
Interactively Refining Object-Recognition System

Mike Eissele1 Harald Sanftmann2 Thomas Ertl1

1Visualization and Interactive Systems Group 2Visualization Research Center

Universität Stuttgart, 70569 Stuttgart, Germany

{eissele|sanftmann|ertl}@vis.uni-stuttgart.de

ABSTRACT

Existing techniques for object recognition often make use of a combination of multiple algorithms and sensors to achieve

adequate results. In this paper we propose a real-time system to efficiently combine multiple object-recognition techniques,

appropriate for mobile Augmented Reality applications. We focus on the challenge to differentiate objects with only marginal

distinguishing features that can often only be identified from specific points of view, and solve this problem by interactively

guiding the user during the recognition process. The system is based on a hierarchy to organize model data and control the

corresponding feature-detection techniques as shown in a prototypical implementation. Furthermore, recognition techniques

are chosen based on context information, e.g. feature type, reliability of sensor data, etc.

Keywords: Multi-Technique Object Recognition, Mobile Augmented Reality.

1 INTRODUCTION

The problem of object recognition is a common issue in

many real-world applications. Marker-based systems

are efficient for object identification and pose estima-

tion, but require a deployment of markers to target ob-

jects. In contrast, there are numerous scenarios where

markers cannot be used, either because of esthetic rea-

sons or technical problems. Therefore, other methods

have evolved to provide a marker-less object recogni-

tion. For interactive applications it is further required

that the recognition processed is performed in realtime.

Examples are most Augmented Reality (AR) applica-

tions where mobile users interactively control the cam-

era via direct manipulation.

Most available recognition techniques have specific

advantages and disadvantages in certain situations.

Therefore, many setups exist which make use of

multiple sensors—optical, inertial, etc.—with different

algorithms to achieve improved results. However, most

of these systems are not applicable to mobile scenarios

and are designed for very specific problems and do not

focus on an easy extensibility with additional sensors or

algorithms. Therefore, we proposed a general concept

to combine arbitrary object-recognition techniques

to build a robust, reliable, and efficient real-time

object-recognition system. In contrast to existing

sensor-fusion methods the proposed system detects and

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

selects the most appropriate algorithm to differentiate

objects based on various context information.

A specific goal of the proposed system is to effi-

ciently differentiate object classes with a huge number

of only marginal different entities. The differentiation

can be so fine granulated that even individual object can

be uniquely identified. Thereby, distinguishing features

might not be captured by any of the available sensors

from some locations. The system is targeted for interac-

tive mobile AR applications where virtual geometry is

accurately aligned with a real-world image as depicted

in Figure 1b,c. Therefore, a primary challenge—when

supporting multiple, possibly alternative, algorithms for

object recognition—is to prevent a degradation of per-

formance due to numerous object-algorithm combina-

tions that have to be evaluated.

The proposed system prevents such a performance

degradation by utilizing a hierarchical structure to or-

ganize model data. During the recognition process, the

hierarchy is traversed and the number of possible object

matches is continuously reduced. The hierarchy also

allows to present intermediate recognition results, e.g.

object classes, and trigger actions that are needed to fur-

ther descent the hierarchy, if the system cannot differen-

tiate an object. This triggers can effectively be used to

initiate user-operated sensor adjustments on handheld

devices that commonly lack of mechanical installation

to, e.g., change the view direction of a camera.

2 CONTEXT AWARENESS

The usage of context information to support object

recognition is already motivated by Oliva and Torralba

in [13]. They show the importance of context for the hu-

man visual system and propose to use context data also

in Computer Vision systems. They focus on semantic

context information of captured scenes, in contrast, we

Journal of WSCG 1 ISSN 1213 – 6972

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295548872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a) b) c)

Figure 1: Steps of an interactive refining object recognition: a) recognition of the object class Auto Data Switch

and presentation of a hint to capture further distinguishing features, as seen in b) or c). For illustration, different

models of the Auto Data Switch shown in b) and c) are augmented with enhancements.

propose to widen this concept and further include arbi-

trary information related to the current situation.

