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Abstract 
Although HTTP adaptive streaming has been well documented for the cost-effective delivery of 

video streaming, it is still a great challenge to play back video smoothly with high quality under the 
fluctuating network conditions. In this paper, we proposed a novel bitrate adaptation algorithm for HTTP 
adaptive streaming. Our algorithm employed two approaches for throughput estimation and bitrate 
selection, which was evaluated on our testbed (a fully functional HTTP Live Streaming system) over a 
network, emulated using DummyNet. First, the throughput estimation method, based on the prediction of 
the difference between the estimated and instantaneous throughputs, was observed to respond smoothly 
to short-term fluctuations and rapidly to large fluctuations. Second, the bitrate selection algorithm, based 
on piecewise functions to define the variation range of the current bitrate, was found to result in smoother 
changes in quality with a higher average quality. The results of our experiments demonstrated the 
prospects of our bitrate adaptation algorithm for HTTP adaptive streaming. 
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1. Introduction 

With the diffusion of new video-enabled devices and faster Internet connections, video 
traffic has come to dominate Internet traffic. Several video streaming protocols have been 
proposed for the delivery of video content. Traditional streaming protocols, such as real time 
streaming protocol (RTSP), control the video transmission rate directly; however, such protocols 
are difficult to deploy because a specialized streaming server is required [1]. By contrast, 
hypertext transfer protocol (HTTP [2]) adaptive streaming has become a cost-effective and 
popular option because it reuses the existing Internet infrastructure, provides network address 
translation (NAT) friendliness and is allowed by most firewalls [3]. Currently, one of the most 
prominent approaches is HTTP Live Streaming (HLS), as proposed by Apple Inc. 

In general, an HTTP adaptive streaming server knows little information about the client, 
it is the client’s responsibility to make decisions regarding the selection of appropriate 
alternatives to maintain a good quality of experience (QoE [4]). To provide the highest possible 
video quality, an adaptation algorithm must appropriately estimate the available throughput. 
Overestimation of the throughput may lead to buffer freezes, whereas underestimation of the 
throughput may lead to buffer overflow. Furthermore, to provide users with a smoother video 
quality, a good bitrate selection algorithm is desirable. If the bitrate is selected based only on the 
estimated throughput, then abrupt changes in quality will occur when the available throughput 
decreases or increases dramatically. How to fulfill both requirements discussed above is a key 
research problem of HTTP adaptive streaming [5]. Researchers [6-12] have reported various 
algorithms for throughput estimation and bitrate selection. 

Regarding throughput estimation, in [6], the authors used the running average of the 
measured throughput to estimate the throughput. However, this method exhibited a slow 
response to large changes in throughput and thus had a tendency to suffer buffer underflow. In 
[7], the degree of fluctuation of the throughput difference was used to dynamically control the 
weighting coefficient of the method presented in [8] for throughput estimation. Although this 
method showed superiority in detecting large changes in throughput, it failed to smoothly 
estimate the throughput in the case of short-term fluctuations and thus incurred redundant 
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fluctuations in bitrate. In [9], an exponential function was adopted to dynamically control the 
weighting coefficient of the method presented in [6]. This method offered smooth estimation in 
the case of short-term fluctuations at a relatively high throughput. However, at low throughput, 
the estimated throughput of this method was sensitive to such fluctuations. 

Regarding bitrate selection, in [10], the authors achieved the smallest changes in video 
quality and the fewest interruptions by preserving the minimum buffer length. However, when 
the mismatch between the available throughput and the video bitrate was significant, this 
algorithm appeared to suffer from abrupt changes in bitrate. Additionally, it required too much 
time to adjust the quality in accordance with the available throughput. A quick boot algorithm 
was proposed to solve this type of problem in [11]. Furthermore, the authors used a fixed-
interval buffer model to keep the bitrate unchanged whenever the buffer size was within a preset 
interval. Although this method reduced the number of changes in bitrate, it required a large 
buffer to cope with long-term variations in the available throughput. In [12], the authors only 
used the buffer to effectively reduce the rebuffer rate, suggesting that the current buffer level 
was sufficient for an adaptation algorithm in the steady state. In addition to the current buffer, 
we emphasize the importance of the variation range of the current bitrate in an adaptation 
algorithm. 

In this paper, we present a novel bitrate adaptation algorithm for HTTP adaptive 
streaming. Our bitrate adaptation algorithm includes a throughput estimation method and a 
bitrate selection algorithm. The contributions of the paper are three-fold. First, with the intent of 
reacting smoothly to short-term fluctuations and quickly to large fluctuations, a novel throughput 
estimation method is proposed based on predicting the difference between the estimated and 
instantaneous throughputs. Second, to provide users with a high and relatively smooth video 
quality, we propose an innovative bitrate selection algorithm based on piecewise functions to 
define the variation range of the current bitrate. Finally, to verify the performance of our bitrate 
adaptation algorithm, we report the implementation of a fully functional HLS system. 

