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RESUMO 

 

Diversidade taxonômica é a variedade de espécies presentes em uma determinada comunidade, 

enquanto a diversidade funcional é a variedade de atributos que tem relação com o 

funcionamento dessa comunidade. Abordagens baseadas exclusivamente na identidade das 

espécies têm sido complementadas por estudos visando os atributos funcionais das espécies, já 

que a primeira possui certas limitações em estudos de comunidades. No presente estudo, 

testamos se a diversidade taxonômica e funcional de aranhas respondia mais significativamente 

a variação intraespecífica ou interespecífica de atributos de bromélias, sendo estas hospedeiras 

das espécies de aranhas estudadas. Lançamos mão de um método estatístico que quantifica a 

beta-diversidade de aranhas em resposta a variação intraespecífica e interespecífica de 

bromélias. Fizemos também uma decomposição dos atributos de bromélias na sua filogenia a 

fim de investigar se existia algum nó que contribuía desproporcionalmente para a diversidade 

de aranhas atual naquele local. Os dados deste estudo foram obtidos em uma área de Floresta 

Atlântica Neotropical localizada no estado do Espírito Santo, sudeste do Brasil. A diversidade 

funcional de aranhas foi obtida por meio de atributos relacionados ao uso do hábitat (atributos 

de resposta), enquanto os atributos das bromélias foram obtidos a partir da possibilidade de uso 

do hábitat pelas aranhas (atributos de efeito). Buscamos estudos filogenéticos recentes para 

decompor os atributos das bromélias na filogenia. Utilizamos a contribuição proporcional de 

variação intraespecífica e interespecífica dos atributos das bromélias como variáveis preditoras 

da diversidade de aranhas. Nossos resultados mostraram que a variação interespecífica de um 

dos atributos de bromélias afetou positivamente a diversidade beta de aranhas (P < 0.05), 

reafirmando a necessidade de se utilizar abordagens que extrapolem a identidade de espécies 

como medida única ou principal de diversidade. 

 

Palavras-chave: História evolutiva. Interações não-tróficas. Filtro biótico. Artrópodes.  

                        Bromélias. 
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ABSTRACT 

 

Taxonomic diversity is the variety of species present in a given community, while functional 

diversity is the variety of attributes that relates to the functioning of that community. 

Approaches based exclusively on species identity have been complemented by studies aiming 

at the functional attributes of the species, since the former has certain limitations in studies of 

Community Ecology. In the present study, we tested whether the taxonomic and functional 

diversity of spiders responded more significantly to intraspecific or interspecific variation of 

their host plants, bromeliads. We used a statistical method that quantified beta-diversity of 

spiders in response to intraspecific and interspecific variation of bromeliads. We also did a 

decomposition of the bromeliad attributes in the phylogeny in order to investigate if there was 

any node that contributed disproportionately to the current diversity of spiders. The data of this 

study were obtained in an area of Neotropical Atlantic Forest located in the state of Espírito 

Santo, southeastern Brazil. The functional diversity of spiders was obtained through traits 

related to habitat use (response traits), while the traits of bromeliads were obtained from the 

possibility of habitat use by spiders (effect traits). We searched recent phylogenetic studies to 

decompose bromeliad traits into their phylogeny. We used the proportional contribution of 

intraspecific and interspecific variation of bromeliad traits as predictors of spider diversity. Our 

results showed that the interspecific variation of one of the bromeliad traits positively affected 

spider beta diversity (P < 0.05), reinforcing the necessity to use approaches that extrapolate 

species identity as a single or main measure of diversity. 

 

Keywords: Evolutionary history. Non-trophic interactions. Biotic filter. Arthropods.  

                 Bromeliads. 
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1 INTRODUÇÃO 

 

Comunidades ecológicas são assembleias de populações de espécies que co-ocorrem no 

espaço/tempo e interagem potencialmente entre si. A organização de tais comunidades  resulta 

de processos bióticos como competição, predação e parasitismo (HUTCHINSON, 1959; 

LEIBOLD, 1989), abióticos como clima e solo (WEIHER & KEDDY 1995; CHASE 2003), 

que são continuamente moldados por processos evolutivos (TOFTS & SILVERTOWN, 2000; 

ACKERLY 2003). Como resultado, a estrutura (abundância, riqueza e composição) de 

comunidades muda constantemente por processos dinâmicos que são tipicamente variáveis no 

espaço e tempo. Por exemplo, Widenfalk et al. (2016)  avaliaram a influência relativa de 

variáveis abióticas, bióticas e espaciais na diversidade de uma comunidade de colêmbolos, 

tendo como base a composição de espécies e seus atributos. Os autores demonstraram que 

espécies que co-ocorrem localmente são muito diferentes em vários atributos funcionais, mas 

além disso, o aumento da escala espacial, independente da variação abiótica, teve forte efeito 

sobre a composição de espécies e funcional. 

Apesar disso, alguns aspectos permanecem não respondidos quando não 

compreendemos o papel evolutivo na variação funcional das comunidades (WEBB et al., 2002). 

Desse modo, o campo da ecofilogenética nos fornece percepções e avanços conceituais que nos 

ajudam a responder questões como o que causa a convergência (ou divergência) de atributos na 

comunidade (PROVETTE, 2013). De fato, a evolução pode determinar a força competitiva de 

linhagens que ocorrem no mesmo hábitat, uma vez que a semelhança (ou diferença) em seus 

atributos afetam (em termos de aptidão) a força da interação interespecífica e suas respostas a 

gradientes ambientais (HILLERISLAMBERS et al. 2012). Uma abordagem em que plantas 

podem ser consideradas um “habitat vivo” ainda não foi bem explorada, portanto requer estudos 

para entender os efeitos das interações interespecíficas na diversidade funcional e filogenética. 