Acquisition, (pre-)processing, and storage of arbi-

trary context data can easily be provided by Nexus, a

framework for mobile context-aware applications [4,

5]. The open system offers the possibility to query

basic context information or even an estimation of a

high-level situation description. The concept allows to

connect any data provider and any data consumer. The

support of quality metrics further helps to weight the re-

ceived context data. Using Nexus as an underlying ser-

vice enables access to a variety of data—e.g. user po-

sition, lighting conditions, available hardware, etc.—to

control and enhance the process of object recognition.

An overview of the proposed system is given in Sec-

tion 4.1 followed by a detailed description of the hier-

archical structure of model data. The execution of an

object-recognition operation is detailed in Section 4.3.

Prototype implementation and results are discussed in

Section 4.5.

3 MULTI-TECHNIQUE OBJECT-

RECOGNITION METHODS

For the survey of previous work, we primarily concen-

trate on methods which utilize multiple different tech-

niques/sensors for the recognition of objects.

In general, research on object recognition can be sep-

arated in two categories: marker-based and marker-

less techniques; both are supported by the proposed

framework. Object identification and pose estimation

based on synthetic markers is, amongst others, shown

by Ababsa and Mallem in [1].

The advantage of using hierarchies in terms of de-

cision trees is proposed, e.g., by Mehrotra et al. [12].

They group distinctive features of objects to generate

the tree and traverse it during the object recognition

phase. Our work is based on this general concept, how-

ever we extend several aspects: Support for multiple

techniques to evaluate the decisions, even on a per-node

basis, the possibility to return intermediate results, and

therewith the triggering of actions to allow an unam-

biguous object recognition or even identification. Also,

Viola and Jones propose to use a degenerated deci-

sion tree to achieve fast recognition results [16]. They

concatenate multiple weak continue/reject classifiers to

build stronger classifiers, however near-equal objects

that cannot be differentiated in arbitrary captured views

are not handled adequately. Grabner et al. use SIFT-

like features in [8] to distinguish objects. The system

groups similar objects in a hierarchical structure, how-

ever only a single recognition technique is utilized.

Dhome et al. propose a method to find an analytical

solution for the attitude of a 3D object in space [7].

Simplifications for the special cases of coplanar

lines and three-line junctions are given which reduce

the problem to four-degree equations. Beier et al.

present an application of Dhome’s method on mobile

devices [2]. In addition, a simple image-based 2D

filter is used to differentiate similar objects. Lowe

presents an algorithm that iteratively refines an initially

guessed view point via Newton’s method [11]. Kang et

al. propose a technique to efficiently extract topology

information, i.e. line junctions, within an image [9]

and use it to perform object recognition and pose

estimation [10]. Vacchetti et al. present in [15] a

marker-less registration method based on the combi-

nation of image feature points and edge tracking. The

authors compare different setups for sensor fusion and

show that with multiple hypotheses the initial result can

be improved. A system which uses vision and inertial

sensing for tracking is proposed by You et al. [17]. An

inertial sensor provides changes in orientation since

the previous frame to estimate new camera orientations

used as input for a Computer Vision approach.

If objects that have to be recognized are very similar

often a single view is insufficient to distinguish the ob-

jects, independent of the applied method. Therefore,

a number of systems have been presented that eval-

uate the best view of an object to achieve a reliable

recognition. After a first recognition phase, these ac-

tive vision systems build rules to, e.g., move the cam-

era to a view, which allows further refining the object

recognition. However, most active-vision approaches

assume that a automated camera movement is available,

which is practically impossible for handheld devices.

Journal of WSCG 2 ISSN 1213 – 6972

Traversion Controller and Local Sensor Manager

Solvers

Edge Model

Diff Edge

Color Spot

Pattern

Metadata Store

3D Edge

Models

Color

Spots

Reference

Patterns

3D Geometry

Model

Spatial World Model

Nexus

Augmented Reality

Rendering

external:

Lighting

Condition

Color Probe

at X, Y

Estimated Object

Pose

Camera

Image

Context
Store

M1

F1

M2 F2

M3 M4

-Check Color

-Identify Object

-Match Edges

-Estimate Pose

-Check F.-Lines

-Identifiy Object

-Match Pattern

-Identify Object

Figure 2: Overview of the object-recognition framework.

