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ABSTRACT 

The solution to the camera registration and tracking problem serves Augmented Reality, in order to provide an 

enhancement to the user’s cognitive perception of the real world and his/her situational awareness. By analyzing 

the five most representative tracking and feature detection techniques, we have concluded that the Camera Pose 

Initialization (CPI) problem, a relevant sub-problem in the overall camera tracking problem, is still far from be-

ing solved using straightforward and non-intrusive methods. The assessed techniques often use user inputs (i.e. 

mouse clicking) or auxiliary artifacts (i.e. fiducial markers) to solve the CPI problem. This paper presents a novel 

approach to real-time scale, rotation and luminance invariant natural feature tracking, in order to solve the CPI 

problem using totally automatic procedures. The technique is applicable for the case of planar objects with arbi-

trary topologies and natural textures, and can be used in Augmented Reality. We also present a heuristic method 

for feature clustering, which has revealed to be efficient and reliable. The presented work uses this novel feature 

detection technique as a baseline for a real-time and robust planar texture tracking algorithm, which combines 

optical flow, backprojection and template matching techniques. The paper presents also performance and preci-

sion results of the proposed technique. 

Keywords 

Camera Pose Initialization, Feature Detection and Tracking, Augmented Reality, Texture Tracking, scale invari-

ant, rotation invariant, luminance invariant. 

1. INTRODUCTION 
The Camera Pose Initialization (CPI) problem has 

been a research topic of considerable interest and 

constant growth in the areas of augmented reality and 

automatic panoramic images generation. This issue 

can also be defined as camera calibration problem, 

where the goal is to compute the intrinsic and extrin-

sic parameters of the real camera, aiming object reg-

istration or user tracking applications. There are a 

variety of different methods to accomplish this goal, 

with the first ones being introduced in 1992 by 

Caudel and Mitzell [Cau92]. We can find among 

these tracking methods, techniques based on circular 

or square fiducial markers [Art07], colored objects 

segmentation [Dia04] [Din04] and natural feature 

extraction [Kat03] [Yua06] [Che06]. 

Vision-based tracking systems have been using in-

formation related to the acquisition and identification 

of simple geometric primitives in the scenes, such as 

planes [Sim02] or even a combination of different 

techniques [Mar02]. The proliferation of vision-based 

tracking techniques is due to the fact that they work 

well in real time and are not expensive, since there is 

only one main cost involved: the processor’s cost.  

We propose a novel and automatic approach to the 

CPI problem, based on scale, rotation and luminance 

invariant natural feature extraction and tracking. This 

method operates without the need of any kind of extra 

information, like fiducial markers [Art07] [Kat03], to 

compute the CPI. The feature matching procedure has 

been optimized using a heuristic clustering algorithm, 

which has revealed to be efficient and reliable. 

As a test case for evaluating our proposed feature 

extracting and matching method, we have developed 
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a texture tracking algorithm. Our texture tracking 

algorithm combines known methods such as template 

matching, homography computation, and texture re-

construction by back projection and optical flow 

computation. The algorithm is completely automated 

and produces real-time efficient tracking. 

This paper is organized as follows. After the Intro-

duction of section 1, we present some related work 

(section 2), followed by the presentation of our fea-

ture extraction technique (section 3). In section 4, we 

detail our heuristic feature clustering algorithm and, 

in Section 5, we describe our texture tracking algo-

rithm as a test case for our proposed feature extrac-

tion and matching method. Finally, in section 6, we 

draw some conclusions and describe some future 

work. 

