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ABSTRACT

Starting from the computation of a covariance matrix
of neighborhoods in a point cloud, streamlines are uti-
lized to reconstruct lines of linearly distributed points
following the major Eigenvector of the matrix. This
technique is similar to fiber tracking in diffusion ten-
sor imaging (DTI), but in contrast is done mesh-free.
Different weighting functions for the computation of
the matrix and for the interpolation of the vector in the
point cloud have been implemented and compared on
artificial test cases. A dataset stemming from light de-
tect and ranging (LIDAR) surveying served as a testbed
for parameter studies where, finally, a power cable was
reconstructed.
Keywords: tensor-field visualization; streamlines;
mesh-free methods; particle systems; point cloud; co-
variance matrix; fiber tracking; LIDAR; DT-MRI

1 INTRODUCTION

Reconstructing lines from point clouds has an impor-
tant application in light detection and ranging applica-
tions (LIDAR). The surveying of power lines and their
geometrical analysis is of great interest for companies
that transmit electrical energy. Large networks of elec-
tric facilities have to be maintained to guarantee stable
electrical power supply and prevent power outages. LI-
DAR surveying is a suitable technique to either detect
damages on the electrical facilities or detect high grow-
ing vegetation in power line corridors [19] [15]. We
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experiment on a new method to reconstruct linear struc-
tures, stemming from airborne LIDAR surveying. We
utilize a method inspired by diffusion tensor imaging
(DTI) fiber tracking developed, originally, for magnetic
resonance imaging (MRI) to track neuronal structures
in the human brain [5].

1.1 Related Work

Current algorithms for reconstructing power lines are
usually based on data filtering followed by a segmen-
tation of the filtered and reduced point cloud either di-
rectly on the point cloud data or on a rastered 2D im-
age. Melzer [18] first computes a digital terrain model
(DTM) by using the method by Kraus [14] to remove
terrain points. The remaining points are projected onto
a 2D gray-scale raster (image). A Hough-Transform
(e.g. [11]) is utilized iteratively to detect straight lines.
Later, Melzer [17] improved the segmentation of LI-
DAR data also for power cables, based on the so called
mean shift clustering, originally developed for pattern
recognition [9]. Liu et al. [16] introduced a methodol-
ogy based on statistical analysis to first remove ground
points. Then, they project points onto a 2D gray-
scale raster (image) and do a Hough-Transform simi-
lar to Melzer [18], but use a different technique for the
Hough-Transform [8] to detect straight lines. Jwa et
al. [13] developed a four step method. First they se-
lect power-line candidates, by utilizing a voxel based
Hough-Transform to recognize linear regions. After a
filtering process they construct line segments based on
geometric orientation rules and, finally, use a voxel-
based piece-wise line detector to reconstruct the line
geometries.

Weinstein et al. [23] worked on tracking linear struc-
tures in diffusion tensor data stemming from MRI. Be-
sides following the major Eigenvector they developed
some rules for overcoming areas of not linear diffusion.
The flow of Eigenvectors was also used for segmen-
tation and clustering in brain regions as, for example,
shown in [6] and [20]. Jones discusses the study of con-
nections in human brains. He states that tracking the
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diffusion directions is still not solved a in stable way
and is an active research area [12].

Our work is based on previous work on the direct vi-
sualization of the covariance matrix describing the lo-
cal geometric properties of a neighborhood distribution
within in a point cloud, the so called point distribution
tensor [21].

1.2 Our Approach

In our method we do not want to remove any points
but operate on the entire dataset to avoid artifacts due
to a complex point removal method. Instead, we first
compute the point distribution tensor for each point.
Eigen-analysis of the tensor yields the major Eigenvec-
tor, which indicates the dominant orientation of a point
distribution. We may follow this orientation by comput-
ing streamlines along this dominant Eigenvector field in
regions where one Eigenvalue dominates, so-called lin-
ear regions. In contrast, regions where the points are
distributed more isotropic, are indicated by the point
distribution tensor’s Eigenvalues becoming more simi-
lar values. We want to avoid these regions, as they will
not correspond to power cables. This approach is very
similar to the fiber-tracking approach in medical visu-
alization, but in our case the integration of the Eigen-
vectors needs to be done in a mesh-free way, merely
on a point distribution rather than uniform grids. Thus,
it can be applied to airborne LIDAR data without re-
sampling to uniform grids (which would reduce data
resolution and introduce artifacts due to the chosen re-
sampling method).