Borotschnig et al. present a comparison of three ap-

proaches for these so-called active object-recognition

systems [3]. The examined techniques are based on

different uncertainty calculi: probability theory, possi-

bility theory, and Dempster-Shafer theory of evidence.

Reinhold et al. present a statistical appearance-based

object-recognition approach combined with an active

view point selection [14]. Deinzer et al. presents a non-

realtime method which uses a training set to learn good

next views unsupervised [6].

4 HIERARCHICAL RECOGNITION

There are already existing methods (e.g. [9]) which pro-

vide promising results for recognition of dissimilar ob-

jects. Most are not well suited for the task of recogniz-

ing many similar objects. In contrast, similar objects

motivate a grouping of objects with partially equal fea-

tures, e.g. same overall shape. By iteratively repeating

this division within the resulting subgroups an object

hierarchy is generated, thereby each distinguishing fea-

ture may be detected using a different algorithm.

4.1 System Components

The architecture of our presented object-recognition

system is illustrated in Figure 2. All algorithms for ob-

ject recognition need some information about the mod-

els that have to be recognized. This can be reference

images, texture information, 3D models, or any other

information. Such information—in the following re-

ferred to as metadata—is typically generated in an off-

line preprocessing task for each node and stored in the

Metadata Store as shown in Figure 2.

The data contained in the metadata store is primarily

accessed by integrated solvers. The framework is based

on the concept that multiple different solvers—seen in

the center of Figure 2—are utilized subsequently dur-

ing the object recognition. This way, arbitrary object-

recognition techniques using various metadata can be

integrated and combined to calculate the final result of

the object recognition. In addition, solvers have access

to a further data source the so-called Context Store.

The context store’s content can be considered as data

that describes the current conditions of the application,

environment, or any other attribute which might dy-

namically influence the recognition. We use this store

for locally acquired sensor data, intermediate recogni-

tion results, and external context data from Nexus [4].

The previously mentioned hierarchy with different al-

gorithms (Fx) to detect features is shown in the upper

left corner of Figure 2. The traversing of this hierarchy

is controlled by a simple controller which executes the

referenced solvers (Fig. 2, dashed arrows).

4.2 Organization of Recognition Nodes

The hierarchical structure used for the recogni-

tion (recognition tree) utilizes several node types that

define different behaviors that are triggered during the

traversal of the graph.

A basic node type is the Search Node F . It refer-

ences multiple alternative solvers Sx that are adequate

to iterate through all of the Search Node’s children and

search for the best matching. A behavior similar to sim-

ple traditional recognition systems that iterate through

all integrated object models can be simulated this way,

where all models Mx are checked for a match in se-

Journal of WSCG 3 ISSN 1213 – 6972

quence. A corresponding example recognition tree is

shown in Fig. 3. During traversing, solver SA and SB ac-

cess corresponding metadata, referenced by the current

node, e.g. relevant line features of real-world objects.

SB

SA

M1

F1

M2 M3 Mn...

Figure 3: A simple recognition tree to simulate a tra-

ditional recognition system which linearly checks each

model to search for the best match.

An advantage of the hierarchical structure is that it

allows to group similar objects based on common fea-

tures. These intermediate group nodes reference com-

mon metadata of all their child objects that is stored in

the Metadata Store. Meta information that is only ade-

quate for intermediate nodes may also be stored in the

metadata store as it is required by solvers to match in-

termediate nodes, like a model of common feature lines

of a group of objects. Furthermore, the framework is

able to present intermediate results of the object recog-

nition even if it cannot entirely differentiate all objects,

referenced by a Search Node. Applications may already

benefit from such intermediate results—as presented in

our prototype in Section 4.5—to, e.g., show a coarse

3D proxy model presenting the common appearance of

the entire model group. An example configuration is

depicted in Figure 4. The search node F1 will execute

solver SA during object-recognition traversal to differ-

entiate models M1..3 and the group of models subsumed

under F2. Models M4..6 are further distinguished based

on the referenced metadata of F2.

SC

SB

SA

M1

F1

M2 M3 F2

M4 M5 M6

Figure 4: Hierarchical organization of the models. F1

differentiates models M1..3 and the model group of F2.

