
Component-Based Isosurface Extraction for Multiple

Dataset Visualization

Shiyuan Gu
Department of Computer Science,

Department of Mathematics,

Louisiana State University,

USA (70803), Baton Rouge, LA

gshy@math.lsu.edu

Bijaya B. Karki
Department of Computer Science,

Louisiana State University,

USA (70803), Baton Rouge, LA

karki@csc.lsu.edu

ABSTRACT

In the situations where isosurfaces are comprised of many disjoint components, two or more datasets can be visualized simul-

taneously by processing only a subset of isosurface components. The components of interest can be selected by exploiting

interdataset coherency at the level of individual voxels and components. Thus, only those components (identified as voxel cov-

erages or voxel sets) which differ significantly among the datasets under consideration are extracted as needed while the similar

components were extracted only once from a reference dataset. Since the polygons are extracted/rendered as a whole com-

ponent, the rendered isosurfaces are crack-free. We use three user-defined thresholds to control multiple dataset visualization

(MDV) so that important relationships (differences and similarities) among the datasets can be explored with an improvement

in the overall performance. If the data-coherency can not be defined easily, MDV can still benefit from the on-the-fly processing

of the individual components.

Keywords: Multiple dataset visualization, data coherency, isosurface extraction, component, crack-free

1 INTRODUCTION

Multiple dataset visualization (MDV) is desirable

for developing a more complete understanding of

a given system or problem for which two or more

datasets are available (e.g., [aoy07, chi97, kha06]).

Unlike normal visualization in which each dataset

is processed independent of other dataset(s), MDV

processes multiple datasets of interest together so

that the cross-correlations (such as differences and

similarities) among them can be better explored. A

straightforward approach is to completely process

each dataset using an existing visualization technique

(such as isosurface extraction [lor87]) and then simply

display the resulting images together. There are two

issues with this approach. Firstly, it is not always

possible to process fast and completely all the datasets

under consideration due to the limited computing

and storing capabilities. For instance, a modern

dataset can be arbitrarily large so minimizing the

processing/storage requirements is crucial in MDV.

Secondly, even if it is possible to handle all datasets

simultaneously, it may not be effective for comparison

purpose. For instance, there are situations where the

underlying structures are highly complex and widely

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

spread in a three-dimensional space. The users often

face tremendous challenge in visually identifying

the similar and dissimilar regions. It is, therefore,

desirable that MDV can automatically detect and

highlight such regions.

Several approaches have been explored in the con-

text of visualization of multiple datasets. In [chi97],

the authors have proposed visualization spreadsheets

for comparing multiple datasets. By displaying the

outputs for several datasets in a tabular form, the users

can apply various operations for the cells of the spread-

sheets (e.g., subtracting two cells and rendering the

difference in another cell). A recent MDV work in-

volves overlaying multiple visualizations within a sin-

gle view or rendering them in multiple views [aoy07].

While these approaches primarily deal with the inter-

faces (i.e., how the display outputs are organized), the

scalable adaptive MDV presented in [kha06, kha07]

deals with visualization at the processing level using

isosurface extraction and texture mapping.

To improve MDV performance, one can exploit

the coherency between the datasets to be visualized

([kha08]). Data coherency is simply a measure of

similarity between the datasets. In this approach,

a given multiple set of data are first divided into

two groups: reference datasets and non-reference

datasets. The reference datasets are those which are

completely processed and whose polygon data are

used subsequently to also represent the parts of the

isosurfaces of the non-reference datasets. The re-

quired data-coherency test is performed by comparing

a non-reference dataset with a reference dataset block

97 Journal of WSCG

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295548856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: Multicomponent isosurface

by block. Only the polygons (triangles) within the

blocks (i.e., octree nodes) which significantly differ

from the corresponding blocks of the reference dataset

are extracted; the polygons in other blocks are simply

retrieved from the reference dataset.

In this paper, we perform component-based iso-

surface extraction in combination with interdataset

coherency to support multiple dataset visualization.

Our MDV is shown to be useful in the situations

where the underlying isosurface structure is com-

prised of many small spatially disjoint components.