Tradicionalmente, descritores de riqueza de espécies e de diversidade taxonômica foram 

exaustivamente utilizados como principal dimensão da diversidade tanto na ecologia teórica 

quanto aplicada. Porém, a dificuldade em construir generalizações estimulou pesquisadores a 

explorar diferentes formas de diversidade (DÍAZ & CABIDO, 2001). O uso da riqueza de 

espécies como medida da diversidade foi amplamente aplicado ainda recentemente (MILDER 

et al., 2008; LARSEN & ORMEROD, 2010), apesar de haver algumas limitações como a de 

considerar que todas as espécies são equivalentes em sua resposta ou efeito no ambiente. Não 

obstante, a maioria dos estudos de comunidades de artrópodes são baseados em abordagens 

taxonômicas (incluindo composição e abundância de espécies; FOUNTAIN-JONES et al., 

2015). Contudo, usar somente dados taxonômicos pode restringir o poder preditivo de estudos 
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de comunidades (MCGILL et al., 2006; MENEZES et al., 2010; BARTON et al., 2011), 

especialmente quando comparando áreas com diferentes pools de espécies (FOUNTAIN-

JONES et al., 2015). Isto se confirma quando, de acordo com MCGILL et al. (2006), é 

verificável que diferentes áreas com comunidades funcionalmente semelhantes não 

necessariamente refletem uma comunidade taxonômica ou filogeneticamente semelhantes.  

 De acordo com Tilman (1994), o espaço é um fator essencial que controla a estrutura de 

comunidades, em termos de diversidade funcional. Estudos de como essa substituição de 

espécies varia em resposta a processos em escala espacial e ambiental podem elucidar uma 

variedade de mecanismos que conduzem a distribuição e a diversidade de atributos funcionais 

(WIDENFALK et al., 2016). Por exemplo, Lapinski et al. (2015) estudaram a evolução de 

atributos funcionais de aranhas errantes e demonstraram que a morfologia das pernas continha 

elementos específicos associados a preferência de micro-habitat e habilidade de aderência, 

quando divididas em 3 sub-guildas. Entre esses elementos, destacava-se o padrão de 

escopulação das pernas, que eram surpreendentemente complexos e refletiam a preferência 

ecológica das aranhas. Corroborando com o exemplo anterior, Podgaiski et al. (2013) 

destacaram que abordagens baseadas em atributos funcionais possibilitam uma compreensão 

mecanicista da resposta das comunidades à variação ambiental, porém, ainda são raramente 

usadas para entender a ecologia de artrópodes terrestres. Além disso, nos deparamos com 

terminologias e metodologias inconsistentes (LAMBEETS et al., 2008; VANDEWALLE et  al., 

2010; BARRAGÁN et al., 2011; GERISCH et al., 2011; BIRKHOFER et al., 2015). 

Há muito tempo os ecólogos têm estudado a influência da estrutura do habitat na 

montagem de comunidades biológicas (MACARTHUR, 1958; POUNDS, 1991; WILLIAMS 

et al., 2002). A heterogeneidade do habitat afeta entre outras coisas a composição e a diversidade 

de espécies (HUSTON, 1994; ROSENZWEIG, 1995; ELLINGSEN et al., 2002). Diversos 

estudos sugerem que existem relações intrínsecas entre as características estruturais do habitat 

e a morfofisiologia de animais e plantas (LAWTON, 1983; GONÇALVES-SOUZA et al., 

2010). Mais recentemente, alguns trabalhos têm inclusive discutido que os estudos clássicos 

baseado em medidas taxonômicas podem ser ampliados e, de certa forma aprimorados, com a 

inclusão de previsões associadas com reflexos evolutivos nas comunidades. Porém, ainda não 

se sabe ao certo como e o quanto o hábitat vivo influencia e pode ser influenciado nessas 

relações. Podgaiski et al. (2013) demonstraram que aranhas ocorrendo em habitats mais 

diversos funcionalmente tiveram maior diversidade de atributos. O estudo clássico de Lawton 

(1983) demonstrou o papel das plantas no processo de montagem de comunidades e aumento 

da diversidade de artrópodes. O autor mostrou que diferentes atributos de plantas (nomeados 

por Lawton como “arquitetura”), como tamanho, forma de crescimento e variedade de 
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elementos aéreos influenciam positivamente a riqueza de insetos associados a elas (ver também 

SOUTHWOOD, 1978; MORAN, 1980). Além disso, alguns estudos demonstraram que plantas 

com arquitetura semelhante (e.g., tamanho, formato da folha) favorecem a ocorrência de 

comunidades animais compartimentalizadas (i.e., alta diversidade beta: GONÇALVES-

SOUZA et al., 2015a; PRADO; LEWINSOHN, 2004). De fato, evidências apontam que a 

arquitetura do habitat pode afetar a morfologia corporal e a aquisição de recurso e, portanto, a 

história de vida de artrópodes predadores (PAKEMAN & STOCKAN, 2014; GONÇALVES-

SOUZA et al., 2015b). Porém são necessários mais estudos para embasar melhor e dar força a 

essas evidências. 