1.3 Overview of the Paper

Section 2 presents the mathematical background and
describes the implementation of the algorithm in sec-
tion 2.2. Section 2.3 shows verifications by means of
simple artificial point distributions. Here, the influence
of different weighting functions on the tensor computa-
tion and the vector field interpolation during streamline
integration is investigated. Also, two different numeri-
cal integration schemes are tested. In section 3 one set
of power cables is reconstructed from a LIDAR data set
stemming from actual observations. We then explore
the available parameter space for weighting and inte-
gration in order to identify the best values for the given
scenario.

2 ALGORITHM

2.1 Background

In [21] we defined the “point distribution tensor” of a
set of N points {Pi : i = 1, ...,N} as

S(Pi) =
1

N

N

∑
k=1

ωn(|tik,r|)(tik ⊗ tτ

ik), (1)

whereby ⊗ denotes the tensor product, τ the transpose
and tik = Pi −Pk. ωn(|tik|,r) is a weighting function de-
pendent on the distance of a point sample to a center
point Pi and a radius of a neighborhood r, which can
be constant or defined by a scalar field on the points:
r(Pi). We did not find a generally optimal solution for
the weighting function, but implemented seven choices
for our first investigations:

ω1 = 1 (2)

ω2 = 1− x/r (3)

ω3 = 1− (x/r)2 (4)

ω4 = r/x2 (5)
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


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(7)

ω7 =















(3− c)5 −6(2− c)5 +15(1− c)5 [0,1)
(3− c)5 −6(2− c)5 [1,2)

(3− c)5 [2,3)
0 [3,∞)

(8)

with a := 2x
r

, b := 2.5x
r

and c := 3.0x
r

, illustrated in Fig-
ure 1. The three functions ω5, ω6 and ω7 are typi-
cal Gauss-like spline kernel functions used in smooth
particle hydrodynamics (SPH) [10]. We use the same
weighting functions for interpolating the vector field
during Eigenvector integration. Even though, interpo-
lation of Eigenvectors and interpolating tensors and lo-
cally computing its Eigenvectors lead to different re-
sults, we utilize the interpolation of the Eigenvector as
a simpler implementation.
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Figure 1: Different weighting functions of the distance interval 0.0 to 2.0,
r = 2.0. Different slopes and characteristics are visualized. The square function
(green) was clamped for axis scaling reasons and would grow further quadrat-
ically to the origin. The weights were normalized regarding to the integral of
the curve in the interval. The curve numbers match the index of the weighting
function: 1-average illustrates ω1, 2-slinear illustrates ω2, ...

We utilize tensor splats [1] for direct visualization of
the tensor field. Figure 2 illustrates a point distribution
along the edges of a rectangle and the corresponding
tensor visualization with a neighborhood being 1/5 of
the longer rectangle edge. We then use Westin’s shape
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analysis method [24] to determine the so-called linear,
planar and spherical shape factors. Points having a lin-
early distributed neighborhood are displayed as green
oriented splats. Planar distributions are displayed as red
disks. The linearity of the distribution tensor is shown
in Figure 4 and Figure 5.

Figure 2: Distribution tensor visualization of a rectangular point distribution.
Top: Points on a rectangle. Bottom: Tensor splats [1] of the point distribution
tensor [21]. At each point one splat, a small textured and oriented disk, is drawn
to represent the properties of the tensor’s shape.

Visualizing streamlines is a common method to study
vector fields. Starting from some seeding point, or ini-
tial condition, a curve q(s) is computed which is always
tangent to the vector field, solving the equation:

q̇(s) =V (q(s)) (9)

with s the curve parameter and V the vector field. Solv-
ing the differential equation at an arbitrary coordinate
location Q within in the discretized data domain re-
quires interpolation of the vector field. For mesh-free
interpolation within a point cloud we use weighting
functions parameterized with a specific radius of influ-
ence:

v(Q) =
∑

N
i=1 v(Pi)ω(|Q−Pi|,r)

∑
N
i=1 ω(|Q−Pi|,r)

, (10)

with v(Pi) representing the vector at point Pi.