An example is shown in Fig. 1 for the electron density

isosurfaces. Here, different isosurface components

correspond to electron distributions around different

atomic sites. Similarly, in the case of medical data

such components may correspond to different sub-

organs or tissue structures. A typical scenario can

be that two or more datasets represent some changes

which are localized. For instance, one vacancy site

(an missing atom) in a crystal is likely to affect the

electron distribution only in its neighbourhood. A

component can thus change its size/shape freely

without affecting the other components. Therefore,

identifying and subsequently processing such in-

dividual components can be useful in comparing

datasets and hence in MDV. As stated above, our

method assumes the data coherency, i.e., it assumes

that the shape differences between isosurfaces are

reflected in a subset of voxels. It differs from the data

coherency method of [kha08] in that we analyze both

the component similarity and voxel similarity while

only the voxel similarity was considered previously.

There are two advantages of considering both types

of differences. First, the isosurfaces are guaranteed

to be crack-free while the previous study ([kha08])

suffers from cracks due to the inconsistency between

extracted and approximated parts of isosurfaces (Fig.

2). Secondly, the proposed approach is more effective

in identifying the interesting structural differences

and suppressing the noises. In many cases, a small

change in a big isosurface component may not be of

interest because it can be due to some noise or can

be so small that it is visually undetectable. We can

avoid an unnecessary processing of the corresponding

polygons by specifying appropriate thresholds.

Figure 2: Cracks (top) and no cracks (bottom)

2 MULTI-COMPONENT ISOSUR-

FACE EXTRACTION

The first important step in the proposed multi-

component isosurface extraction method is to identify

the components themselves. An exact identification of

a component can be computationally expensive. How-

ever, we can approximate an isosurface component by

its voxel coverage - a set of voxels which contribute

to the component, which is determined as described

below. It is easy to realize that two components

must be separated spatially from each other by, at

least, one voxel gap. The second important step is

to perform the interdataset coherency test. For this

purpose, we divide given datasets into two categories:

reference datasets (RDS) and non-reference datasets

(NRDS). Consider the simplest case of two datasets

for which we have one RDS and one NRDS. RDS

is completely processed and the polygon data are

stored for later retrieval. On the other hand, NRDS

is processed for partial isosurface extraction. Only

those components which differ from or do not exist

in RDS are directly extracted from NRDS; all similar

components are rendered using the corresponding

RDS polygon data. Thus, the two types of datasets are

processed differently.

The RDS isosurface extraction is performed using

Algorithm 1. This algorithm processes a reference

dataset to generate the polygon data representing iso-

surface component and a lookup table RDS.map repre-

senting the relationship between voxels and the com-

ponents. An entry RDS.map[vi] indicates the compo-

nent the voxel vi belongs to. We define RDS.map[vi]
to be zero if vi does not contribute to the isosurface.

RDS.map is used later during processing of NRDS

(Algorithm 2). RDS.map allows us to easily find out

whether a newly extracted component in NRDS over-

laps with any component in RDS. In Algorithm 1,

vi.iss and vi.p are true/false flags indicating whether

the voxel vi contributes to the isosurface and whether

98



the polygons within it have been extracted, respec-

tively. These two flags allow us to skip many voxels.

The variable comp counts the number of components.

To find a component, we start from a voxel in that

component and expand the component by checking its

neighbors and then their neighbors successively. This

expanding process can be implemented by a queue as

follows. We traverse each voxel of RDS. If a voxel

contributes to an unexplored component, we extract

the polygons within the voxel and check for its neigh-

bors. We put all its neighbors that also contribute to the

isosurface into a queue (denoted as Q). We repeat this

process for each member in the queue until all mem-

bers in the queue are processed. We record the compo-

nent a voxel belongs to in RDS.map every time poly-

gons are extracted from the voxel. We also group the

polygons in a component together for an efficient re-

trieval. Note that since the polygons that belong to the

same component are extracted successively, the group-

ing can be done simply by recording the first extracted

polygon in the component if the polygons are saved in

a list.

We use the Marching Cubes algorithm to extract the

polygons in a voxel. In order to determine whether

a voxel contributes to the isosurface or not, we need

to compare its scalar values to a given isovalue. It

is not a cheap process. One can find the maximum

and minimum of the scalar values of each voxel and

use the octrees to speed up the extraction. Here,

our major goal is to illustrate the component-based

isosurface extraction approach. It can be extended

to octrees ([she96, wil92]) and other fast isosurface

schemes ([yar98]).