Relações mutualísticas entre animais e plantas são comuns na natureza, porém as forças 

que regem essas interações são mediadas por diversos fatores. Bronstein (1994) afirmou que 

existe uma magnitude dos benefícios para ambas as partes, e isso resulta em um continuum, o 

que dificulta a categorização e até mesmo a evolução de certas relações mutualísticas. Por 

exemplo, a quantidade e a qualidade da proteção que formigas oferecem é variável, a depender 

do tamanho da agregação da planta hospedeira mutualista (fornecedora de exsudatos, abrigo, 

etc) e da abundância local de predadores (BRONSTEIN, 1994). Ao contrário de interações 

amplamente estudadas como polinizador-planta, dispersor-planta e formigas-plantas 

mirmecófitas, as relações entre predadores (como aranhas) e plantas são relativamente 

desconhecidas. Relações estreitas entre aranhas (sejam elas bromelícolas ou bromelígenas) e 

bromélias são relatadas na literatura em alguns estudos (e.g., DIAS & BRESCOVIT, 2004; 

ROMERO & VASCONCELLOS-NETO, 2005; DE OMENA et al., 2017;), e até mesmo 

benefícios para ambas as partes são relatados (revisão em ROMERO 2005), porém carecem de 

mais evidências na literatura. 

Em um cenário onde aranhas e bromélias coexistem e parecem responder mutuamente a seus 

atributos funcionais, estudamos os efeitos dessa relação na morfologia de ambos os grupos, 

utilizando uma abordagem filogenética e funcional para responder perguntas que envolvem 

questões ecológicas e evolutivas. Em especial, esperamos que a relação estreita entre aranhas e 

plantas pode ser compreendida a partir de correspondências morfologia-morfologia entre os 

organismos em interação. Por exemplo, a variação espacial da composição (e morfologia) de 

espécies de bromélias gera resposta similar (em termos de composição taxonômica e funcional) 

de aranhas? Esta variação é independente da identidade das espécies de bromélias? Entre outras 

palavras, será que aranhas são mais afetadas por atributos de bromélias do que por relações 

espécie-específicas, como vemos comumente em sistemas mutualistas? 
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2  OBJETIVOS 

 

2.1 GERAL 

- Investigar as relações ecológicas e evolutivas entre bromélias e aranhas, utilizando uma 

abordagem filogenética e funcional. 

 

2.2 ESPECÍFICOS 

- Quantificar a resposta da diversidade funcional de aranhas à variação na diversidade funcional 

de bromélias, considerando-se variações intraespecíficas e interespecíficas desses grupos; 

- Identificar os atributos funcionais de bromélias que contribuem mais significativamente para 

o aumento da diversidade de aranhas; 

- Buscar evidências na filogenia de bromélias que apontem inovações funcionais em 

determinados grupos que contribuam mais fortemente para o aumento da diversidade de 

aranhas; 

- Qualificar o tipo de relação que ocorre entre bromélias e aranhas (sem distinção, se 

bromelícolas ou bromelígenas). 
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3 ARTIGO 

 

REVISTA ALVO: ECOLOGICAL ENTOMOLOGY – QUALIS A2 
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Running title: Plant traits affect spider beta-diversity 

 

Abstract 

 

1. Non-trophic interactions between plant and animals can affect community structure 

and species traits composition. However, most studies investigated mutualistic 

interactions and currently it is unclear how intra and interspecific morphological trait 

changes in plant species affect non-trophic interactions at metacommunity scale. Also, 

whether plant evolutionary history determine taxonomic and functional diversity of 

plant-living predators is an open question. 

2. To address these gaps, we used a published dataset with spiders living exclusively 

over bromeliads to investigate if: (i) host plant intra and interspecific morphological 

trait variability affect taxonomic and functional diversity of spiders, and (ii) bromeliad 

trait evolution determines present-day patterns of spider trait diversity. 
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3. We measured spider and bromeliad traits and used a new statistical framework to 

quantify spider beta-diversity response to intra and interspecific trait variation of 

bromeliads. In addition, we decomposed bromeliad traits across its phylogenetic tree 

to verify if current bromeliads morphological trait variability is a result of ancestral or 

recent diversification. 

4. Whereas leaf length variation between bromeliad species exerts a positive effect on 

spider functional beta diversity, intraspecific variation did not affect it. Interestingly, 

the most ancestral split between two subfamilies explained most of bromeliad species 

variability, which suggest that spider functional diversity represent an outcome of 

bromeliad evolutionary history. 

5. Overall, our results imply that the evolution of organisms that do not feed directly on 

plants tissues is also driven by host plant evolutionary history which, in turn, indicates 

that non-trophic interactions can be evolutionarily stabilized. 

 

 Keywords: evolutionary history, non-trophic interactions, biotic filter, arthropods, bromeliads 

 

Introduction 

 Ecological and evolutionary processes can drive species distribution as well as their  

functional traits through space and time, dictating community assembly process. For a given 

site, there is a non-random selection of functional traits from the regional pool (Siefert, 2012). 

These functional traits express the history and evolutionary processes responsible for species 

ecological roles, affecting their persistence and coexistence in ecological communities (McGill 

et al., 2006; Violle et al., 2007). For example, plant height determines plant competitive 

dominance and tolerance to resource fluctuation. Thus, by affecting the ability of plants to 

establish, grow and reproduce, this trait can determine species coexistence and community 

assembly (McGill et al., 2006). However, there is little information about how changes in 

different types of plant traits may affect coexistence of non-plant species. In addition, the 

relevance of plants evolutionary changes in shaping morphological traits of plant-living 

predators remains unclear. 