Models M4..6 are distinguished via node F2.

Context-Switch Node C is a node type that is able to

route the traversing of the tree dependent on context at-

tributes. Context-switch nodes can also have a number

of child nodes but do not reference any solvers, they

only evaluate context data to decide how the travers-

ing continues. This way, alternative sequences for the

recognition can be integrated in the mostly static hierar-

chy. Figure 5 shows a configuration where the context-

switch node C1 decides into which child the traversing

descents, based on context information like the current

pose of the to-be-identified object. As can be seen in

Figure 5 the two subgraphs are simply swapped ver-

sions of each other. This way, sequences where the sys-

tem benefits most—e.g. does not have to request user

interaction (Section 4.3)—can dynamically be selected.

C1

F1

M1 F2

M2 M3

F2

M2 F1

M1 M3

Figure 5: Alternative sequences for the recognition pro-

cess via a Context Switch C1.

4.3 Object Recognition by Traversing the

Recognition Tree

The object recognition is performed by traversing

the recognition tree and, dependent on the node type,

processing the results after executing the referenced

solvers to select the child node in which to descend.

Exemplary setups of recognition trees are illustrated in

Figure 6. We integrated multiple solvers that identify

objects based on completely different features: 3D

geometry, color, patterns, or line features. A more

detailed description of the utilized techniques is given

in Subsection 4.5. An important aspect of the proposed

system is that the knowledge gained about the current

and previous iterations of the object recognition, e.g.

the pose of the to-be-identified object or the estimated

camera position in previous iterations, is gathered

and stored as context data. During traversing of the

recognition tree, subsequent solvers have access to this

information and may consume, correct, or extend it.

If a leaf of the hierarchy is reached during the travers-

ing then a model has unambiguously been identified

and the recognition task is finished, returning the iden-

tified object and the gathered context information (see

Figure 6a, following steps I1:1, I1:2, I2:1). An impor-

tant advantage of using a model hierarchy is that our

system is able to descent the hierarchy as soon as an

adequate match is found in the referenced models, as

similar models will be summarized using a group in the

hierarchy. In contrast, simple approaches would have

to linearly check each referenced model if it matches to

find the best matching which could potentially be the

last reference.

Whenever a node can no further distinguish its

children and therefore cannot further descend the

recognition tree, intermediate recognition results are

returned. For that purpose, our system supports a novel

interactive refinement of intermediate recognition

results by triggering actions that help the system to

further differentiate the objects as can be seen in

Figures 7, 1a, and 6a, following steps I1:1, I1:2, and

I1:3. This feature can be used, e.g., to instruct the user

to perform appropriate camera movements and opti-

mize the point of view to capture additional features

(see Fig. 6a step I2:1). User performed adjustments

are therefore utilized to compensate for the lack of

automatic (e.g. mechanical) installations, which are

Journal of WSCG 4 ISSN 1213 – 6972

SC

SB

SA

M1

F1

M2

M6

M4M3

M5

F2

F3

I1:1

I1:2

I2:1

Intermediate Result:

Trigger

Camera Move

I1:3

a)

I1:1

SC

SA

M4

F3

M5 M7

M3 F4

F1

M1 M2

I2:1

I2:2

F2

M6

b)

Figure 6: Hierarchical organization of models via multiple search nodes Fx. The recognition performed in a) stops

at the intermediate model referenced by F3. Afterwards a trigger is executed to request a camera movement (I1:3)

to capture further distinguishing features. In b) the previously identified model has changed, therefore the system

performs a backtracking (I1:1) and initiates the next iteration at F2.

Figure 7: During object recognition the system trig-

gered a request to adjust the lighting condition.

unavailable on handheld devices. Within our prototype

we limited these actions to manual camera-movement

(Fig. 1a) and light-adjustment (Fig. 7) commands,

but other actions—automatic or requests for manual

adjustments—like adjusting camera shutter/focus

might be triggered.

For achieving a high performance in the recognition

phase, the hierarchy helps in two ways: First, the num-

ber of models that have to be searched within each

search nodes are reduced due to the tree-like structure

and second, the temporal coherence—i.e. in most sub-

sequent frames the same object is captured—can effec-

tively be used to skip large parts of the recognition tree.