For each non-reference dataset, we first compute the

per-voxel differences from a reference dataset. The

voxel differences between two datasets can be mea-

sured in many ways. Different measures vary in their

sensitivity to noise and their ability to capture the

change. Generally speaking, the measures more ca-

pable to capture the change are also more sensitive to

noise. Some choices include the differences in one of

the eight values or the maximum or the average value

between two voxels. Computing the voxel difference

can be time-consuming. However, if we choose a dif-

ference measure independent of isovalue such as those

just mentioned, we need not recompute the differences

when we change the isovalue. It is important to note

that isosurfaces need to be explored over a wide range

of isovalues. We can also divide the whole volume

into blocks and assign the same voxel difference to

all voxels in the same block as in the previous study

([kha08]).

Once the voxel differences are computed, the poly-

gon generation for a non-reference dataset can be per-

formed with Algorithm 2 only for the components

which contain sufficiently large number of significant

Input: a reference dataset RDS

Output: polygons in RDS, RDS.map

Initialize all variables to zeros/false.

FOR each voxel vi in RDS

IF vi.iss AND NOT vi.p THEN

extract polygons in vi

vi.p← true

comp← comp+1

RDS.map[vi]← comp

Q[0]← vi

head← 0, tail← 1

WHILE head < tail

FOR each neighbor nb j of Q[head]

IF nb j.iss AND NOT nb j.p THEN

extract polygons in nb j

nb j.p← true

RDS.map[nb j]← comp

Q[tail]← nb j

tail← tail +1

ENDIF

ENDFOR

head← head +1

ENDWHILE

ENDIF

ENDFOR

Algorithm 1: Pseudo-code for isosurface extraction for

a reference dataset

voxels. These are the voxels whose difference are

greater than the user-defined threshold1. In Algorithm

2, vi.p is a true/false flag which indicates whether the

voxel has ever entered into the queue Q or not. We

use the flag vi.p to avoid putting the same voxel into

Q multiple times. voxel.di f f denotes the voxel dif-

ference, threshold1, threshold2, threshold3 are user-

defined parameters. threshold2 and threshold3 are

for measuring the differences between components

while threshold1 is for measuring the similarity be-

tween voxels. nV is a counter counting the number

of voxels in the component. nSV is a counter count-

ing the number of significant voxels in the compo-

nent. nV and nSV together with threshold2 is for de-

termining whether a component is significantly differ-

ent and hence should be extracted. NE[.] is an array of

true/false flags and NE[ci] indicates whether there are

newly extracted polygons in the corresponding region

of RDS.ci (the ci component in RDS). NE[.] is used

when we decide the components to be retrieved from

RDS.

Algorithm 2 scans through all significant voxels

and finds their components. The polygons in a

component are extracted only if the component

contains sufficiently large number (determined by

threshold2) of significant voxels. The polygons of

the reference dataset are retrieved if no polygons are

99 Journal of WSCG



newly extracted in the corresponding region in the

non-reference dataset and the overlap of the NRDS

isosurface and RDS isosurface are sufficiently large

(determined by threshold3). The effects of these three

thresholds are presented in the next section.

Input: a non-reference dataset NRDS, polygons in

the reference dataset RDS, RDS.map, threshold1,

threshold2, threshold3.

Output: polygons in NRDS

Initialize all variables to zeros/false

FOR each voxel vi in NRDS

IF vi.iss AND NOT vi.p AND vi.di f f >

threshold1 THEN

vi.p← true

nV ← 1; nSV ← 1

Q[0]← vi

head← 0; tail← 1

WHILE head < tail

FOR each neighbor nb j of Q[head]

IF nb j.iss AND NOT nb j.p THEN

nV ← nV +1

IF nb j.di f f ≥ threshold1

THEN

nSV ← nSV +1

ENDIF

nb j.p← true

Q[tail]← nb j

tail← tail +1

ENDIF

ENDFOR

head← head +1

ENDWHILE

IF nSV > threshold2×nV THEN

FOR k = 0, . . . tail−1

extract polygons in Q[k]
NE[RDS.map[Q[k]]]← true

ENDFOR

ENDIF

ENDIF

ENDFOR

FOR each component ci(i≥ 1) in RDS

IF NOT NE[ci] THEN

n1← number of voxels in ci

n2← number of voxels in ci whose counter-

parts in NRDS also contain polygons.