2. RELATED WORK 
We have assessed five representative techniques from 

the literature, which are based on feature tracking and 

that use planar object topologies as in our texture 

tracking test case: [Kat99], [Sim02], [Bue02], 

[Mai02] and [Kat03]. From this assessment, we have 

concluded that the majority of these systems include 

an offline stage to spear processing resource for 

online tracking. Another popular paradigm is the 

need of user assistance to initialize or to preprocess 

the tracking object. The assessed pose extraction 

methods (DLT [Abd71] and POSIT [Dem91]) have 

shown to be quite robust and efficient for real-time 

Augmented Reality applications. In combination with 

these methods, most of the presented systems apply 

the RANSAC [Fis81] algorithm to identify outlier 

features. One of the identified problems in these sys-

tems was the unsuitability of the tracking techniques 

for real-time purposes, since only [Sim02] and 

[Kat03] have proven to work in real-time (more than 

25 fps). The lack of a robust and fast matching tech-

nique invariant to rotation and other affine transfor-

mations was another common identified problem. In 

the presence of shadows, noise or fast rotation cam-

era/object movements the systems tend to fail track-

ing or to induce extreme jitter. Another common 

problem found was the excessive use of binary fidu-

cial markers to accomplish calibration and tracking 

routines, instead of using natural elements in the real-

scene or tracking object. We have concluded from 

this assessment that the CPI problem is still far from 

being solved, unless new real-time CPI methods are 

developed. A solution for the real-time CPI problem 

is the use of scale and rotation invariant features. 

There are a variety of popular methods for scale and 

rotation invariant feature extraction, namely SURF 

[Bay06], SIFT [Low03], and an extension of the 

later, PCA-SIFT [Ke04]. Although these methods 

have proven to be robust and to yield good distinctive 

power, the lack of suitability for a real-time applica-

tion is still an issue. For example, if we use an image 

with a resolution of 800x640 pixels, the faster 

method (SURF) takes 255 milliseconds to compute 

and extract the image features. For a real-time appli-

cation, this computation time is very expensive, since 

we would spend ¼ of a second only for feature ex-

traction, without taking into consideration feature 

matching algorithms. In this work, the challenge was 

to design and develop a robust scale, rotation and 

luminance invariant method for real-time applica-

tions. 

3. FEATURE EXTRACTION 
In this section we will describe our feature extraction 

and matching algorithm. Features are extracted using 

minimum eigen values [Shi94], and are made scale, 

rotation and brightness invariant using straightfor-

ward and real-time computer vision techniques. At 

the end of each section, there will be a report about 

performance results, using a PentiumIV 2.66GHz. 

Minimum Eigen Values (MEV) 
To evaluate the MEV of an image, we convert the 

original image to grayscale, and a block of 3x3 pixels 

is taken at every image position and first derivatives 

are computed using Sobel Operators Ox and Oy for 

convolution: 
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The convolution will result in the first derivative in 

direction of x (Dx) and the first derivative in direction 

of y (Dy). We construct matrix C, where the sum is in 

respect to all components of the 3x3 block: 
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We can solve the Eigen Values for this matrix by 

computing: 

0)(det =− IC λ   (3) 

where I is the identity matrix and λ the column vector 

of Eigen Values. The solutions may be written as: 
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This equation will result in two solutions: λ1 and λ2. 

The minimum λ is called the Minimum Eigen Value 

and must be the one to be taken in consideration ac-

cording to Shi [Shi94]. For numerical stability rea-

sons, we use Singular Value Decomposition (SVD) 
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[Gol93] to solve the equation. We perform feature 

selection by applying a threshold to the resulting 

MEV. For that, we have selected a threshold t value 

of 1% of the global maximum in the current minimum 

eigen values spectrum, and only features that satisfy 

this condition are selected. We can see an example of 

this technique depicted in Figure 1, and a perform-

ance summary in Table 1. 

 
Figure 1. Prague Castle Scene  

(800x600, t=1%, 1243 features). 

 

800x600 640x480 480x360 320x240 

8.506 ms 5.450 ms 2.970 ms 1.469 ms 

Table 1. MEV Computation time varying the in-

put image resolution. 

Scale Invariance 
To make features scale invariant, we rely on a basic 

assumption, that is: every feature has its own intrinsic 

scale factor. Our challenge was to find a mechanism 

that could determine the intrinsic scale factor of a 

feature, based on simple computer vision operations, 

retaining the real-time requirements. If we look at an 

image after applying a Sobel filter (Equation 1), we 

can see that the edge length of the resulting deriva-

tives is directly correlated with the zooming distance 

(see Figure 2).  

 

Figure 2. Edge length of vertical and horizontal 

derivatives, varying zoom distance.  