 In general, animals are labile organisms which allow them to move from or adapt to 

new environmental conditions (DeWitt et al., 1998). In an adaptive way, selective pressures  

imposed by the environment would be expressed as physiological, behavioral or 

morphological modifications through successive generations (McGill et al., 2006). Because of 

that, the physical environment might influence patterns of community structure as much as  

species intra and inter-specific interactions. When animals are used to forage and breed in a 
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“biotic environment” (e.g. plants), both organisms are susceptible to each other selection 

pressure, which could result in distinct evolutionary pathways compared with classic trait-

environment association. For example, plants with open flowers (rather than those with 

narrow and tubular structures) allow the pollination by large body size and short mouthparts 

visitors (Garibaldi et al., 2015). Therefore, spatial variation on plant species (and their traits) 

might affect specific traits of coexisting species. Accordingly, ancient changes in plant 

morphology and present-day ecological processes may interactively determine the trait 

diversity of species that live on plants. This can be stronger in plant families with distinct 

morphological structures or architectures, such as domatium-bearing plants (Chomicki & 

Renner, 2015) and the Bromeliaceae family. Some plants such as bromeliads are widely 

known by their water accumulation in a central tank which creates an important ecosystem for  

invertebrates, bacteria, zooplancton, etc. (Srivastava et al., 2004, Romero & Vasconcellos- 

Neto, 2005). Those organisms provide nutrients for plants, becoming crucial for their  

survivorship (Romero et al., 2006). Conversely, bromeliads might protect spiders against 

disturbance regimes such as fire (de Omena et al., 2018). Therefore, this intrinsic association 

between bromeliads and organisms might be a good model to detect legacy effects of ancient 

changes in present-day communities upon bromeliads. 

 In the Neotropics, associations between spiders and bromeliads could be very common 

(Romero, 2006) which opens a fruitful and wide field to investigate how associations 

throughout evolutionary time are molting spiders’ bodies, like flattening their dorso-ventral 

shape and increasing (or decreasing) their body size (Gonçalves-Souza et al., 2014). For 

example, recent studies have shown that spiders occurring in plants with similar traits could  

share similar body sizes because plant morphology has favored the selection of specific 

morphological types (Podgaiski et al., 2013; Gonçalves-Souza et al., 2014). In addition, 

bromeliad leaves arrangement could favor species able to forage in tight space, such as 

spiders with compressed bodies. Therefore, bromeliads represent a very distinctive 

architecture compared to the surrounding vegetation, which can favor specialization (de 

Omena & Romero, 2010). They even might be very distinctive among other bromeliads, 

which highlights a strong interspecific variation. Furthermore, spiders can respond to 

bromeliad morphological variation because of the dependence of plant characteristics for web 

attachment, conduction of vibratory signals and foraging, as suggested in other spider-plant 

systems (Riechert & Gillespie, 1986; Uetz, 1991). 

 The association between spiders and bromeliads comprises a good system to 

understand effects of habitat heterogeneity (measured as morphological variation within and  

between plant species) on beta diversity components, because they live in an intimate 
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relationship (de Omena & Romero, 2008; 2010). However, even though spiders are not 

restricted to this type of habitat, previous studies have already shown that spiders diversity 

tend to respond positively to habitat heterogeneity (Podgaisky et al., 2013). Conversely, 

bromeliads can also be positively affected (e.g., increasing in size) by spiders, because they 

control herbivore pressure and may increase nutrient provisioning (Romero et al., 2006; 

Gonçalves et al., 2011). But the way spiders respond to those plants modifications and how 

evolutionary changes in plant and spider morphologies are affecting each other is still unclear 

and may highlight the processes that lead them to the current association. 

 In this way, understanding how bromeliad-spider relationships are structured through 

spatial and temporal scales can be addressed using a phylogenetic and functional beta 

diversity approach. Therefore, by using such approaches we could highlight the roles of 

bromeliad lineages to spider species and traits turnover (phylogenetic framework) (Leprieur et 

al., 2012); also, the turnover of bromeliad functional traits might affect spider communities 

(Villéger et al., 2013). For instance, natural or disturbance-induced changes in plant 

morphology could affect spiders’ traits diversity (e.g. Podgaiski et al., 2013). Furthermore, 

how changings in plants might cascade down to spiders’ morphological traits may also affect 

phylogenetic structure is an unanswered question. 

 In the present study, we aim to demonstrate how intra and interspecific variation in 

bromeliad morphological traits affect functional traits of bromeliads-dwelling spiders, and 

whether there is a pattern on bromeliad traits distribution over their phylogeny, explaining 

spiders' functional diversity. We tested the following hypothesis: (1) non-trophic relationships 

between spiders and host plants molt spiders' traits through evolutionary processes. We 

predicted that spiders’ traits will respond positively to bromeliads trait variation, presenting 

greater functional beta diversity in areas where bromeliad traits exhibit greater interspecific 

variation. This prediction indicates species specific responses revealing deepest evolutionary 

relationship between spiders and their plant hosts. As a result, bromeliad traits affect spider  

functional diversity but not taxonomic diversity. Conversely, the alternative hypothesis is that 

(2) any morphological variation of plants will affect spider morphology. Thus, we expect that 

bromeliad species identity is unimportant to spiders, because intraspecific variation generates 

short term changes in spider performance and, consequently, it affects taxonomic and 

functional diversity of spider. To successfully compare whether intra or interspecific trait 

differences of bromeliad species affect the associated spider predators, we performed 

auxiliary analyses to untangle how evolutionary changes in bromeliad morphology could 

determine present-day patterns of spider diversity. By doing so, we can provide a deeper 
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investigation of historical and contemporary processes driving trait-to-trait responses in non- 

trophic interactions. 