IF n2 > threshold3×n1 THEN

retrieve the polygons in ci

ENDIF

ENDIF

ENDFOR

Algorithm 2: Pseudo-code for isosurface extraction for

a non-reference dataset

3 THRESHOLDS AND THEIR SIG-

NIFICANCE

In this section, we analyze how thresholds control

the outputs. We consider a two-dimensional case but

our discussion and all conclusions apply to a three-

dimensional case. Imagine that the components from

the reference dataset and the non-reference dataset are

laid over each other in space (Fig. 3). We color the

RDS isosurface (isoline) blue and the NRDS isosurface

(isoline) red. There are three cases for each component

in the output for a non-reference dataset:

• Case I: One component from the non-reference

dataset does not touch any component from

the reference dataset (Fig. 3 (a)). If the voxel

covering of the component contains more than

threshold2 significant voxels, the polygons

from the non-reference dataset are extracted.

Otherwise, the polygons are missing in the

output.

• Case II: One component from the reference

dataset does not touch any component from the

non-reference dataset (Fig. 3 (b)). This polygons

are not retrieved and hence is missing in the

output.

• Case III: One component from the reference

dataset overlaps another component from the

non-reference dataset (Fig. 3 (c) ).

– Case III (i): The component from the

non-reference dataset contains more than

threshold2 portion of significant voxels. The

polygons contained in that component from

the non-reference dataset (i.e. the red one)

will be extracted. The polygons from the

reference dataset (i.e., the blue one) are not

retrieved and are missing in the output.

– Case III (ii): The component from the refer-

ence dataset contains no more than threshold2

portion of significant voxels and the overlap-

ping of these two components is more than

threshold3 portion of the total number of the

voxels in the component from the reference

dataset (In other words, the green voxels in

Fig. 3 (c) count less than 1− threshold3 por-

tion of the number of the voxels in the com-

ponent from the reference dataset). The poly-

gons from the reference dataset (the blue one)

are retrieved and the polygons from the non-

reference dataset are missing in the output. In

other words, the exact isosurface of the non-

reference dataset (the red one) in that region

is approximated by the isosurface of the refer-

ence dataset (the blue one).

100





one or two large components that extend over almost

the entire scene. If this is the case, then these big com-

ponents are either extracted or ignored based on the

thresholds. If the components are not extracted, then

large portions of the isosurfaces are retrieved or miss-

ing. If they are extracted, it takes more time than the

normal processing time.

5 ON-THE-FLY ISOSURFACE EX-

TRACTION

Our method assumes the data coherency. In some sit-

uations, the shape similarity/difference may not be re-

flected by voxel values. Consider the case where two

isosurfaces differ only by a shift of one voxel size. The

shapes of the isosurfaces are the same but the voxels

differ a lot. Here, we provide a way to handle such

situations to take the advantage of multi-component

isosurface extraction. Instead of extracting the poly-

gons at once, we use a simple shape to represent each

component after we find them using Algorithm 1. If

the user recognizes and selects a region of interest,

then the actual isosurfaces within that regions are ex-

acted. We show an example in Fig. 6 where we use

a bounding box to represent a component. Since only

simple shapes are stored and the exact isosurfaces are

extracted on the fly, we not only improve the time and

space but also the user interaction.

6 CONCLUSIONS

In this paper, we have proposed a combination of

multi-component isosurface extraction and data co-

herency methods to support multiple dataset visualiza-

tion. Our approach can detect and highlight interesting

structural differences. By exploring the voxel similar-

ity and component similarity between datasets, we can

improve time and space requirements in the situations

where only a subset of isosurface components differ

significantly between the datasets. We also provide

on-the-fly isosurface extraction based on component

comparison.

ACKNOWLEDGEMENTS

This work is supported by the NSF Career (EAR

0347204) and NSF/EPSCoR (EPS-0701491) grants.