This is achieved by starting the traversing at the node re-

turned in the previous iteration, symbolized as double-

framed nodes in Figure 6. If the starting node is not

the recognition-tree root the system has to check if the

to-be-recognized object is still the same. Furthermore,

some context information might got invalid since the

previous frame and has to be updated, e.g. due to slight

camera movements. Therefore, the system has to en-

sure that the information required by subsequent nodes

are up-to-date by executing the corresponding solvers.

This dependency can be determined and stored in a pre-

processing step. For the prototypical implementation,

we optimized the restart by using a combined solver

that checks for a change of the object and estimates its

new pose. The system simply checks if the object is

still the same by trying to match line features that are

referenced by the node where the recognition process

continued. The matching is executed quite fast since

line features are already known and a good approxima-

tion of the camera position is provided as a result of

the previous iteration. For the prototype (Section 4.5)

the estimation of the camera movement between subse-

quent iterations was improved using an inertial sensor

to measure the acceleration and approximate the new

camera position.

If the matching returns a positive result, the newly

corrected pose estimation is stored as context informa-

tion and the traversing continues, thereby keeping all

recognition results of previous iterations. This is il-

lustrated by step I2:1 in Figure 6a. In contrast, if the

verification fails the system assumes that the object

which has been recognized in the previous iteration has

changed and therefore has to check if other objects are

present in the captured scene.

Therefore, the system can simply reset and start the

recognition from the root of the recognition tree. This,

however, will result in an inefficient behavior whenever

an object cannot be recognized continuously in subse-

quent iterations: The system will have to descent the

entire hierarchy. To overcome this limitation a simple

backtracking mechanism is integrated to ensure that the

system remains efficient, i.e. restarting the recognition

from a previous node on the node path back to the root.

This recursive process continues until the recognition

is able to descend the hierarchy again or—in the worst

case—a restart of the recognition is initiated at the root

node of the tree.

During construction time of the recognition tree a

link can be stored per node that is followed during back-

tracking to skip in-between nodes to increase the effi-

ciency as shown in Figure 6b step I1:1. Afterwards, a

following iteration (I2:1, I2:2) traverses again to a leaf

node.

In the proposed interactive refining, special cases oc-

cur that are annoying for users: The system might re-

Journal of WSCG 5 ISSN 1213 – 6972

quest a camera movement to the right to continue the

traversing. However, a following search node might

request a movement back to the left whereby it pos-

sibly would have been satisfied with the camera posi-

tion at the beginning. In worst cases, users are required

to adjust the, e.g., camera view multiple times whereas

one adjustment would have been sufficient. Our system

overcomes such scenarios by integrating context-switch

nodes C to select alternative sequences for the recogni-

tion. The subgraphs of C nodes are simply permuted

in their order of execution as illustrated in Figure 5 and

selected based on the current context.

4.4 Using external Context Information

for Recognition-Technique Selection

During traversing of the hierarchy the system gath-

ers context information required by subsequent solver

nodes to perform their task. In addition to this inter-

nally generated data, external context information also

helps to control and improve the recognition process.

Each search node of the recognition tree that sum-

marizes multiple nodes, references at least one tech-

nique to search through its children. The selection of

the solver to differentiate features of referenced models

is done in a preprocessing step during the recognition-

tree construction. Therefore, an algorithm is chosen

which is assumed to deliver best results on average in

terms of reliability, robustness, or performance. How-

ever, selecting the most adequate technique to distin-

guish groups of similar objects during the setup of the

recognition tree in a pre-processing step is not always

possible: Changes in the environmental context, appli-

cation states, sensor quality, etc. might occur during

runtime and therewith invalidate the selection of recog-

nition algorithms based on these attributes.

In order to overcome this limitation, the proposed

system allows to assign multiple alternative recogni-

tion techniques per node that are dynamically selected,

based on internal or external context information. The

external context information is provided via Nexus [4,

5], as mentioned in Section 2.