The paper is organized as follows. In Section 2, we first provide an overview of HLS. 
Section 3 describes our bitrate adaptation algorithm. In Section 4, the experiments are 
discussed in detail. Finally, conclusions and future work are addressed in Section 5. 
 
 
2. Overview of HLS 

HLS is a media streaming protocol based on HTTP implemented by Apple. It is widely 
used by video streaming providers for its easy deployment, dynamical adaptability and strong 
penetrability [13]. Conceptually, A HLS system has three parts: a server, a distribution system, 
and a client. The server is responsible for encoding the input streams as MPEG-4 (AAC audio 
and H.264 video), encapsulating them in MPEG-2 TS format, and preparing the encapsulated 
media for distribution. The distribution system is a standard web server which is responsible for 
accepting and responding client’s requests. The server and distribution system are integrated as 
HLS server in this paper. The client is responsible for choosing the appropriate media to 
request, downloading them, and then reassembling them to present. 

Adaptation is an important part of HLS [14]. On the HLS server side, the original video 
content is encoded into multiple alternatives (versions) at different bitrates. Then, each 
alternative is further partitioned into a series of small segments (chunks) with the same duration. 
Simultaneously, the characteristics of each alternative such as bitrate, coding, and resolution 
are recorded in the manifest file with the, m3u8 extension. All the media segments and manifest 
files are stored in the distribution system. On the HLS client side, according to the status of the 
terminal/network, the most appropriate alternative is downloaded through the sending of 
consecutive HTTP requests. Therefore, the client eventually gets the whole video consisting of 
the segments at different bitrates. 
 
 
3. The Proposed Bitrate Adaptation Algorithm 

In this section, our bitrate adaptation algorithm, which consists of throughput estimation 
and bitrate selection, is described in detail. As stated above, multiple alternatives of a 
segmented sequence at different bitrates are stored in the server. Each segment contains τ  
seconds of playback. The set of bitrates for m  different video qualities is denoted by 
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{ }1 2, , mR R R R=  , where iR  is the i th bitrate in R . We assume that i jR R<  if i j< . The 
client downloads the segments in chronological order, and all downloads are non-preemptive, 
i.e., the download of segment i  cannot begin until segment 1i −  has been completely 
downloaded. After each fragment is downloaded, our throughput estimation method is invoked 
to estimate the available throughput. Then, the proposed bitrate adaptation algorithm will run the 
bitrate selection algorithm to select the most appropriate bitrate for the next segment. The 
details of the algorithm are described below. 

 
3.1. Throughput Estimation Method 

Throughput estimation is one of the most crucial concerns in adaptive streaming [11]. 
Usually, the available throughput is calculated by dividing the data size of a segment by its 
delivery duration, as denoted by: 
 

i
i

i

S
T

t
=   (1) 

 
Where iS  and it  are the size and download time, respectively, of the i th segment and iT  is the 
available throughput for the i th segment. Below, we call iT  the instantaneous throughput. The 
simplest method to estimate the available throughput is merely to use the instantaneous 
throughput. This method yields a stable buffer level; however, the video quality fluctuates. A 
smoothing strategy was adopted in [15] to solve the problem of fluctuations. However, this 
method reacts slowly to large fluctuations, which may result in playback freezes. In [9], a 
dynamic weighting coefficient was applied in the smoothing method to solve this problem. 
Although this method possesses the advantages of both methods discussed above, it still yields 
fluctuating estimates when the available throughput is low. 

The goal of our method is to achieve a throughput estimation that 1) is stable in the 
case of short-term fluctuations and 2) reacts quickly to large fluctuations. The underlying 
principle of our method is as follows:  
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our method: 
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Where iD  reflects the degree of fluctuation of the throughput and δ  is a correction term that 
takes values on the interval ( )0, 1 . For short-term fluctuations, iD  is small and δ  should be 
closer to 1 to bring 1

e
iT +  closer to e

iT , resulting in a smoother estimation. For large fluctuations, 

iD  is large and a δ  closer to 0 is required to bring 1
e

iT +  closer to iT  to allow a more rapid 
response to large fluctuations. In summary, the value of the parameter δ  is strongly related to 

iD  in our analysis. The control functions relating δ  and iD  are designed as shown in (5) and 
(6): 
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Where ρ  is the normalization value of iD  and norT  is a normalization factor; M  and 0ρ  are the 
steepness and midpoint of the control function (6), respectively; N  is a function of the buffer 
occupancy. In our method, we assume that the fluctuations are short-term when iD  is less than 
10% of norT  (i.e., 0.1ρ < ) and the fluctuations are large when iD  is larger than 20% of norT  (i.e., 

0.2ρ > ). M  and 0ρ  need to be set properly to make sure that a ρ  smaller than 0.1 will yield a 
δ  closer to 1, in other words, our method gets a smooth estimation for short-term fluctuations; 
by contrast, a ρ  larger than 0.2 will obtain a δ  closer to 0, suggesting that our method quickly 
responds to large fluctuations. Furthermore, in case of buffer draining-up, N  will dominate the 
speed of control in (6) when the buffer level is lower than the minimum threshold. It is defined as 
expressed in (7) and (8): 
 

cur min

max min

B B
B B
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Where curB  is the current buffer level which is measured in seconds, minB  and maxB  are the 
minimum and maximum buffer thresholds, respectively, and µ  is the buffer occupancy.  
 
3.2. Bitrate Selection Algorithm 

In this section, given the estimated throughput as described above, we propose an 
innovative bitrate selection algorithm that considers the variation range of the current bitrate to 
achieve a high and relatively smooth video quality. Besides, buffer underflow and overflow are 
considered in our algorithm. 

To achieve our goal, we studied the Just Noticeable Difference (JND). The JND [16] is 
defined to describe the smallest perceptual difference/change between two stimuli (e.g., two 
versions of a video) that could be detected by human perception; this work concluded that if the 
video versions were equally spaced by 3 JND units, a separation that yielded no obvious 
difference in practice, the typical number of versions was 4 to 7. On the basis of this conclusion, 
the bitrates of the Football and Soccer sequences were spaced by 1.5 JND units in [17], 
resulting in bitrates of 3000, 1495, 1038, 773, 640, 550, 427, 322, 260, and 222 Kbps; this list of 
bitrates, which belonged to fast-motion group, should thus also be safe for slow-motion group. 
Based on these conclusions, two piecewise functions are designed to determine the safe 
variation range of the current bitrate. Equations (9) and (10) present these functions. 
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Where curR  is the current bitrate; LowThR , MidThR  and HigThR  are three bitrate thresholds that 
satisfy LowTh MidTh HigThR R R< < ; the functions min  and max  return the minimum and maximum 
value, respectively, between their two inputs; and the return values, _chg upR  and _chg downR , define 
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the safe variation range of the current bitrate. If the available throughput is increasing, equation 
(9) is used to determine the variation range, i.e., _chg upR . By contrast, if the available throughput 
is decreasing, equation (10) is used to determine _chg downR . We convert /chg_up chg_downR R  into the 
corresponding bitrate index with equation (11): 
 

_ _( / , )chg chg up chg down curIndex f R R R=   (11) 
 
Where f  is a conversion function and chgIndex  is the safe variation range of the bitrate index 
corresponding to /chg_up chg_downR R . 

Based on the safe variation range of the current bitrate as determined above, the 
procedures performed in our algorithm are described in algorithm 1. Here, bestRIndex  is initialized 
as the bitrate index with the highest possible value that is lower than the current estimated 
throughput; in other words, it satisfies: 

 
{ }|

best

e
RIndex k k kR max R R T R R= < ∈，   (12) 

 
lastRIndex  is the bitrate index of the last segment. DifIndex  is the absolute value of oriD  

which is equal to the difference between bestRIndex  and lastRIndex . minB , midB  and maxB  are buffer 
thresholds, measured in seconds, which satisfy min mid maxB B B< < . 

The input arguments of our algorithm include the instantaneous throughput ( T ), the 
estimated throughput ( eT ), the current buffer level ( curB ) and the bitrate index of the last 
segment ( lastRIndex ). The output argument is the bitrate index for the next segment ( nextRIndex ). 

When 0oriD ≥ , an equal or higher bitrate can be requested for the next segment. The 
current buffer level is considered in this case. If cur midB B≤ , it is not wise to increase the bitrate 
immediately because the buffer level is still insufficient. Thus, we leave the bitrate unchanged (

next lastRIndex RIndex= ). If cur midB B> , then it is safe to increase the bitrate. As described above, it 
is necessary to ensure that every change in quality remains within the safe variation range of 
the current bitrate. Thus, DifIndex  is compared with chgIndex . If chgDifIndex Index≥ , it means 
that bestRIndex  is much higher than lastRIndex . If we choose bestRIndex  to follow the current 
available throughput, an obvious change in quality will be noticed by the user. