6, we

draw some conclusions and describe some future

work.

2. RELATED WORK
We have assessed five representative techniques from

the literature, which are based on feature tracking and

that use planar object topologies as in our texture

tracking test case: [Kat99], [Sim02], [Bue02],

[Mai02] and [Kat03]. From this assessment, we have

concluded that the majority of these systems include

an offline stage to spear processing resource for

online tracking. Another popular paradigm is the

need of user assistance to initialize or to preprocess

the tracking object. The assessed pose extraction

methods (DLT [Abd71] and POSIT [Dem91]) have

shown to be quite robust and efficient for real-time

Augmented Reality applications. In combination with

these methods, most of the presented systems apply

the RANSAC [Fis81] algorithm to identify outlier

features. One of the identified problems in these sys-

tems was the unsuitability of the tracking techniques

for real-time purposes, since only [Sim02] and

[Kat03] have proven to work in real-time (more than

25 fps). The lack of a robust and fast matching tech-

nique invariant to rotation and other affine transfor-

mations was another common identified problem. In

the presence of shadows, noise or fast rotation cam-

era/object movements the systems tend to fail track-

ing or to induce extreme jitter. Another common

problem found was the excessive use of binary fidu-

cial markers to accomplish calibration and tracking

routines, instead of using natural elements in the real-

scene or tracking object. We have concluded from

this assessment that the CPI problem is still far from

being solved, unless new real-time CPI methods are

developed. A solution for the real-time CPI problem

is the use of scale and rotation invariant features.

There are a variety of popular methods for scale and

rotation invariant feature extraction, namely SURF

[Bay06], SIFT [Low03], and an extension of the

later, PCA-SIFT [Ke04]. Although these methods

have proven to be robust and to yield good distinctive

power, the lack of suitability for a real-time applica-

tion is still an issue. For example, if we use an image

with a resolution of 800x640 pixels, the faster

method (SURF) takes 255 milliseconds to compute

and extract the image features. For a real-time appli-

cation, this computation time is very expensive, since

we would spend ¼ of a second only for feature ex-

traction, without taking into consideration feature

matching algorithms. In this work, the challenge was

to design and develop a robust scale, rotation and

luminance invariant method for real-time applica-

tions.

3. FEATURE EXTRACTION
In this section we will describe our feature extraction

and matching algorithm. Features are extracted using

minimum eigen values [Shi94], and are made scale,

rotation and brightness invariant using straightfor-

ward and real-time computer vision techniques. At

the end of each section, there will be a report about

performance results, using a PentiumIV 2.66GHz.

Minimum Eigen Values (MEV)
To evaluate the MEV of an image, we convert the

original image to grayscale, and a block of 3x3 pixels

is taken at every image position and first derivatives

are computed using Sobel Operators Ox and Oy for

convolution:

−

−

−

=

101

202

101

xO

−−−

=

121

000

121

yO
 (1)

The convolution will result in the first derivative in

direction of x (Dx) and the first derivative in direction

of y (Dy). We construct matrix C, where the sum is in

respect to all components of the 3x3 block:

=
2

2

yyx

yxx

DDD

DDD
C (2)

We can solve the Eigen Values for this matrix by

computing:

0)(det =− IC λ (3)

where I is the identity matrix and λ the column vector

of Eigen Values. The solutions may be written as:

2

422)()(
222

2
22

−−±+

=
+ DDDDDDDD yxyx yxyx

λ

 (4)

This equation will result in two solutions: λ1 and λ2.

The minimum λ is called the Minimum Eigen Value

and must be the one to be taken in consideration ac-

cording to Shi [Shi94]. For numerical stability rea-

sons, we use Singular Value Decomposition (SVD)

Journal of WSCG 98 ISSN 1213-6972

[Gol93] to solve the equation. We perform feature

selection by applying a threshold to the resulting

MEV. For that, we have selected a threshold t value

of 1% of the global maximum in the current minimum

eigen values spectrum, and only features that satisfy

this condition are selected. We can see an example of

this technique depicted in Figure 1, and a perform-

ance summary in Table 1.