As the zooming distance gets larger, the thinner the 

derivatives will get and vice-versa. Our goal is to find 

the main edge length of the derivatives to compute an 

intrinsic scale factor. This scale factor will be used to 

determine the intrinsic feature patch dimension. The 

intrinsic feature patch will then be rescaled, in order 

to normalize it and make it scale invariant. 

We start by normalizing the results (giving Nx and Ny) 

of the Sobel operators Ox and Oy (Equation 1) convo-

lution: 
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Where, the min function determines the minimum 

value for the specified patch. These normalized re-

sults (Nx and Ny) are threshold using a value of 0.5, 

resulting in 2 binary images (Bx and By).  For each 

row (in the case of By) and for each column (Bx), we 

find the number of consecutive connected compo-

nents by accumulating the number of occurrences of a 

determined connection value on a 1D edge length 

histogram vector T(B). For Bx we will accumulate 

column connection values in T(B), and for By we will 

accumulate row connection values. The value max(T), 

at vector position v will be the global edge length 

maximum. Instead of using T[v] directly as the intrin-

sic scale factor s, we can smooth the result by apply-

ing a parabolic interpolation, since s will be the local 

maximum: 

[ ] [ ] [ ]

[ ] [ ]

[ ]
bcs

abvTc

avTvT
b

vTvTvT
a

+=

×−=

−−−
=

−++−
=

2

2

1/)1(

2

211

  (6) 

Since other derivatives may appear inside when 

zooming in or zooming out, we only apply this pro-

cedure to a surrounding area of 7x7 pixels of the fea-

ture center.  

 
Figure 3. Scale invariant algorithm. Green dashes 

square: expanded area by s=2.2 (55x55).  Pink 

crosses square: original feature patch (n=25, 

25x25). White square (center): processed area 

(7x7). The right image represents the rescaled fi-

nal patch. 

Finally, assuming these computations are applied to a 

feature F, centered at (xc, yc), with a square size of 

nxn, where n is the starting feature size; instead of 

using this feature area, we will expand it to (n.s)x(n.s) 

around (xc, yc), and rescale it again to nxn. We exem-

plify this procedure in Figure 3. Performance tests 

show that this operation (scale factor computation 
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and rescaling), takes about 0.012 milliseconds per 

feature, since derivatives were already pre-computed 

in the previous step.  

Rotation Invariance 
Assuming the feature’s data is the nxn grayscale im-

age patch (gi) centered at (cx, cy), which is already 

scale invariant, the feature’s information is extracted 

in a rotation invariant manner. For this purpose we 

have designed a function θ(gi) which finds the main 

orientation angle of the feature gi, in the form: 

( ))H(max)( ii gbg =θ   (7) 

In this equation, max corresponds to the function 

which determines the vector index of H(gi) which 

contains the highest value of the orientation of gi, that 

is, the main orientation of feature gi. The H(gi) func-

tion computes the orientation histogram (a vector) of 

a given grayscale feature gi. This histogram vector is 

composed by b elements (b is the total number of 

histogram bins), where each element corresponds to a 

360º/b degrees interval. We can define an indexing 

function κ(gi, x, y) for the histogram vector H(gi) as: 
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The H(gi) histogram vector at index κ(gi , x, y) accu-

mulates in the following manner:  

[ ] ( ) ( )
22

),(),(
),,()H(

∂

∂
+

∂

∂
=+

y

yxg

x

yxg
yxgg ii

ii κ
 (9) 

After finding θ(gi) – the grayscale patch main orienta-

tion – we create the final rotation invariant feature 

(gr), which can be found by performing a simple off-

centered (cx, cy) 2D rotation of θ (gi) degrees to the gi 

grayscale patch.  

 

Figure 4. Rotation invariant algorithm (Left: gi 

patch (n=25, θθθθ(gi)=288º); Right: gr patch)  

Irrespective to the orientation of feature gi, the feature 

gr, is the version of the original always oriented to-

wards the patch main direction (see Figure 4). Per-

formance tests show that this computation (patch ro-

tation), takes about 0.019 milliseconds per feature, 

with n = 15 (see Table 2). 

n=15 n=25 n=35 n=45 

0.019 ms 0.034 ms 0.061 ms 0.094 ms 

Table 2. Rotated patch computation time, varying 

the patch size. 

