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ABSTRACT
A geometrical modelling tool allowing construction of models of living cells and their organelles would
facilitate understanding of biological processes at the cellular level. Here we describe a technique of
skeletal muscle cells modelling, and a construction of the model based on the theory of implicit surfaces
and their binary operations. The geometry of the cell is defined by means of parallel modelling planes
perpendicular to its longitudinal axis. In each plane, the number, shape and topology of cell organelles is
defined by means of functionally represented polygons. The model is obtained by interpolation between
the planes. This approach allows to generate approximations of surfaces and to estimate the volume and
surface densities of organelles in the model.
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1. INTRODUCTION
Structure is a fundamental category intimately as-
sociated with function of biological objects. Func-
tional features of living cells are often related to
specific intracellular organelles or to coordinated
action of several organelles. An important deter-
minant in their function is the size, which ranges
from few nanometers to many microns, the shape,
the surface area, and the volume. These data
can be obtained by methods of modern stereology
based on geometrical statistics [Wei73]. Three-
dimensional geometrical characteristics of the or-
ganelles are estimated from electron microscopic
images of very thin sections of the specimen.
There are several practical problems, such as ap-
propriate number of images for analysis, or se-
lection of a proper test grid with respect to the
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size, density and orientation of intracellular struc-
tures. In other words, and in analogy to classi-
cal metrological problems, stereology of the micro-
world needs a practical calibration tool that could
be used in everyday practice.

A typical feature of the striated muscle cells,
or muscle fibres, is their prolonged shape. Along
the longitudinal axis an elementary motif, the sar-
comere, is repeated giving rise to a striated pat-
tern seen under the microscope. The sarcom-
ere consists of myofibrils, which span the length
of the cell. In the cross section, the myofibrils
show a curved polygonal shape of about few hun-
dred nanometers in diameter. The mitochondria
of irregular rounded shape are localized around
the myofibrils. Transversal (T) tubules are dis-
tributed perpendicularly to the long axis of the
muscle fiber. Sarcoplasmic reticulum forms a fine
network of tiny tubules and cisterns surrounding
myofibrils along their length. An important fea-
ture of individual structures (organelles) is their
disjunctive character. Therefore, each structure
should be bound in exact delimited space. The
free space between two neighbouring organelles
can reach many nanometers. With respect to
these conditions, building of the model should al-
low definition of the shape, topology and location
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of individual organelles.

Recently, substantial progress has been made
in medical applications working with discrete im-
ages representing sections of an object obtained
by sophisticated instrumentation, which allows
reconstruction of specific objects in 3D. There
is a need, however, to generalize the 3D fea-
tures of a given class of objects, or in other
words, to work with an average, as opposed to
a typical 3D object, which characterizes an en-
tire class, e.g., an average heart. Such objects
can be created by means of modelling in 3D.
Turk and O’Brien [Tur99] presented an approach
for creating an n-dimensional implicit function
from parallel sets of (n-1)-dimensional scattered
data. There are methods for computation of
two-dimensional signed distance fields from in-
side/outside characteristics of a structure in the
image of a section. Pasko et al [Pas96] developed
a theory of functional representation of polygons,
which may serve as the basis for creation of two-
dimensional distance-based real functions approx-
imating closed polygons and their interconnection
with the three-dimensional implicit solids. This
implicit surface representation may then enable
to accomplish modelling of 3D objects from stere-
ological data.

The aim of this work was to develop basic tools
for building models to be used for verification of
stereologic measurements of muscle cells. The
software is based on functional representation of
objects with consideration of specific geometrical
properties of cellular organelles and of their topol-
ogy within the cell.

2. FUNCTIONAL REPRESEN-

TATION OF POLYGONS

A two-dimensional non-self-intersecting (simple)
polygon is defined by a finite set of segments.
These segments are edges closed by vertices. In
a functional representation, the function F (x, y)
describing a simple polygon takes zero values at
polygon edges [Pas96]. A convex polygon can
be represented as an intersection of half-planes,
defined by edges of the polygon, using the R-

function defining the intersection. Representation
of concave polygons is in general more complex.
Dobkin and colleagues [Dob93] presented an ef-
ficient algorithm for finding a monotone boolean
formula. This formula represents a concave poly-
gon by set-theoretic operations where each half-
plane appears exactly once and no additional half-
planes are used (Figure 1). In contrast to other
techniques, this formula does not generate arti-
facts caused by ”internal zeroes” [Pas96].
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Figure 1: An example of a concave polygon.
The corresponding formula: F = f1 ∧ f2 ∧ f3 ∧

((f4 ∧ f5) ∨ f6 ∨ f7) ∧ f8 ∧ f9 ∧ f10, where fi is a
halfspace defined by a line passing through points
Ai and Ai+1, and ∨,∧ are R-functions of an union
and an intersection.