4.5 Prototype System and Results

The presented recognition system has been specifically

designed to share the context and metadata store with

other application parts. Therefore, Augmented Reality

visualizations can easily access the position and orien-

tation information using the context store. The proto-

typical implementation of a mobile interactive assistant

system to help users to identify and augment objects

makes use of this concept. A key concept of the sys-

tem is that very similar objects are differentiated using

the proposed refining technique for controlled user in-

tervention. An exemplary target application for the pro-

totype is an information system for customers and con-

sultants who are interested in HIFI appliances. These

Figure 8: The prototype hardware in use. A standard

TabletPC was equipped with a webcam (top middle)

and an inertial sensor (top left).

items have many similar aspects which cannot easily

be differentiated. Augmented Reality provides an intu-

itive way to present different instances of an object—

probably not yet available—like extra attachments, dif-

ferent colors, or even custom case modifications. For

evaluation of the proposed concept, a prototype as seen

in Figure 8 was built.

4.5.1 Implementation

Multiple solvers have been implemented to support

the recognition of various feature types that might

be useful to differentiate similar objects. The most

advanced solver is—in addition to identification—also

able to estimate the pose of objects. It is implemented

using Computer Vision methods: First, feature lines

and three-junctions are searched in the captured image.

These are linked to the model’s geometry description—

stored in the metadata store—to generate hypotheses of

possible models and their orientation [7]. The second

part of the solver is based on a technique proposed by

Lowe [11] and is used to check generated hypotheses

and further improve the pose-estimation accuracy by

minimizing the matching error. We refer to this solver

as edge-model solver SE .

A cut-down version of the edge-model solver is inte-

grated to differentiate similar models, where one model

has additional feature lines. A prerequisite for this

solver is a pose estimation, calculated by any previ-

ous search node in the recognition tree. The solver

can then project the additional line features, stored for

one specific object of a group, and search for match-

ing edges in the captured image, therefore the solver

is termed as diff-edge solver SD. Distinguishing fea-

tures, e.g. additional lines, might be visible only from a

specific point(s) of view therefore a differentiation of

the objects based on a captured image from an arbi-

trary view is not always possible and an intermediate

result might be returned. As our approach is especially

targeted for mobile clients, where often only a single

camera with a fixed viewing direction is available, we

cannot expect that other sensors might capture a dis-

tinguishing feature. The novel approach of our pro-

posed interactive refining technique to solve such un-

Journal of WSCG 6 ISSN 1213 – 6972

a) b) c)

Figure 9: Rendering of augmented camera images at different steps of the recognition process. Detected and vec-

torized edges of the camera images are shown in a). A hypothesis (blue) generated by the approach of Dhome [7]

and model’s feature lines are seen in b). A finally checked and improved solution—based on Lowe [11]—is

displayed in c). The red line segment could not be matched in the camera image.

determined cases is that solvers can report intermediate

results with hints/triggers that state which changes have

to be made in order to continue the recognition. This in-

cludes change requests for, e.g., camera movements or

lighting conditions that are displayed to the users as can

be seen in Figure 1a and Figure 7.

In contrast to line features, the color-spot solver SC is

able to check the color value at pre-defined locations on

the object surface. It simply projects pre-defined color-

probe locations using the previously estimated object

pose to the image space and examines the pixel color in

the captured image. Therefore, objects with (partially)

different colors can efficiently be identified even if col-

ored features are only visible at specific points.

Similar real-world objects are often labeled or

marked in order to express their differences. Good

examples are electronic appliances like HIFI compo-

nents which might only be different in their insides and

probably their serial numbers. Our prototype utilizes a

recognition approach to compare previously acquired

reference images to the captured image information

to support an identification based on patterns. This

pattern solver SP benefits of a previously calculated

pose estimation in two ways: It is able to determine

if the pattern is entirely visible in the camera image,

i.e. it is not hidden or occluded, and the perspective

distortion is a priori known due to the previously

calculated object orientation and the pattern location in

model coordinates, stored as metadata.

Many additional techniques can easily be integrated

to detect more complicated features like, e.g., a solver

to recognize curved surfaces. But also identification

components like optical character recognition or bar-

code scanners can be applied.

The proposed recognition system is applicable for

various applications, for the prototype we chose to im-

plement an Augmented Reality rendering module to

present real-world aligned virtual information. It is

used to show information about the traversal of the

recognition tree and object information. If the system

is unable to totally identify an object, only its category

is displayed. We further make use of AR rendering to

track and evaluate the recognition process and its accu-

racy. The precision of the object’s pose estimation can

easily be seen via an augmentation of the camera image

with superimposed 3D geometry model (see Fig. 9).

For the proposed scenario, presentations based on AR

further benefit from the possibility to show different

virtual instances of objects, similar to the illustrations

in Figures 1b,c. These renderings depict two different

augmentations, which might represent future configu-

rations or not-in-stock items.

As mentioned in Section 4.3, intermediate nodes may

trigger actions to improve the recognition. We imple-

mented triggers to initiate camera-movement requests

which display messages to guide users interactively

how the camera should be positioned in order to achieve

better recognition results, as seen in Fig. 1a, and Fig. 7.

4.5.2 Results

For the evaluation of the prototype implementation

a data set with five computer-appliance objects were

used. Two objects are identical except for a red stripe

on one object. Therefore, these objects can only be

distinguished if the part where the red stripe is located

on is within the camera view. A direct comparison to

existing systems cannot be given, since the proposed

setup is rarely examined, often a specialized algorithm

is utilized where the objects used to evaluate the

system fit to the proposed algorithm. The theoretical

complexity in terms of executions of solver-model

pairs in the hierarchical implementation is optimally

O(log(n)). For a simple linear search method the

complexity is O(n) which corresponds to the worst

case of our approach. In practical setups the system

therefore achieves a performance in-between both

extremes. However, these numbers strongly depend

on the number, type, and quality of the objects and

the structure used for the recognition tree. The im-

plemented recognition algorithms and the selected

techniques also have a great influence to the overall

performance.

Measurements in Table 1 present the performance for

an Intel Core2 Quad Q6600@2.4GHz CPU (only a sin-

Journal of WSCG 7 ISSN 1213 – 6972

gle core was utilized). The video stream of the camera

was simulated with a static 320×240 resolution image

in order to achieve comparable results.

non-coherent coherent

Preparation 21.3 21.3

hypOther 163.1 -

hypValid 5.8 -

hypCheck 0.8 0.8

Rendering 1.4 1.4

Overall 192.4 ms 23.5 ms

Table 1: (Re)start performance of an object-recognition

process utilizing temporal coherence.

The first phase of our approach is equal for both

cases: Undistortion of the camera image, generation of

a monochromatic image, execution of a Sobel/Canny

edge detection, and the merging of collinear line frag-

ments which is summarized as Preparation. In the non-

coherent case, where no object registration and pose es-

timation is available from previous frames, a large num-

ber of hypotheses have to be evaluated. The timing val-

ues of hypOther refer to hypotheses that are evaluated

with 3D object models which do not correspond to the

captured camera image. The hypValid measurements

refer to hypotheses that are evaluated with a matching

3D object model. In the coherent case we already have

a valid object pose from a previous iteration which is al-

ready accurate, as the camera is fixed during the evalu-

ation. Timings of hypCheck refer to the Lowe based ap-

proach for checking and improving the pose-estimation

hypothesis. Timings for display of the captured camera

image and optional augmentations are summarized in

Rendering.

The measurements show the benefit of utilizing tem-

poral coherency as the most time-consuming part of the

algorithm is efficiently skipped. With the previously

mentioned performance improvement due to the uti-

lized hierarchy the system is especially suited for mo-

bile, interactive applications.

5 CONCLUSION

We have presented an approach to combine arbi-

trary recognition techniques within a single object-

recognition and pose-estimation system. A hierarchical

structure is utilized to achieve highly efficient and

robust object recognition. The recognition process

is performed by traversing the hierarchy whereby

referenced solvers are executed. The returned result

is either the unambiguous object identification or an

intermediate result. To improve intermediate results

the system can trigger actions—e.g. relocation of

the camera—in order to capture additional important

features for the recognition process. These triggers

are used to implement an interactive process to refine

recognition results by providing hints to guide users

how to improve the recognition, thereby providing

the possibility to adjust an otherwise static setup to

sensors.