Figure 1. Prague Castle Scene

(800x600, t=1%, 1243 features).

800x600 640x480 480x360 320x240

8.506 ms 5.450 ms 2.970 ms 1.469 ms

Table 1. MEV Computation time varying the in-

put image resolution.

Scale Invariance
To make features scale invariant, we rely on a basic

assumption, that is: every feature has its own intrinsic

scale factor. Our challenge was to find a mechanism

that could determine the intrinsic scale factor of a

feature, based on simple computer vision operations,

retaining the real-time requirements. If we look at an

image after applying a Sobel filter (Equation 1), we

can see that the edge length of the resulting deriva-

tives is directly correlated with the zooming distance

(see Figure 2).

Figure 2. Edge length of vertical and horizontal

derivatives, varying zoom distance.

As the zooming distance gets larger, the thinner the

derivatives will get and vice-versa. Our goal is to find

the main edge length of the derivatives to compute an

intrinsic scale factor. This scale factor will be used to

determine the intrinsic feature patch dimension. The

intrinsic feature patch will then be rescaled, in order

to normalize it and make it scale invariant.

We start by normalizing the results (giving Nx and Ny)

of the Sobel operators Ox and Oy (Equation 1) convo-

lution:

)min()max(

)min(),(
),(

)min()max(

)min(),(
),(

DD

DyxD
yxN

DD

DyxD
yxN

y

y

x

x

−

−
=

−

−
=

 (5)

Where, the min function determines the minimum

value for the specified patch. These normalized re-

sults (Nx and Ny) are threshold using a value of 0.5,

resulting in 2 binary images (Bx and By). For each

row (in the case of By) and for each column (Bx), we

find the number of consecutive connected compo-

nents by accumulating the number of occurrences of a

determined connection value on a 1D edge length

histogram vector T(B). For Bx we will accumulate

column connection values in T(B), and for By we will

accumulate row connection values. The value max(T),

at vector position v will be the global edge length

maximum. Instead of using T[v] directly as the intrin-

sic scale factor s, we can smooth the result by apply-

ing a parabolic interpolation, since s will be the local

maximum:

[] [] []

[] []

[]
bcs

abvTc

avTvT
b

vTvTvT
a

+=

×−=

−−−
=

−++−
=

2

2

1/)1(

2

211

 (6)

Since other derivatives may appear inside when

zooming in or zooming out, we only apply this pro-

cedure to a surrounding area of 7x7 pixels of the fea-

ture center.

Figure 3. Scale invariant algorithm. Green dashes

square: expanded area by s=2.2 (55x55). Pink

crosses square: original feature patch (n=25,

25x25). White square (center): processed area

(7x7). The right image represents the rescaled fi-

nal patch.

Finally, assuming these computations are applied to a

feature F, centered at (xc, yc), with a square size of

nxn, where n is the starting feature size; instead of

using this feature area, we will expand it to (n.s)x(n.s)

around (xc, yc), and rescale it again to nxn. We exem-

plify this procedure in Figure 3. Performance tests

show that this operation (scale factor computation

Journal of WSCG 99 ISSN 1213-6972

and rescaling), takes about 0.012 milliseconds per

feature, since derivatives were already pre-computed

in the previous step.