3. MODELLING STRATEGY

In modelling the striated muscle cells we limit our-
selves only to one or at most several sarcomeres,
which represent the basic repetitive pattern of the
cell. The geometry of the muscle fiber is defined
by means of parallel modelling planes perpendicu-
lar to the longitudinal muscle cell (z) axis. In each
plane (Figure 2) the number, shape and topology
of cell organelles is defined by means of function-
ally represented polygons.

The global cell structure within each modelling
plane is defined by a planar continuous graph
which divides the plane into areas limited by
closed polygons. The functional representation
of polygons, as it was introduced in Section 2.,
exactly describes a given polygon, with straight
edges and sharp corners. However, our goal is
to model smooth objects with irregular shapes.
Therefore instead of the basic R-functions we use
blending functions [Pas94] based on R-functions

that join objects in a single complex with smooth
edge transition.

In the case when a single organelle is repre-
sented by several disjunctive contours within the
modelling plane, its resulting functional represen-
tation is given by their union.

Organelles of a given muscle cell are defined
by means of an ordered sequence of modelling
planes along the z axis of the cell (Figure 3). A
functional representation of the organelle in an ar-
bitrary point is interpolated from in-plane values.



Figure 2: A modelling plane divided into closed
polygons and their corresponding contours.

4. THE MUSCLE FIBER MODEL

We model four basic organelles of a muscle
fiber (Figure 4): myofibrils, mitochondria, T-
tubules and sarcolemma.

Myofibrils are cylindrical objects, oriented in
parallel and organized in bundles. They span the
whole length of the cell (z-axis) and usually have
rounded shapes. Since we model only a part of the
cell (the sarcomere), myofibrils cross all modelling
planes and are not closed from top and bottom.

Mitochondria are closed, elliptically shaped, ob-
jects of irregular form. They spread between and
around myofibrils. Since they are closed, each is
defined in a finite number of modelling planes. In
order to create smooth ”rounded cap” to close
a mitochondrion, we modified the interpolation
function by a negative weight between the two up-
permost and the two lowermost modelling planes,
where the mitochondrion is defined.

Sarcolemma is a membrane envelope that sur-
rounds the muscle cell. The value of the volume
limited by sarcolemma is needed to compute the
volume and surface densities of intracellular or-
ganelles. The functional representation of the sar-
colemma in a given modelling plane is defined by
the outer edges of the planar graph that defines
the myofibrils and mitochondria.

T-tubules are continuations of the sarcolemma
that form a planar network around the myofib-
rils, perpendicular to the z axis. Each T-tubule is
generated as R-function of a union of segments—
skeletal contributions [Fer97]. These segments are
defined by a ”randomly” chosen contiguous sub-
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Figure 3: Creation of the muscle cell model by
linear interpolation between 16 modelling planes.

set of the set of polygonal edges defining myofibrils
and mitochondria.

For all organelles in the cell, the condition of
disjunction must hold. Therefore the T-tubule
system has to lie in between the remaining struc-
tures. The required minimal distances between
the T-tubule and the polygon contours represent-
ing the myofibrils and mitochondria is achieved ei-
ther by shrinking the neighbouring organelles,i.e.,
by changing their corresponding iso-contour val-
ues, or by changing the width of the T-tubule,i.e.,
by choosing an appropriate distance value from
the leading edge shared by the neighbouring poly-
gons.

5. CONCLUSION AND FUTURE

WORK
We have developed a modelling tool, based on par-
allel modelling planes and blended functional rep-
resentation, which allows construction of 3D mod-
els of striated muscle cells. The generated models
satisfactorily represent ultrastructural features of
the cells from the point of organelle composition,
i.e., their shape, size, surface and relative posi-
tioning, as well as from the point of stereology, i.e.,
the related volume and surface densities of cellular
components. The principles used to define the my-
ofibrils, mitochondria, t-tubules, and sarcolemma,
were found very well-behaved and useful. Never-
theless, they were not appropriate for generation
of the sarcoplasmic reticulum. Due to its very



Sarcolemma Mitochondrion

Myofibrila

T-tubule

Figure 4: An example of the muscle fiber model.
For clarity, some organelles under sarcolemma are
hidden.

complex and fine structure, modelling of the 3D
features of the sarcoplasmic reticulum asks for a
different method of its generation.

Testing of the software with models reproduc-
ing real cells revealed some possible improvements.
The Marching Cubes algorithm [Lor87], used to
tesselate the organelle surfaces for visualization,
was found to generate an unnecessarily high num-
ber of triangles. An alternative approach would
be to use algorithms such as boundary tracking
for finding an isosurface [Art80] or the application
of mesh simplification techniques [Kob98]. Alto-
gether, the generated models can be used not only
for presentation purposes but also for testing of
alternative stereological methods for their appli-
cability in specific scientific problems.
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