2.2 Software Engineering Aspects

The algorithm was implemented using C++ within the
VISH visualization shell [2]. The implementation ex-
tends a framework for computing integral geometries
in vector fields, such as streamlines, pathlines or time
surfaces. The streamline integration and visualization
is separated into three different components: seeding,
integration and displaying. The first component defines
the initial conditions or seeding geometry. For com-
puting streamlines within vector fields seeding points

are sufficient. However, for streamlines of Eigenvec-
tor fields also an initial direction must be specified, be-
cause the Eigenvector is undirected. Integration based
on an orientation continuing an user-chosen direction
must be possible. Thus, requiring also a vector field on
initial seeding points to disambiguate the Eigenvectors’
orientations into unique directions.

Two new integration modules were developed. The
first one extends the original streamline module, which
was designed for vector field integration in uniform and
curvilinear multi-block grids [4], to Eigenvector field
integration. The second module expands this method
further to allow integrating Eigenvector fields on mesh-
free grids. One of the seven weighting functions (Equa-
tions 2, 3, 4, 5, 6, 7 and 8) and the radial influence
weighting parameter can be specified for the interpo-
lation of the Eigenvector inside the field domain. A
range query on a KD-tree returns the points and their
distances within the neighborhood of radius r. Equa-
tion 10 is utilized and Eigenvectors are aligned in ori-
entation with respect to the Eigenvector of the closest
neighbor. The Eigenvector is reversed if the dot prod-
uct is negative. The integration of the streamline stops
when the neighborhood becomes empty. Both integra-
tion modules support two different numeric schemes for
the integration: explicit Euler and DOP853 [7]. Explicit
Euler is used to get a fast yet inaccurate result. DOP853
is more expensive due to its adaptive stepsize but gives
highly accurate results. When aiming at the same accu-
racy, DOP853 is faster than the Euler method by orders
of magnitude. It is a Runge Kutta method of order eight
using order five and three for error estimation and adap-
tive step size control, providing dense output. Accuracy
measures and timing measures comparing the two inte-
gration methods were done, e.g., in [3].

The display module utilized here is reused from ear-
lier development and implements color-coded illumi-
nated lines utilizing OpenGL, allowing interactive nav-
igation through the generated streamlines. Other mod-
ules, such as displaying ribbons [3] are also available.

2.3 Test Cases

We investigate the two Eigenvector integration modules
on an uniform grid and on mesh-free grids. The Eigen-
vector field of a DTI-MRI scan [1], originally given on a
uniform grid (128x128x56), was converted into a mesh-
free grid, a point cloud holding the same Eigenvectors:
Figure 3 (a) shows a volume rendering of the trace of
the diffusion tensor along with the streamlines, reveal-
ing some brain structure and the location of the stream-
lines. Figure 3 (b) shows the comparison of Eigenvec-
tor streamlines computed on the uniform grid (blue) and
Eigenvector streamlines computed in the point cloud
(white). Both integrations were done with explicit Eu-
ler and a step size of 0.05. The size of a uniform
grid cell is about 0.2, thus, utilizing about four integra-
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Figure 3: Comparison of the influence of integration of an Eigenvector field
given on an uniform and a mesh-free grid. A mesh-free grid was generated
from the uniform for testing. The arrows mark the start positions and directions
of small Eigenstreamlines of a MRI diffusion tensor field. Streamlines on the
uniform grid are blue. On the mesh-free grid they are white.

tion points per grid cell and requiring data interpolation
within each cell. The length of each streamline is set to
1.0. Tri-linear interpolation was chosen for the uniform
grid to compare the results with the linear weighting
function ω2 (slinear) for the mesh-free grid. The gen-
erated lines coincide on most cases. About 9% (13 of
144) do not coincide well. Some start in different direc-
tions. Here, the seeding vector field is almost perpen-
dicular to the initial direction and the influence of the
interpolation method results in different initial stream-
line directions. This issue could be cured by integrat-
ing Eigenvector streamlines in both directions starting
from the initial seeding points, which would also allow
avoiding the seeding vector field.

(a) average, slinear

(b) square, sphcubic

(c) sphquadratic, sphquintic

Figure 4: Influence of different weighting functions on the scalar field linearity,
compare Figure 1. The linearity is illustrated by offset and over-scaling in z-
axis, and gray-scale color-map on the points. Tensor splats directly show the
distribution tensor.