Rotation Invariance
Assuming the feature’s data is the nxn grayscale im-

age patch (gi) centered at (cx, cy), which is already

scale invariant, the feature’s information is extracted

in a rotation invariant manner. For this purpose we

have designed a function θ(gi) which finds the main

orientation angle of the feature gi, in the form:

())H(max)(ii gbg =θ (7)

In this equation, max corresponds to the function

which determines the vector index of H(gi) which

contains the highest value of the orientation of gi, that

is, the main orientation of feature gi. The H(gi) func-

tion computes the orientation histogram (a vector) of

a given grayscale feature gi. This histogram vector is

composed by b elements (b is the total number of

histogram bins), where each element corresponds to a

360º/b degrees interval. We can define an indexing

function κ(gi, x, y) for the histogram vector H(gi) as:

()
() º360/),(

/),(
arctan),,(

b

xyxg

yyxg
yxg

i

i

i ⋅
∂∂

∂∂
=κ (8)

The H(gi) histogram vector at index κ(gi , x, y) accu-

mulates in the following manner:

[] () ()
22

),(),(
),,()H(

∂

∂
+

∂

∂
=+

y

yxg

x

yxg
yxgg ii

ii κ
 (9)

After finding θ(gi) – the grayscale patch main orienta-

tion – we create the final rotation invariant feature

(gr), which can be found by performing a simple off-

centered (cx, cy) 2D rotation of θ (gi) degrees to the gi

grayscale patch.

Figure 4. Rotation invariant algorithm (Left: gi

patch (n=25, θθθθ(gi)=288º); Right: gr patch)

Irrespective to the orientation of feature gi, the feature

gr, is the version of the original always oriented to-

wards the patch main direction (see Figure 4). Per-

formance tests show that this computation (patch ro-

tation), takes about 0.019 milliseconds per feature,

with n = 15 (see Table 2).

n=15 n=25 n=35 n=45

0.019 ms 0.034 ms 0.061 ms 0.094 ms

Table 2. Rotated patch computation time, varying

the patch size.

Luminance Invariance
Given two scale and rotation invariant features, fea-

ture matching is accomplished using a template

matching technique which is luminance invariant

[Bas05] and uses the invariant image grayscale tem-

plates. This technique uses the image average and

standard deviation to obtain a normalized cross corre-

lation (NCC) value between features. For two feature

patches (I and P), we compute their mean value (µI

and µ P) and their standard deviation (σI and σP), al-

lowing us to find the correlation factor ρ using the

following equations:

()

()
2

1

2

2

1

2

),(

),(

),(
1

),(
1

−=

−=

=

=

x y

PP

x y

II

x y

P

x y

I

yxP

yxI

yxP
xy

yxI
xy

µσ

µσ

µ

µ (10)

()()

PI

x y

PI yxPyxI

σσ

µµ

ρ

−−

=

),(),(
 (11)

A value above 0.7 (70%) is a satisfying correlation

factor. We use a circular feature mask to improve

feature correlation matching, since pixels near to the

centre tend to be more similar than the farther ones.

This template matching procedure is less sensitive to

small variations of scaling and rotation. Performance

tests have show that each template match operation

time, varying the patch size (n), consumes the follow-

ing processor times: 0.002 ms (n=15), 0.003 ms

(n=25), 0.005 ms (n=35) and 0.008 ms (n=45).

4. FEATURE CLUSTERING
To enable efficient feature matching, the features

database is organized in clusters, each one aggregat-

ing the corresponding possible features. Our heuristic

method states that these clusters have a binary identi-

fication value (a kind of simple and efficient feature

signature), that is obtained by evaluating certain re-

gions of the feature patch in relation to its average.

By dividing the feature patch into 8 different regions

(left, right, top, bottom, top-right diagonal, down-left

diagonal, top-left diagonal and bottom-right diago-

nal), and by comparing these areas’ average pixel

value with the feature patch global average value, we

obtain an 8 digit binary result. For each one of these

areas we obtain a 0 value if the region average is

smaller than the global average, otherwise we obtain

a value of 1. For the sake of clarity, we exemplify this

procedure in Figure 5.

Journal of WSCG 100 ISSN 1213-6972

Figure 5. Binary identifier creation example.