 

Material and Methods 

 

Study area 

 

 We used the data collected by Gonçalves-Souza et al. (2011) in Estação Biológica 

Santa Lúcia (EBSL), a Neotropical rainforest area located in the municipality of Santa Teresa, 

Espírito Santo, Brazil (19º57'S, 40º31'W). The EBSL comprises an area of 440 ha with 

elevations ranging from 600 to 900 m in a highly undulated topography with abundant rocky 

outcrops. The average annual rainfall is 1,868 mm, with the highest precipitation events in 

November and the lowest ones in June (Mendes & Padovan, 2000). As described by 

Gonçalves-Souza et al. (2011), bromeliads dominate the understory of this area and generally 

grow in multispecies clusters, being found between the forest and rocky outcrops in  

structurally poor ground environments with patch size varying from 0.005 to 0.93 ha (see also 

Wendt et al. 2008). The rainforest bromeliads species richness is one of the highest in the 

Neotropics (n = 75 species; Wendt et al., 2008). In some areas, a single patch can present 

several bromeliad genera, each one presenting natural morphological traits variation (such as  

plant shape, number of leaves, leaf width and leaf length). The genera that present the greatest 

species richness on the Family Bromeliaceae are Vriesea (n = 12 species), Aechmea (n = 11) 

and Nidularium (n = 4), and the most common species are Nidularium procerum, Aechmea 

lamarchei and Neoregelia macrosepala (Wendt et al. 2008). The genus Vriesea belongs to the  

subfamily Tillandsioideae, whereas Aechmea, Neoregelia and Nidularium belong to the 

subfamily Bromelioideae. These distinctions will be important for further analysis. 

 

Database 

 

 The database used in this study comes from Gonçalves-Souza et al. (2011). In that 

study, the authors sampled spiders in nine bromeliad patches spaced from 125 to 1,031 m 

apart from each other, in 24 permanent plots within the patches. The samplings were 

performed seven times monthly or bimonthly between February 2006 and July 2007. Because 

patches vary greatly in size, they adjusted plot size and used six 7 x 3 m plots for small 

patches (varying from 0.005 to 0.14 ha) and eighteen 20 x 3 m plots for large patches (varying 

from 0.43 to 0.93 ha). In summary, they surveyed spiders in nine bromeliad patches varying  
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from one to six plots per patch. The first step was to identify all bromeliads. In each plot 

spiders were manually collected from all foliage surfaces (live and dead leaves), rosette 

interiors and leaf axils in up to 10 bromeliads individuals (maximum height at vegetation 1.5 

m), totalizing 1,110 bromeliads belonging to 39 species. They performed bromeliads  

sampling using non-destructive methods. In each plot where bromeliads exceeded 10 

individuals, we sampled the ten ones, which were more widespread in that plot. This spatial 

division of hyperabundant species was done to circumvent the problem of sampling ramets. 

Then, because of the high abundances of some species (e.g. Nidularium procerum and 

Aechmea lamarchei) and increasing probability of sampling ramets, a maximum of 10 

individual bromeliads per species per plot were considered. However, we removed bromeliad 

species with less than five individuals to calculate intra vs. interspecific variability (see 

analysis below). Spiders were fixed in 75% alcohol, and voucher species were deposited at 

the Instituto Butantan (IBSP; curator: A.D. Brescovit). 

 

Morphological traits 

 

 We chose bromeliad effect traits (sensu Violle et al., 2007) that affect spider response 

traits (Gonçalves-Souza et al., 2014). In this way, we attempted to choose some spider traits 

that could reflect their association with bromeliad traits, as predicted by theory (see above).  

For example, Gonçalves-Souza et al. (2014) have shown that bromeliad with greater leaf 

length increase spiders’ body compression. Also, the number of leaves might be one of the 

most distinguishable trait, since spiders like Salticidae can select its host plant by visual cues  

(de Omena & Romero, 2010; de Omena et al., 2017). Moreover, other studies have found that 

these plant traits adequately predict the spatial distribution of spiders on bromeliads (e.g. 

Romero & Vasconcellos Neto, 2005; de Omena & Romero, 2008). Thus, we measured three 

bromeliad effect traits (leaf length, leaf width and number of leaves) and four spider  

morphological traits (prosoma height, prosoma length, prosoma width and opisthosoma 

length) to test our predictions concerning plant-spider trait matching. All collected spiders 

were photographed and measured (mm) in a stereoscopic microscope (Leica MZ 16). 

Bromeliads, in turn, were measured with a tapeline (cm) during the field work did by 

Gonçalves-Souza et al. (2011). 

 

Decomposition of bromeliad trait diversity on bromeliad phylogeny 
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 We manually produced a consensus tree topology with the software Mesquite 

(Maddison & Maddison, 2017), describing phylogenetic relationships among 39 bromeliad 

species based on the phylogenetic hypothesis proposed by Givnish et al. (2011). We then 

decomposed the pattern of bromeliad trait diversity across the phylogeny nodes using the 

methodology proposed by Pavoine et al. (2010), where each node has a trait value attributed 

as a function of trait diversity among clades descending from it. By decomposing trait across 

nodes, the sum of all internal nodes values will represent the total trait diversity of the clade. 