Next, the influence of the different weighting func-
tions on the computation of the distribution tensor was
investigated. We define an analytic distribution of points
along a rectangle as test case for computing the point
distribution tensor. The rectangle is set up using a
width of 10 and a height of 8. The radius parameter
for the neighborhood is r = 0.2. Figure 4 illustrates
the point distribution tensor using tensor splats and its
corresponding linear shape factor by offsetting, over-
scaling and a gray-scale color-map. The offsetting ap-
proach for the linear shape factor clearly illustrates the
influence of the weighting: The “average” method re-
sulting in a very abrupt change in the slope around cor-
ners points. The “slinear” weighting function results
in smoother changes and a more localized influence,
since closer points are weighted stronger than more dis-
tant points. Square shows the smoothest result. The
three SPH spline kernels have an increasing locality
with higher order of the kernel, when comparing sphcu-

bic, sphquadratic and sphquintic. This is demonstrated
in Figure 5 as well: Figure 5(a) shows the result of the
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cubic and quadratic SPH kernel function. When the ra-
dius of the neighborhood is increased to match the ker-
nels there is no visible difference between the sphcubic

in Figure 5(a), sphquadratic and sphquintic in Figure
5(b) in the resulting linearity.

(a) sphcubic r = 0.2, sphquadratic r = 0.2

(b) sphquadratic r = 0.25, sphquintic r = 0.3

Figure 5: Different orders of the SPH kernel functions are compared, see Fig-
ure 1. (a) sphcubic and shpquintic using the same radius for the neighborhood.
(b) sphquadratic and shpquintic, with adjusted neighborhood radius, have a
similar result as the sphcubic (a)-left.

The influence of the integration scheme on the Eigen-
streamline integration is demonstrated in Figure 6. The
distribution tensor of a circular point distribution was
computed using the ssquare weighting function. Ten-
sor splats show the undirected Eigenvector, vector ar-
rows show how the vector is directed within the internal
vector representation. One Eigenstreamline is seeded
downwards at the rightmost point of the circular point
distribution and follows the undirected vectors. The top
image shows Euler integration. Decreasing the step size
would result in a more accurate integration. But, clos-
ing the gap of the integrated circle requires such a small
step size, that the Runge Kutta method outperforms the
Euler method. The 8th order Runge Kutta method suc-
cessfully closes the gap and reconstructs a circle from
the circular point distribution, as shown in the bottom
image. Also, a square-shaped point distribution was
tested as shown in Figure 7. The length of a side is
10. Here, the influence of different weighting functions
on the interpolation of the Eigenvector field was inves-
tigated. The distribution tensor was computed using
the ssquare weighting function with r = 2. An Eigen-
streamline is seeded downwards in the mid of the right
edge. It follows the undirected vectors and flows around
the corners of the rectangle. At each corner some error
is introduced and the streamline is moving apart from

Figure 6: Comparison of different numerical integration schemes in a circu-
lar point distribution. One streamline (white) is seeded at the east-pole of the
circle pointing southwards. Tensor splats and vector arrows illustrate the point
distribution tensor and major Eigenvector. Note, that the Eigenvectors change
orientation at north-east and south-west. Top: explicit Euler. Bottom: DOP853.

the original point distribution. Integration was done
using the DOP853 method. Different weighting func-
tions, mostly with r = 1, were tested for vector field
interpolation. The length of the horizontal gap between
the end and the start of the streamline was used as a
measure for the integration error. Figure 8 shows the
different errors in a bar diagram. The two best results
were achieved using the ssquare and average weighting
function.

Figure 7: Comparison of Euler and DOP853 streamline integration on a
square-shaped point distribution. Tensor splats and Eigenvectors are visual-
ized besides the streamline (white) seeded downwards at the center of the right
edge of the rectangle.
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Figure 8: Comparison of errors in the square integration using different weight-
ing functions for the vector interpolation. The weighting function for comput-
ing the tensor was ssquare, compare Figure 1. The values represent the hor-
izontal distance between start and end point of the streamlines. The square’s
length is 10.0. The colors of the bars match the colors in Figure 1.

3 RESULTS

We used a dataset with circa eight million points cov-
ering a water basin close to the Danube in Austria. It
was acquired by a Riegl’s hydrographic laser scanner
VQ-820G [22]. Figure 9 shows the point cloud colored
by the linearity of a distribution tensor analysis. Here,
we wanted to extract one power cable. The cable in the
mid of the three lowest power cables suspended from
the tall power pole. The white arrows mark the explic-
itly user-specified position and direction used as initial
conditions of the streamline integration.

Different parameters and combinations of weighting
functions for the tensor computation and the Eigenvec-
tor interpolation were investigated. The choice of a cer-
tain neighborhood radius and good weighting functions
was crucial to successfully follow the 280 m long power
cable. 41 parameter combinations were tested. For
the tensor computation different radii r = 0.5,r = 1.0
and r = 2.0 and the weighting functions average, slin-

ear, ssquare and the SPH kernels for the tensor were
used. For the vector interpolation radii r = 0.25,r =
0.5,r = 1.0,r = 2.0 and r = 3.0 and all seven weight-
ing functions were used. Figure 10 shows a view along
the power cable, with a non optimal configuration. The
Eigenstreamline is not following the cable to the end
because it moves apart more than 1.0 m from the cable,
resulting in an empty neighborhood during integration.

Best results were achieved by using the ssquare

weighting with r = 2.0 for tensor computation and the
sphquintic weighting with r = 3.0 for the vector inter-
polation. Results show that a more smooth weighting
in the tensor computation and a more local interpolation
weight are a good combination for reconstructing linear
structures. Using the same weighting for tensor compu-
tation and vector interpolation did not work, see Figure
11 (b). The global error of the reconstruction at the end
of the power cable is about 80 cm and needs to be fur-
ther improved. The cable could only be followed using
DOP853 integration. Explicit Euler failed to produce
acceptable results. When comparing Figures 11(a) and
11(c) the global error is almost the same. The main

difference is the local shape of the Eigenstreamline. A
larger vector interpolation radius results in a smoother
curve. Figure 11(c) shows the best reconstruction of
the investigated technique and described parameters.

Figure 9: Overview of the LIDAR data set. The two upper images show the
point cloud as points and as tensor splats (taken from [21]). In the two lower
images points are colored by linearity. Three arrows mark the explicitly user-
specified seeding points and directions of the streamline computation located at
the mid lower power cable (magenta) of the larger power pole.

4 CONCLUSION

A new method of reconstructing power cables, or other
linear structures in general, in point clouds was pre-
sented. The method employs the point distribution
tensor as presented in previous work [21]. Different
weighting functions for the tensor computation and the
interpolation of the major Eigenvector field were im-
plemented and compared. Streamline integration was
verified on artificial test cases and applied to a LIDAR
point cloud dataset acquired from actual observations.
Finally, a power cable was reconstructed and visualized
using this dataset.
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Figure 10: Power cable reconstruction via streamlines. The distribution tensor
was computed using the average r = 2.0 weighting and the vector interpolation
was done with the ssquare r = 1.0 weighting. Top: Points colored by linearity.
Bottom: Tensor splats illustrate the distribution tensor. Streamlines are moving
apart from the power cable and break before they can reconstruct the full 280
m of cable.

(a) Tensor: ssquare r=2, Vectorfield: sphquintic r=1

(b) Tensor: sphquintic r=2, Vectorfield: sphquintic r=2

(c) Tensor: ssquare r=2, Vectorfield: sphquintic r=3

Figure 11: Comparison of different parameters and weighting function com-
binations of the computation, finally resulted in a successfully reconstructed
power cable. The LIDAR point cloud is colored by linearity of the distribution
tensor. The three Eigenvector streamlines reconstruct a 280 m long cable.

5 FUTURE WORK

Other weighting functions for computing the tensor and
doing the interpolation during the streamline integra-
tion need to be tested. Automatic determination of the
optimal combination of weighting functions and also
their parameters will be the goal of further investiga-
tions. Seeding points and directions for computing
the streamlines need also to be chosen automatically,
for example, by taking tensor properties into account.
Following the major Eigenvector of points with high
planarity or sphericity needs to be prevented during
streamline integration. Finally, more datasets should be
explored to stabilize the method. Furthermore, minor
changes of the algorithm would enable streamline inte-
gration in datasets stemming from SPH simulations.
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