REFERENCES

[aoy07] Aoyama, D.A., Hsiao, J.-T. T., Rdenas,

A.F.C., and Pon, R.K. TimeLine and visu-

alization of multiple-data sets and visualiza-

tion querying challenge. Journal of Visual Lan-

guages and Computing & Computing, vol. 18,

2007

[chi97] Chi, E.H., Riedl, J., Barry, P., and. Konstan, J.

Principles for information visualization spread-

sheets. Proceedings of the 1997 Information Vi-

sualization Symposium.

[han05] Hansen, C.D., and Johnson, C.R. The Visu-

alization Handbook. Elsevier Academic Press,

2005.

[kha06] Khanduja, G., and Karki, B.B. Multiple

datasets visualization with isosurface extrac-

tion. Proceeding (541) Visualization, Imaging,

and Image Processing, 2006

[kha07] Khanduja, G., and Karki, B.B. Using graph-

ics hardware for multiple datasets visualization.

WCSG07 Proceedings (Ed. 2007, V. Skala), pp.

161-168, ISBN 978-80-86943-02-2

[kha08] Khanduja, G., and Karki, B.B. Exploiting

data coherency in multiple dataset visualiza-

tion. Proc. of the 10th Int’ l. Conf. on Computer

Graphics and Imaging (CGIM’ 08), 20

[lew03] Lewiner,T., Lopes, H., Vieira, A.W. and

Vieira, G. Efficient implementation of March-

ing Cubes’ cases with topological guarantees.

Journal of Graphics Tools, 2003.

[lor87] Lorensen, W.E., and Cline, H.E. Marching

cubes: a high resolution 3D surface construc-

tion algorithm. ACM Computer Graphics, vol.

21, 1987

[nub03] Nubera, E., LaMarb, E. C., Hamanna, B., and

Joya, K.I. Approximation of time-varing multi-

resolution data using temporal-spatial reuse. Vi-

sualization and Data Analysis, 2003

[she96] Shekhar, R., Fayyad, E., Yagel, R., and Corn-

hill, J.F. Octree-based decimation of march-

ing cubes surfaces, IEEE Visualization, Pro-

ceedings of the 7th conference on Visualization

1996.

[wil92] Wilhems, J. and Gelder, A.V. Octrees for

faster isosurface generation. ICM Trans. Graph-

ics, Vol. 11, No. 3, pp. 201-227, July 1992.

[yar98] Livnat, Y., and Hansen, C. View Depen-

dent Isosurface Extraction. IEEE Visualization,

1998.

[web01] Weber, G.H., Kreylos, O., Ligocki, T.J.,

Shalf, J.M., Hagen, H., Hamann, B., and Joy,

K.I. Extraction of crack-free isosurfaces from

adaptive mesh refinement data. Approximation

and Geometrical Methods for Scientific Visual-

ization, pp.19-40, 2001

[wes99] Westermann, R., Kobbelt, L., and Ertl, T.

Real-time exploration of regular volume data by

adaptive reconstruction of iso-surfaces. The Vi-

sual Computer, vol. 15, pp. 100-111, 1999.

102



0.42M triangles 0.037M new triangles 0.43M new triangles

1.03M triangles 0.098M triangles 1.0M triangles

1.34M triangles 0.20M triangles 1.3M triangles

1.65M triangles 0.49M triangles 1.6M triangles

Figure 5: The first column are the isosurfaces for the reference dataset. The second column are the approximated

isosurfaces for the non-reference dataset. The third column are the exact isosurfaces for the non-reference dataset.

The blue components are the components not retrieved and hence are unique to the reference dataset. The red

components are extracted exactly from the non-reference dataset. The white components are recognized as com-

mon components by our approach. The rows are for the isovalue 0.01, 0.018, 0.02, 0.023 respectively. We can

easily see that some disjoint components from the reference dataset merge together to form a new component in

the structure from the non-reference dataset. Those components are successfully identified by our approach.

103 Journal of WSCG



Figure 6: On-the-fly isosurface extraction. Each component is represented as its bounding box. The boxes are

colored according to their size. A user recognizes a region of interest by noticing a big yellow box unique to

one dataset (i.e., the big yellow box in the bottom left of the top right window) and selects the region so that the

isosurfaces within that region are extracted from both datasets.

104


	!_2010_J_WSCG_1-3.pdf
	E23-full.pdf