In future we will concentrate on automatic construc-

tion of a balanced model hierarchy.

REFERENCES
[1] F. Ababsa and M. Mallem. Robust camera pose estimation us-

ing 2d fiducials tracking for real-time augmented reality sys-

tems. In VRCAI ’04: Proceedings of the ACM SIGGRAPH

international conference on Virtual Reality continuum and its

applications in industry, pages 431–435. ACM, 2004.

[2] D. Beier, R. Billert, B. Brüderlin, D. Stichling, and B. Kleinjo-

hann. Marker-less vision based tracking for mobile augmented

reality. In 2nd IEEE and ACM International Symposium on

Mixed and Augmented Reality (ISMAR), page 258, 2003.

[3] H. Borotschnig, L. Paletta, M. Prantl, and A. Pinz. A com-

parison of probabilistic, possibilistic and evidence theoretic fu-

sion schemes for active object recognition. In Computing, vol-

ume 62, pages 293–319, 1999.

[4] Collaborative Research Centre (SFB627). Nexus: Spa-

tial world models for mobile context-aware applications.

http://www.nexus.uni-stuttgart.de, 2008.

[5] P. Coschurba, U. Kubach, and A. Leonhardi. Research issues

in developing a platform for spatial-aware applications. In Pro-

ceedings of the 9th workshop on ACM SIGOPS European work-

shop, pages 153–158. ACM Press, 2000.

[6] F. Deinzer, J. Denzler, and H. Niemann. Viewpoint selection -

a classifier independen learning approach. In IEEE Southwest

Symposium on Image Analysis and Interpretation, pages 209–

213, 2000.

[7] M. Dhome, M. Richetin, J.-T. Lapresté, and G. Rives. Deter-

mination of the attitude of 3-d object from a single perspective

view. In IEEE Transactions on Pattern Analysis and Machine

Intelligence, volume 11, pages 1265–1278, 1989.

[8] M. Grabner, H. Grabner, and H. Bischof. Fast visual object

identification and categorization. In Proceedings of NIPS Work-

shop in Interclass Transfer 2005, pages 1–8, 2005.

[9] D. J. Kang, J.-E. Ha, and I.-S. Kweon. Fast object recognition

using dynamic programming from combination of salient line

groups. Pattern Recognition, 36(1):79–90, 2003.

[10] D. J. Kang, J.-E. Ha, and I.-S. Kweon. 3-D Pose Estimation

Algorithm for Model Based Vision. In 6th Asian Conference on

Computer Vision (ACCV), pages 115–119, 2004.

[11] D. G. Lowe. Three-dimensional object recognition from single

two-dimensional images. In Artificial Intelligence, volume 31,

pages 355–395. Elsevier, 1987.

[12] R. Mehrotra, W.I. Grosky, and F.K. Kung. Decision-tree based

two-dimensional object recognition. In Proceedings of the

IEEE International Conference on Systems, Man, and Cyber-

netics., pages 1380–1383, 1988.

[13] A. Oliva and A. Torralba. The role of context in object recogni-

tion. Trends in Cognitive Sciences, 11(12):520–527, 2007.

[14] M. Reinhold, F. Deinzer, J. Denzler, D. Paulus, and J. Pösl. Ac-

tive appearance-based object recognition using viewpoint selec-

tion. In VMV, pages 105–112, 2000.

[15] L. Vacchetti, V. Lepetit, and P. Fua. Combining edge and tex-

ture information for real-time accurate 3d camera tracking. In

Proceedings of the 3rd IEEE/ACM International Symposium on

Mixed and Augmented Reality (ISMAR04), pages 48–57, 2004.

[16] P. Viola and M. J. Jones. Robust Real-Time Face Detection. In-

ternational Journal of Computer Vision, 57(2):137–154, 2004.

[17] S. You, U. Neumann, and R. Azuma. Hybrid inertial and vision

tracking for augmented realityregistration. In Proceedings of

IEEE Virtual Reality, pages 260–267, 1999.

Journal of WSCG 8 ISSN 1213 – 6972

	!_J_WSCG2009_Numbered.pdf
	A13-full