This approach allowed us to find whether some bromeliad nodes contribute disproportionately 

to their morphological variability (Pavoine et al., 2010). Basically, if there is a random 

variation of trait diversity across, for example, 11 nodes of a 12-species phylogeny, the 

average node contribution should be close to 9%. Consequently, this method tests whether 

one or few nodes explain more variability than expected by chance. Specifically, it uses 999 

permutations to evaluate if trait diversity is concentrated (i) in phylogeny root (Ro test: 

root/tips skewness), (ii) in a single node (SN test: single-node skewness test), (iii) or in few- 

nodes (FN test: few-nodes skewness test) (more details in Pavoine et al., 2010). This is an 

auxiliary analysis to improve our comprehension of possible evolutionary processes 

increasing plant functional diversity (i.e., morphological variation between species) which, in 

turn, may cascade down to spider taxonomic and trait diversity. 

 

Data analysis 

 

 Species from communities under different environmental conditions suffer changes in 

trait averages that can be caused either by intraspecific trait variability (ITV) or a change in 

species composition (turnover) or, most frequently, a combination of ITV and turnover. 

Likewise, effects of bromeliad traits on spider diversity may be affected by individual and  

species level bromeliad morphological variation. Therefore, to find out whether bromeliad 

traits influenced spider trait distribution we decomposed both bromeliad and spider 

intraspecific and interspecific variability to be able to answer which mechanism (species 

turnover or intraspecific bromeliad variation) was responsible for spider trait variation on the 

community (see Leps et al., 2011). 

 To test whether trait variation between bromeliad species increases spider functional 

beta diversity we combined two different approaches. The first one is a premise test and the 

second one compares relationships between bromeliads and spiders. First, it is necessary to 

evaluate the variation of spider traits within and between species and plots. Thus, we 

decomposed the variance of spider traits across different organizational levels: (i) population 
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(TIP/IC: trait variance of individuals within the same species relative to the variance of the 

community within plot), (ii) community (TIC/IR: trait values of all individuals but ignoring 

species identity; this metric compares all individuals within a plot with individuals from all 

plots), and (iii) regional (TPC/PR: community-wide variance using population-level means 

compared with all plots). This metric was called T-statistics by Violle et al. (2012), which is 

used to calculates ratios of variances (intra and interspecific) through different scales. TIP/IC is 

a measure of niche packing and represents overlap of intraspecific variation in spider 

morphology. Accordingly, it quantifies how individuals within the same species differ from 

other co-occurring species in a plot. In doing so, TIP/IC allows the comparison of internal 

filters (density dependent processes) affecting individual differences and species coexistence. 

TIC/IR, in turn, quantifies whether external filtering (for example, abiotic differences between 

plots) increases population variance (independent of species identity). Last, TPC/PR compares 

species averages to all traits in the region and thus can be used to test how external filtering  

affects differences between species (details in Violle et al., 2012). Specifically, we used the T- 

statistics to decompose spider trait variance as a premise testing and, consequently, we expect 

that internal filters (density-dependent processes mediated by habitat structure, i.e., host plant 

morphology) should be more important than external filters. This premise means that spider 

population co-occurring in host plants within the same bromeliad patch are morphologically 

packed compared with spiders from the whole region. This test is essential because those 

predictions concerning responses of spiders to bromeliad traits are more realistic (in terms of 

its evolutionary prevalence) when there are density-dependent processes affecting fitness and 

competitive differences. 

 The second approach was organized in four steps. First, we quantified the amount of 

bromeliad trait variance explained by intraspecific variability (W), the variability due to 

species turnover (interspecific) (B) and their covariance (Leps et al., 2011) and use the 

proportional contribution of each part (W and B) as predictor variables of spider functional 

and taxonomic diversity. This method uses total sum of squares in a series of general linear  

models to decompose the variance explained by individual terms (i.e., within fixed averages, 

intraspecific trait variability and specific averages) using plot as a sampling unit. As a result, 

by summing each term we obtain the total variance (100%), and individual term contribution 

(i.e., percentage explained by intra (W) vs. interspecific variation (B) within each plot). This  

calculation was repeated for each bromeliad trait. Second, the percentage explained by each 

term [between species variance (B) and within species variance (W)] of the three bromeliad  

traits was used as predictor variable of spider (functional and taxonomic) beta diversity. To 

visualize how the relative importance of between- and within-species bromeliad variability to 
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spider beta diversity, we created a statistical test referred to as BW-statistics, which diminishes 

the between-species (B) variability minus within-species variance (W). BW varies from -1 

(when total variance is explained solely by within-species variance) to +1 (variance totally 

explained by between-species variance). Third, we used spider beta diversity (taxonomic or 

functional) as dependent variable (y axis) and BW as the independent variable (x axis). We 

predict that increasing BW (→ +1) will increase spider functional beta-diversity. Fourth, we 

calculated spider functional and taxonomic beta diversities within each plot 

using the methodology proposed by de Bello et al. (2011). It quantifies these values using the 

Rao quadratic entropy index (Rao, 1982). This method uses functional (Euclidean index) and 

taxonomic (Simpson index) distances within and between plots to decompose γ-diversity into 

α and β components. We used Jost’s correction to control for differences in α diversity 

between plots. It produces a distance matrix with average functional (or taxonomic) beta 

diversity between plots. We then implemented a Permutational Multivariate Analysis of 

Variance (PERMANOVA) to test whether differences between bromeliad intra (W) and 

interspecific (B) variability (the BW-statistics) affect spider functional (or taxonomic) beta- 

diversity. Previous studies have advocated that PERMANOVA has a better behavior 

compared with other methods such as Mantel and MRPP because it is less affected by 

heterogeneous dispersion (Anderson and Walsh 2013). All data analyses were conducted in 

software R 3.3.1 (R Development Core Team, 2016), using cati (Taudiere & Violle, 2016) 

and vegan packages (Oksanen et al., 2016). 