Luminance Invariance 
Given two scale and rotation invariant features, fea-

ture matching is accomplished using a template 

matching technique which is luminance invariant 

[Bas05] and uses the invariant image grayscale tem-

plates. This technique uses the image average and 

standard deviation to obtain a normalized cross corre-

lation (NCC) value between features. For two feature 

patches (I and P), we compute their mean value (µI 

and µ P) and their standard deviation (σI and σP), al-

lowing us to find the correlation factor ρ using the 

following equations: 
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A value above 0.7 (70%) is a satisfying correlation 

factor. We use a circular feature mask to improve 

feature correlation matching, since pixels near to the 

centre tend to be more similar than the farther ones. 

This template matching procedure is less sensitive to 

small variations of scaling and rotation. Performance 

tests have show that each template match operation 

time, varying the patch size (n), consumes the follow-

ing processor times: 0.002 ms (n=15), 0.003 ms 

(n=25), 0.005 ms (n=35) and 0.008 ms (n=45). 

4. FEATURE CLUSTERING 
To enable efficient feature matching, the features 

database is organized in clusters, each one aggregat-

ing the corresponding possible features. Our heuristic 

method states that these clusters have a binary identi-

fication value (a kind of simple and efficient feature 

signature), that is obtained by evaluating certain re-

gions of the feature patch in relation to its average. 

By dividing the feature patch into 8 different regions 

(left, right, top, bottom, top-right diagonal, down-left 

diagonal, top-left diagonal and bottom-right diago-

nal), and by comparing these areas’ average pixel 

value with the feature patch global average value, we 

obtain an 8 digit binary result. For each one of these 

areas we obtain a 0 value if the region average is 

smaller than the global average, otherwise we obtain 

a value of 1. For the sake of clarity, we exemplify this 

procedure in Figure 5. 
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Figure 5. Binary identifier creation example. 

(At the top we have the patch that is being clus-

tered; at the bottom we have all 8 regions that 

form the binary identifier) 

When a feature patch is processed and created, this 

evaluation is performed, and this feature is inserted in 

the corresponding cluster using the obtained binary 

identification. When matching a feature, we also 

compute the binary identification of the candidate 

feature, which allow us to only match with potential 

candidates instead of matching with all features in the 

database. Performance tests have shown that this al-

gorithm can reduce to ~10% the number of possible 

matching operations. In the Prague Castle Scene 

(Figure 1), in some clusters, the number of matches 

per feature is reduced from 1243 to 73. The average 

consumed time per match was also reduced to 12.8%.  

Accuracy Results 
In this section we present some accuracy results in 

what concerns the variation of luminance, scaling and 

rotation. For these testes we have used a determined 

image as a basis for (see Figure 6). The luminance 

test consists in changing the global image luminance 

by a determined percentage value (see Chart 1). The 

scaling test relies on an isotropic rescaling of the 

original image, also by a percentage value (see Chart 

2). Finally, the rotation test consists on applying a 

rotation transformation to the original image, using 

steps of 30º (see Chart 3). In each test, the “full 

matches” group indicates the percentage of success-

fully matched features at a given instance. The “out-

liers” group indicates the percentage of false matches 

in the given “full matches” group. We can see an ex-

ample depicted in Figure 6. 
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Chart 1. Luminance Test. 
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Chart 2. Scaling Test. 
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Chart 3. Rotation Test. 

 

 

Figure 6. Accuracy test scenario 
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In Figure 6 the top image is the Prague Castle Scene 

(800x600, n=15, t=1%, 1243 features), and the bot-

tom image is a version of the first (scale=25%, lumi-

nance=-30%, rotation = 240º, 740 features). The re-

sults for this test were: 25.33% of full matches (187 

features) and 7.72% of outliers (14 features).  

Performance Results 
Some performance tests were made using the Prague 

Castle Scene, varying the resolution size. These tests 

consist in extracting features and matching them 

against each other, using n=15, t=1% and assuming a 

clustering matching reduction of ~10% (see Table 3). 
 