(At the top we have the patch that is being clus-

tered; at the bottom we have all 8 regions that

form the binary identifier)

When a feature patch is processed and created, this

evaluation is performed, and this feature is inserted in

the corresponding cluster using the obtained binary

identification. When matching a feature, we also

compute the binary identification of the candidate

feature, which allow us to only match with potential

candidates instead of matching with all features in the

database. Performance tests have shown that this al-

gorithm can reduce to ~10% the number of possible

matching operations. In the Prague Castle Scene

(Figure 1), in some clusters, the number of matches

per feature is reduced from 1243 to 73. The average

consumed time per match was also reduced to 12.8%.

Accuracy Results
In this section we present some accuracy results in

what concerns the variation of luminance, scaling and

rotation. For these testes we have used a determined

image as a basis for (see Figure 6). The luminance

test consists in changing the global image luminance

by a determined percentage value (see Chart 1). The

scaling test relies on an isotropic rescaling of the

original image, also by a percentage value (see Chart

2). Finally, the rotation test consists on applying a

rotation transformation to the original image, using

steps of 30º (see Chart 3). In each test, the “full

matches” group indicates the percentage of success-

fully matched features at a given instance. The “out-

liers” group indicates the percentage of false matches

in the given “full matches” group. We can see an ex-

ample depicted in Figure 6.

-20,00%

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

50% 40% 30% 20% 10% 0% -10% -20% -30% -40% -50%

Luminance Variation

Full Matched

Outliers

Chart 1. Luminance Test.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

150% 140% 130% 120% 110% 100% 90% 80% 70% 60% 50%

Scale Variation

Full Matched

Outliers

Chart 2. Scaling Test.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0º 30º 60º 90º 120º 150º 180º 210º 240º 270º 300º 330º 360º

Rotation Variation

Full Matched

Outliers

Chart 3. Rotation Test.

Figure 6. Accuracy test scenario

= 10011100

Top (1) Bottom (0) Left(0) Right(1)

TL Diag (1) TR Diag (1) BL Diag (0) BR Diag (0)

PAvg=161 PAvg=96

PAvg=121 PAvg=135

PAvg=144 PAvg=164 PAvg=96 PAvg=112

Patch (gr)

GAvg=128

Journal of WSCG 101 ISSN 1213-6972

In Figure 6 the top image is the Prague Castle Scene

(800x600, n=15, t=1%, 1243 features), and the bot-

tom image is a version of the first (scale=25%, lumi-

nance=-30%, rotation = 240º, 740 features). The re-

sults for this test were: 25.33% of full matches (187

features) and 7.72% of outliers (14 features).

Performance Results
Some performance tests were made using the Prague

Castle Scene, varying the resolution size. These tests

consist in extracting features and matching them

against each other, using n=15, t=1% and assuming a

clustering matching reduction of ~10% (see Table 3).

Resolution Features
Extraction

(ms)

Matching

(ms)

Total

320x240 285 10.30 16.25 26.55
(38 fps)

480x360 523 19.18 54.71 73.89
(14 fps)

640x480 818 30.81 133.82 164.63
(6 fps)

800x600 1243 47.04 309.01 356.05
(3 fps)

Table 3. Performance Test Results (t=1%, n=15,

clustering matching reduction of ~10%).

In order to maintain real-time performance (25 fps)

for all the presented resolutions, one must adapt the

threshold extraction factor t, reducing the number of

features (see Chart 4).

25%

15%

6%

0,05%0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

320x240 480x360 640x480 800x600

Resolution

Minimum Threshold

Chart 4. Minimum Threshold (t) required for

each resolution to work in real-time (25 fps).