 

Results 

 

 Overall, our database comprises 305 spiders from 68 species associated with 19 

bromeliad species (256 individuals). Bromeliad leaf length, leaf width and number of leaves  

varied from 16 to 208 cm (mean = 52.1, SD = 20.9), 2 to 18 cm (mean = 6.4, SD = 3.1), and 3 

to 54 leaves (mean = 18.2, SD = 8.2), respectively. Spider prosoma height, width, length and 

opisthosoma length varied from 0.39 to 6.38 cm (mean = 1.04, SD = 0.86), 0.44 to 7.9 cm 

(mean = 1.17, SD = 1.06), 0.44 to 10.1 cm (mean = 1.49, SD = 1.3), and 0.62 to 10.84 cm 

(mean = 1.85, SD = 1.46), respectively. 

 After partitioning spider trait variance, morphological traits at the population level 

varied less than expected by change. Specifically, there was less variation of prosoma height 

(TIP/IC = 0.039, P < 0.05), prosoma width (TIP/IC = 0.036, P < 0.05), prosoma length (TIP/IC = 

0.029, P < 0.05) and opisthosoma length (TIP/IC = 0.034, P < 0.05) within species than 

compared to the whole community within the same plot (Fig. 1). This result indicates there 
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are density dependent processes acting as internal filtering. Conversely, we did not find any 

significant pattern at the community (TIC/IR) and regional (TPC/PR) levels to all measured traits 

(P > 0.05). The observed values of TIC/IR and TPC/PR were not different from the null 

distribution (Fig.1). Taken together, these results agree with our premise that morphological 

variation among spider species is more important than within species. Importantly, it is  

strongest at the plot level, where spider populations from different species compete for host 

plants. 

 The relative importance of inter and intraspecific morphological variability between 

and within bromeliad species varied from highly dominated by intra (→ -1) to highly 

dominated by interspecific variability (→+1). Specifically, we found that the BW of 

bromeliad leaf length varied from -0.54 to 0.97, whereas the BW of leaf width varied from - 

0.96 to 0.95, and of number of leaves from -0.89 to 0.99. We found that plots with higher 

interspecific variability of leaf length had higher spider functional beta diversity (R2 = 0.359, 

F = 9.10, P = 0.040), but it did not affect taxonomic beta diversity (PERMANOVA R2 = 

0.117, F = 2.15, P = 0.141). However, neither BW of leaf width nor number of leaves affected 

functional (PERMANOVA R2 = 0.071, P = 0.287) and taxonomic beta diversity 

(PERMANOVA R2 = - 0.007, P = 0.941). In addition, spider morphological traits varied 

between patches and they were concentrated in three clumped peaks (Fig. 2). 

 We decomposed trait diversity across the nodes of bromeliad phylogeny and found 

that higher percentages of leaf length variability are coming from the root (Ro test = 0.832, P 

= 0.001). However, there is no significant variation explained by a single (SN test = 0.256, P 

= 0.712) or few nodes (FN test = 0.565, P = 0.198) (Fig. 3). In addition, the variation of leaf 

width and the number of leaves were random throughout the phylogeny (P > 0.05 for all Ro, 

SN and FN statistics). These results suggest that an ancient split between the subfamilies 

Bromelioideae and Tillandsioideae dictates most of the variability between the leaf length of 

bromeliad species. Besides the root node, four nodes represented by the clade Bromelioideae 

explained 43.2% of the whole bromeliad leaf length variability (Fig. 3).  

 

Discussion 

 

 Taken together, our results suggest that spider morphological diversity can arise from 

interspecific variability of plant traits regarding two complementary mechanisms: (i) long 

term evolutionary history, with two different subfamilies division (estimated to occur from 9 

to 14 Mya: Givnish et al., 2011) triggers most of the morphological variation between 

bromeliad species, which led to evolutionary changes in spider morphology; (ii) fine scale (< 
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60 m2) variability of bromeliad leaf length acts as an internal environmental filter determining 

density-dependent interactions, which ultimately regulates spider morphology at local scales. 

Consequently, and confirming our first hypothesis, bromeliad interspecific traits variation, 

rather than intraspecific, is driving changes in spider functional beta diversity. So, the 

outcome of higher interspecific variability in bromeliad leaf length found for some patches, is  

an increasing in the morphological diversity of spiders. This creates a strong morphological 

gradient where is evident how the spider-bromeliad association have been evolving together 

in the past 14 Mya years, since the biggest split between Bromelioideae and Tillandsioideae. 

Furthermore, because plant interspecific variability did not explain spider taxonomic 

diversity, our findings suggest that associations of spiders with bromeliads is driving  

morphological adaptations (analogous to the so called “trait-matching”, common in 

mutualistic networks: Dehling et al., 2014) without the influence of species identity and the 

regional pool. 

 By integrating results of bromeliad traits patterns of evolutionary variation and their 

effects on spider trait diversity, we were able to identify that adaptive radiations of plants can 

generate adaptive responses of predators that do not feed directly on plant tissues, as 

previously suggested for mutualistic networks (Dehling et al., 2014). Previous studies indicate 

that niche and habitat selection theories could explain the evolution of traits of predatory 

arthropods living on plants (e.g. Gonçalves-Souza et al., 2014; Gibb et al., 2015). First, the 

increasing in bromeliad trait variability (independent of species identity) expand the niche 

availability for spiders, which may favor specialization through niche partitioning. For 

example, Schirmel et al. (2012) demonstrated that increasing habitat heterogeneity through 

successional stages favored both taxonomic and functional diversity of spiders and beetles. 