Resolution Features 
Extraction 

(ms) 

Matching 

(ms) 

Total 

320x240 285 10.30 16.25 26.55 
(38 fps) 

480x360 523 19.18 54.71 73.89 
(14 fps) 

640x480 818 30.81 133.82 164.63 
(6 fps) 

800x600 1243 47.04 309.01 356.05 
(3 fps) 

Table 3. Performance Test Results (t=1%, n=15, 

clustering matching reduction of ~10%). 

In order to maintain real-time performance (25 fps) 

for all the presented resolutions, one must adapt the 

threshold extraction factor t, reducing the number of 

features (see Chart 4). 
 

25%

15%
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0,05%0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

320x240 480x360 640x480 800x600

Resolution

Minimum Threshold

 

Chart 4. Minimum Threshold (t) required for 

each resolution to work in real-time (25 fps). 

5. TEST CASE - TEXTURE TRACK-

ING 
As a test case for our novel natural feature detection 

technique, we have chosen the texture tracking para-

digm, integrated in a real-time augmented reality 

(AR) application. We’ve chosen this test case since 

we have been developing new AR tracking methods 

since 2003, and already have a stable AR texture 

tracking system [Bas05]. The only constraint in the 

previous system was the need of black contours sur-

rounding the texture to track, in order to compute the 

CPI. This test case is an advance of our previous 

work, since with this novel technique there is no need 

for the use of black contours. Our hardware setup is 

straightforward: a Webcam (320x240) connected to a 

PentiumIV (2.66GHz). We have knowledge about the 

camera intrinsic parameters, since it was previously 

calibrated using popular methods [Zha99]. The sys-

tem process flow starts at an offline stage, where the 

planar texture image is preprocessed so that all natu-

ral features can be extracted using our proposed 

method. The algorithmic process is divided in two 

stages: Camera Pose Initialization and Feature Track-

ing. In the second stage, to increase performance, we 

use the previous texture pose to derive the current 

pose, based on optical flow and back projection tech-

niques. 

Stage 1 - Camera Pose Initialization 
The CPI main goal is to find the first texture’s pose, 

so that subsequent poses can be derived using the 

method proposed on the next stage. We apply our 

feature extraction and matching techniques at each 

camera frame, using the preprocessed texture image 

as baseline for comparison (Figure 8 – Left). We 

have chosen the RANSAC [Fis81] algorithm to iden-

tify outliers and the Direct Linear Transform (DLT) 

[Abd71] method to compute the planar object pose 

(6DOF – rotation & translation). Subsequently, we 

minimize the reprojection error, to refine the resulting 

pose, using a Gradient Descent (GD) technique 

[Brak04]. It is assumed that at the end of this stage, 

we have a camera pose. 

Stage 2 - Feature Tracking 
The feature tracking stage’s main goal is to derive the 

current texture pose, using previous information, 

namely the number of previous features detected and 

tracked, and the previous texture pose. This stage 

relies on the assumption that the previous pose is a 

“good pose”, and that we can back project the texture 

so that more features can be found and matched. The 

main problem of this assumption is that when large 

camera displacements are performed, the previous 

pose is not a “good pose” for applying the back pro-

jection technique, since the resulting image will be 

completely displaced.  

Optical Flow 
To overcome the displacement problem, we use an 

optical flow technique [Bou99], and apply it to the 

previous tracked features. The optical flow computes 

the current feature position based on the previous 

one, using the current and previous tracking images 

(see Figure 7).  The feature matches must be refined 

to discard outliers. We use the RANSAC algorithm to 

identify these false matches, and compute the correct 

pose for the current image (DLT/GD). With the use 
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of the RANSAC algorithm a new problem arises: we 

run out of features.  We must collect new features for 

the next pose computation – feature tracking stage.  

 

Figure 7. Virtual object registration with optical 

flow overlay. The bottom right image corresponds 

to the current back projected image. 

Texture Backprojection 
The texture backprojection [Bas05] consists in un-

rolling the texture’s perspective distortion at a given 

frame, resulting in an untransformed and similar im-

age to the one that was preprocessed in the offline 

stage. For that we use the correct pose information 

for the current image, apply the inverse transforma-

tion of common projective geometry concepts (see 

Figure 8). Since the back projected image is placed in 

a similar form as the base texture image, we can tem-

plate match all the remaining valid features in a 2D 

untransformed space. By projecting the found feature 

positions using the correct pose information and the 

intrinsic camera parameters, we will obtain the 2D 

position for each feature match in the camera image 

subspace. The positive matches will be refined again 

(RANSAC) and a new refined pose will be computed 

(DLT/GD). More information can be found at 

[Bas05]. 