5. TEST CASE - TEXTURE TRACK-

ING
As a test case for our novel natural feature detection

technique, we have chosen the texture tracking para-

digm, integrated in a real-time augmented reality

(AR) application. We’ve chosen this test case since

we have been developing new AR tracking methods

since 2003, and already have a stable AR texture

tracking system [Bas05]. The only constraint in the

previous system was the need of black contours sur-

rounding the texture to track, in order to compute the

CPI. This test case is an advance of our previous

work, since with this novel technique there is no need

for the use of black contours. Our hardware setup is

straightforward: a Webcam (320x240) connected to a

PentiumIV (2.66GHz). We have knowledge about the

camera intrinsic parameters, since it was previously

calibrated using popular methods [Zha99]. The sys-

tem process flow starts at an offline stage, where the

planar texture image is preprocessed so that all natu-

ral features can be extracted using our proposed

method. The algorithmic process is divided in two

stages: Camera Pose Initialization and Feature Track-

ing. In the second stage, to increase performance, we

use the previous texture pose to derive the current

pose, based on optical flow and back projection tech-

niques.

Stage 1 - Camera Pose Initialization
The CPI main goal is to find the first texture’s pose,

so that subsequent poses can be derived using the

method proposed on the next stage. We apply our

feature extraction and matching techniques at each

camera frame, using the preprocessed texture image

as baseline for comparison (Figure 8 – Left). We

have chosen the RANSAC [Fis81] algorithm to iden-

tify outliers and the Direct Linear Transform (DLT)

[Abd71] method to compute the planar object pose

(6DOF – rotation & translation). Subsequently, we

minimize the reprojection error, to refine the resulting

pose, using a Gradient Descent (GD) technique

[Brak04]. It is assumed that at the end of this stage,

we have a camera pose.

Stage 2 - Feature Tracking
The feature tracking stage’s main goal is to derive the

current texture pose, using previous information,

namely the number of previous features detected and

tracked, and the previous texture pose. This stage

relies on the assumption that the previous pose is a

“good pose”, and that we can back project the texture

so that more features can be found and matched. The

main problem of this assumption is that when large

camera displacements are performed, the previous

pose is not a “good pose” for applying the back pro-

jection technique, since the resulting image will be

completely displaced.

Optical Flow
To overcome the displacement problem, we use an

optical flow technique [Bou99], and apply it to the

previous tracked features. The optical flow computes

the current feature position based on the previous

one, using the current and previous tracking images

(see Figure 7). The feature matches must be refined

to discard outliers. We use the RANSAC algorithm to

identify these false matches, and compute the correct

pose for the current image (DLT/GD). With the use

Journal of WSCG 102 ISSN 1213-6972

of the RANSAC algorithm a new problem arises: we

run out of features. We must collect new features for

the next pose computation – feature tracking stage.

Figure 7. Virtual object registration with optical

flow overlay. The bottom right image corresponds

to the current back projected image.

Texture Backprojection
The texture backprojection [Bas05] consists in un-

rolling the texture’s perspective distortion at a given

frame, resulting in an untransformed and similar im-

age to the one that was preprocessed in the offline

stage. For that we use the correct pose information

for the current image, apply the inverse transforma-

tion of common projective geometry concepts (see

Figure 8). Since the back projected image is placed in

a similar form as the base texture image, we can tem-

plate match all the remaining valid features in a 2D

untransformed space. By projecting the found feature

positions using the correct pose information and the

intrinsic camera parameters, we will obtain the 2D

position for each feature match in the camera image

subspace. The positive matches will be refined again

(RANSAC) and a new refined pose will be computed

(DLT/GD). More information can be found at

[Bas05].

Figure 8. Left: base texture image (Copyright So-

lutions by Heart); Right: back projected image.

Feature Matching
Here we introduce a novel concept for feature match-

ing, assuming we have two similar images that may

differ in small pixel displacements (base texture im-

age and back projected image), and using our previ-

ous proposed template matching metric. Our pro-

posed method consists in finding a local maximum, in

a determined sub-region. Having a key template Tk

centred at (xk, yk) covering a 15x15 area of the origi-

nal template image, and a search region also centred

at (xk, yk) covering a 25x25 area of the back projected

image, we can define the search algorithm for each

feature in the following steps:

1. Define (xs, ys) as the centre position of the search

template Ts extracted from the backprojected image,

starting with the values of (xk,yk).

2. Define θx and θy as offsets of the current search

template centre, starting each one with a 0 value.

3. Template match Tk (xk, yk) with Ts (xs+θx, y+θy),

varying θx and θy from -1 to 1, giving 9 possible cen-

tre positions (e.g. (xs-1, ys-1), (xs, ys-1), (xs+1, ys-1) …

(xs+1, ys+1)).

4. Find the θx and θy that maximizes the matching

function for the 9 possible centre positions.

5. If the found θx and θy are both different from 0,

then we update the current (xs, ys) with the θx and θy

which maximize the matching function. We now have

xs=xs+θx and ys=ys+θy. The algorithm starts back

from point 3, using the correct updated values, unless

xs or ys have invalid values, since they are restricted

to the limits constrained by the search region. In the

latter case, the result will be the current xs and ys be-

fore the update process.

6. If the found xs and ys are both equal to 0, then the

Ts which maximizes the matching function is centred

at the current (xs, ys). We have found the possible 2D

corresponding position of (xk, yk) in the backprojected

image. We illustrate this procedure in Figure 7.

Figure 9. Various steps of the search algorithm

and the final result (pink/brighter square).

Accuracy and Performance Results
We have developed an original technique to generate

synthetic video evaluation sets. In the general case,

these evaluation test sets were based on the textured

3D planar object pose simulation, subject to transla-

tion and rotation DOF, much like the ones that occur

when using the system with a HMD. This stream is

then used to feed our texture tracking system, so that

the obtained camera poses can be mathematically

compared with the known simulated poses of the tex-

ture plane. The accuracy tests have shown that our

algorithm has an average error of: 1.45 mm for trans-

lation, 0.76 degrees for rotation and 2.64 pixels for

reprojection. In what concerns performance, the sys-

tem operates at ~35 fps at the CPI stage and at ~60

fps at the feature tracking stage.

Journal of WSCG 103 ISSN 1213-6972

6. CONCLUSION AND FUTURE

WORK
We have proposed a novel approach to real-time

scale, rotation and luminance invariant natural feature

tracking, in order to solve the CPI problem using

totally automatic and real-time procedures. We have

also proposed a heuristic method for feature cluster-

ing, which can reduce the number of feature matching

operation to ~10%. We presented a real-time aug-

mented reality texture tracking algorithm which uses

this novel feature detection technique as a baseline

and a new approach to feature matching by local

maximum. This algorithm has millimetric and sub-

degree precision, as has been stated by our accuracy

tests. However, our tests have shown that our tech-

nique is still very sensitive to features at different

scales and some degrees of rotation. We don’t find

this fact preoccupying since we are aware that most

of the error has its origin on the bilinear interpolation

filter we’ve used when creating the tests images,

which have altered the strength of the image’s deriva-

tives. As future work we intend to compare our tech-

nique with other “de facto” algorithms (SIFT, SURF,

PCA-SIFT) and to enable general 3D object tracking

using 3D reconstruction and model based tracking

techniques, using our technique as the main core.

7. REFERENCES
[Abd71] Abdel-Aziz, Y.I. and Karara, H.M., “Direct

Linear Transformation into Object Space Coordi-

nates in Close-Range Photogrammetry”, in Proce-

dures of Symposium of Close-Range Photogram-

metry, 1971.

[Art07] http://www.hitl.washington.edu/artoolkit/

[Bas05] Bastos, R., Dias, J.M.S., “Fully Automated

Texture Tracking Based on Natural Features Ex-

traction and Template Matching”, in ACE Tech-

nology, 2005.

[Bay06] Bay, H., Tuytelaars, T., Gool, L.V., "SURF:

Speeded Up Robust Features", Proceedings of the

ninth ECCV, 2006.

[Bou99] Bouguet, J.-Y., “Pyramidal Implementation

of the Lucas Kanade Feature Tracker Description

of the Algorithm”, Intel Corporation, Microproc-

essor Research Labs., 1999.

[Brak04] Brakke, K. A., ”Surface Evolver Manual”,

in Mathematics Department, Susquehanna Uni-

versity, Selinsgrove, 2004.

[Bue02] Buenaposada, J. M., Baumela, L., Real-

Time Tracking and Estimation of Plane Pose", in

ICPR 02, 2002.

[Cau92] Caudell, T.P. and Mizell, D.W., “Aug-

mented Reality: An Application of Head-Up Dis-

play Technology to Manual Manufac-turing Proc-

esses,” in Proceedings IEEE Hawaii International

Conference on Systems Sciences, 1992.

[Che06] Chen, J. et al., "An Improved Real-Time

Natural Feature Tracking Algorithm for AR Ap-

plication”, pp. 119-124, ICAT'06, 2006.

[Dem91] DeMenthon, D., Davis, L. S., “Model-based

object pose in 25 lines of code”, in European

Conference on Computer Vision, 1991.

[Dia04] Dias, J.M.S., Silva, P., Nádia, J., Bastos, R.,

“ARTIC: Augmented Reality Tangible Interface

by Color Evaluation”, in Interacção, Lisbon,

2004,.

[Din04] Diniz, N., “AN APPROACH TO 3D DIGI-

TAL DESIGN Free Hand Form Generation“, in

DCC´04 MIT 19-21 2004.

[Fis81] Fischler, M. A., Bolles, R. C., “Random

Sample Consensus: A paradigm for model fitting

with applications to image analysis and automated

cartography”, IN Communications of the Assoc.

Comp. Mach., 1981.

[Gol93] Golub, G. H., and Van Loan, C. F., “Matrix

Computations”, in 2nd ed. Johns Hopkins Univer-

sity Press, 1993.

[Kat03] Kato, Hirokazu , Tachibana, K., Billinghurst,

M., Grafe, M., “A Registration Method based on

Texture Tracking using AR-ToolKit”, in The

Second IEEE International ART Workshop, To-

kyo, Japan, 2003.

[Kat99] Kato, H., Billinghurst, M., “Maker Tracking

and HDM calibration for a video-based aug-

mented reality conferencing system”, in Interna-

tional Workshop on Augmented Reality (IWAR),

USA, 1999.

[Ke04] Ke Y., Sukthankar R., “PCA-SIFT: A More

Distinctive Representation for Local Image De-

scriptors”, CVPR, 2004.

[Low03]Lowe, D. G. “Distinctive Image Features

from Scale-Invariant Keypoints”, in IJCV, 60, 2,

pp 91-110, 2003.

[Mai02] Malik, S., Roth, G., McDonald, C., "Robust

2D Tracking for Real-time Augmented Reality",

in Proceedings of Vision Interface (VI), pp 399-

406, Calgary, Alberta, Canada, 2002.

[Mar02] E. Marchand and F. Chaumette. Virtual vis-

ual servoing: a framework for real-time aug-

mented reality. In EUROGRAPHICS’ 02 Confer-

ence Proceeding, 2002.

[Shi94] Shi, J., Tomasi, C., “Good Features to

Track”, in IEEE Conference on CVPR, 1994.

[Sim02] Simon, G., Berger, M-O., “Reconstructing

while registering: a novel approach for markerless

augmented reality”, in ISMAR’ 02 Conference

Proceeding, 2002.

[Yua06] Yuan, C. "Markerless Pose Tracking for

Augmented Reality”, in ISVC 2006.

[Zha99] Zhang, Z., "Flexible Camera Calibration By

Viewing a Plane From Unknown orientations”,

ICCV'99, Greece, 1999.

Journal of WSCG 104 ISSN 1213-6972

	wscg2008_Journal_Numbered.pdf
	C31-full.pdf
	C31-full.pdf

	G23-full.pdf