Moreover, specialization may be reinforced by habitat selection, because those arthropod 

species that recognize plants with important morphological structures might improve their 

fitness. Consequently, the evolution of habitat specialization improves the ability of certain 

species to find suitable sites for feeding and reproducing (Romero & Vasconcellos-Neto, 

2005). In fact, de Omena & Romero (2008, 2010) demonstrated that a spider species that live 

and reproduce exclusively on bromeliads use visual cues to differentiate leaf morphology and 

the architecture of their host plants. These results and our findings reinforce the expectation 

that habitat selection is driven by a trait-based mechanism in spider-bromeliad systems. 

Furthermore, we found that spiders traits were organized in clumps (Fig. 3), which suggested 

that competition and niche availability allow self-organized size distributions and a lumpy 

coexistence, as demonstrated by theoretical (Schefer & van Nes, 2006) and computational 

models (Sakavara et al., 2018). 
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 Several studies have shown that arthropods interact with their abiotic habitat and  

consequently might suffer environmental pressures driving a non-random trait variation 

(Lambeets et al., 2008; Schirmel et al., 2012). Our results suggest that previous evidence 

concerning spider response to abiotic conditions (e.g. Lapinski et al., 2015) is also generalized 

to non-trophic relationships between spiders and host plants, as this mutual interaction might 

molt both organism traits, through evolutionary processes. In fact, most spiders use 

bromeliads for courtship, shelter, oviposition, hunting or web attachment (Romero et al.,  

2006; Gonçalves-Souza et al., 2010; de Omena et al., 2018). By hunting and reproducing 

within plant leaves, spiders may benefit bromeliad, because they could deter herbivores. Also, 

spiders are important agents to improve bromeliad growth (Romero et al., 2006; Gonçalves et 

al., 2011). 

 As argued before (e.g. Pavoine et al., 2010; Gerhold et al., 2015), including 

phylogenetic information to untangle trait diversity improves our understanding about the link 

between local ecological processes and species evolutionary history. Across the 39 bromeliad  

species studied here, the split between subfamilies Bromelioideae and Tillandsioideae (from 9 

to 14 Mya, Givnish et al., 2011) concentrated most of the present-day trait variability among 

all plants. This is especially remarkable because we found that much of the variance in spider  

functional diversity was indeed explained by differences between bromeliad species. 

Consequently, it suggests the association between spiders and bromeliads may be older than 

previously thought. Although rarely reported, trait-mediated selection of host plants by 

spiders was found in two-species systems, such as between Salticidae and Bromeliaceae 

(morphology-based selection: de Omena & Romero, 2008, 2010) and Thomisidae and 

Asteraceae (odor-based selection: Heiling et al., 2004). Thus, we posit that species-specific 

interactions between spiders and plants might be scaled up to metacommunities mediated by 

trait-specific association which, in turn, depends on plant evolutionary history. 

 There are a few caveats in the present study. The high frequency of rare species  

(especially those represented by single individuals: singletons) in tropical arthropods may 

overemphasize the variability between-species, because intraspecific changes could be only 

calculated in species with more than two individuals. However, previous studies have 

demonstrated that some spider functional traits (such as size and habits) do not explain 

singleton frequency (Coddington et al., 2009), which suggests that undersampling do not 

necessarily affect our conclusions. In addition, the absence of a time-calibrated phylogeny for 

both bromeliads and spiders prevent us to track lineage-specific co-adaptations. For example, 

the ancient colonization of diving beetles (Dysticidae) on bromeliads (12-23 Mya) originated 
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by allopatric speciation a morphologically distinct lineage that contributed to the origin of a 

specialized lifestyle (Balke et al., 2008). 

 

Conclusion 

 

 Here we provided a combined approach integrating intra and interspecific trait 

variability of interacting species into a phylogenetic context to analyze present-day patterns of 

spider diversity in an Atlantic Rainforest threatened environment. Our results support 

interspecific variability among bromeliads as the main driver of spider trait variation. Most of 

the variation comes from the root of bromeliad phylogeny suggesting that evolutionary forces 

are pushing spider morphological traits into greater variability. When studying the association 

of top-predators such as spiders and plants, we can now expect that these relationships might 

be mediated by host plant traits, which in turn can have great ecological and evolutionary 

relevance. For example, previous studies demonstrated that top predators are more sensitive to 

climate stability, habitat size and complexity (e.g. Ledger et al., 2013; Romero et al., 2016). 

Thus, by underlining the traits mediating spiders-bromeliads association we are able to 

provide information about how habitat specialization and resource acquisition have been 

occurring in the Atlantic Rainforest hotspot and also help decision makers improve public 

politics for habitat management and conservation. 
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Graphical abstract (highlights) 

 

 • Whether plant trait variation and its evolutionary history determine taxonomic 

 and functional diversity of plant-living predators is an open question. 

 • Spatial variation in bromeliad leaf length variation between species has a 

 positive effect on spider functional beta diversity. This spatial signature 

 generates a lumpy distribution of spider body sizes. 

 • Plant evolutionary history dictates most of the present-day morphological 

 variability among bromeliad species which, in turn, affect spider trait variation.  
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Figure 3. Trait diversity (leaf length) decomposition across the nodes of bromeliads 
phylogeny. The circles represent the percentage of interspecific leaf length variability 
accounted by each node. The variability coming from the root, explained most of the 

variation between bromeliad species (see main text). 
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