  

Figure 8. Left: base texture image (Copyright So-

lutions by Heart); Right: back projected image. 

Feature Matching 
Here we introduce a novel concept for feature match-

ing, assuming we have two similar images that may 

differ in small pixel displacements (base texture im-

age and back projected image), and using our previ-

ous proposed template matching metric. Our pro-

posed method consists in finding a local maximum, in 

a determined sub-region. Having a key template Tk 

centred at (xk, yk) covering a 15x15 area of the origi-

nal template image, and a search region also centred 

at (xk, yk) covering a 25x25 area of the back projected 

image, we can define the search algorithm for each 

feature in the following steps: 

1. Define (xs, ys) as the centre position of the search 

template Ts extracted from the backprojected image, 

starting with the values of (xk,yk).  

2. Define θx and θy as offsets of the current search 

template centre, starting each one with a 0 value. 

3. Template match Tk (xk, yk) with Ts (xs+θx, y+θy), 

varying θx and θy from -1 to 1, giving 9 possible cen-

tre positions (e.g. (xs-1, ys-1), (xs, ys-1), (xs+1, ys-1) … 

(xs+1, ys+1)). 

4. Find the θx and θy that maximizes the matching 

function for the 9 possible centre positions. 

5. If the found θx and θy are both different from 0, 

then we update the current (xs, ys) with the θx and θy 

which maximize the matching function. We now have 

xs=xs+θx and ys=ys+θy. The algorithm starts back 

from point 3, using the correct updated values, unless 

xs or ys have invalid values, since they are restricted 

to the limits constrained by the search region. In the 

latter case, the result will be the current xs and ys be-

fore the update process. 

6. If the found xs and ys are both equal to 0, then the 

Ts which maximizes the matching function is centred 

at the current (xs, ys). We have found the possible 2D 

corresponding position of (xk, yk) in the backprojected 

image. We illustrate this procedure in Figure 7. 

 

Figure 9. Various steps of the search algorithm 

and the final result (pink/brighter square). 

Accuracy and Performance Results 
We have developed an original technique to generate 

synthetic video evaluation sets. In the general case, 

these evaluation test sets were based on the textured 

3D planar object pose simulation, subject to transla-

tion and rotation DOF, much like the ones that occur 

when using the system with a HMD. This stream is 

then used to feed our texture tracking system, so that 

the obtained camera poses can be mathematically 

compared with the known simulated poses of the tex-

ture plane. The accuracy tests have shown that our 

algorithm has an average error of: 1.45 mm for trans-

lation, 0.76 degrees for rotation and 2.64 pixels for 

reprojection. In what concerns performance, the sys-

tem operates at ~35 fps at the CPI stage and at ~60 

fps at the feature tracking stage. 
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6. CONCLUSION AND FUTURE 

WORK 
We have proposed a novel approach to real-time 

scale, rotation and luminance invariant natural feature 

tracking, in order to solve the CPI problem using 

totally automatic and real-time procedures. We have 

also proposed a heuristic method for feature cluster-

ing, which can reduce the number of feature matching 

operation to ~10%. We presented a real-time aug-

mented reality texture tracking algorithm which uses 

this novel feature detection technique as a baseline 

and a new approach to feature matching by local 

maximum. This algorithm has millimetric and sub-

degree precision, as has been stated by our accuracy 

tests. However, our tests have shown that our tech-

nique is still very sensitive to features at different 

scales and some degrees of rotation. We don’t find 

this fact preoccupying since we are aware that most 

of the error has its origin on the bilinear interpolation 

filter we’ve used when creating the tests images, 

which have altered the strength of the image’s deriva-

tives. As future work we intend to compare our tech-

nique with other “de facto” algorithms (SIFT, SURF, 

PCA-SIFT) and to enable general 3D object tracking 

using 3D reconstruction and model based tracking 

techniques, using our technique as the main core. 
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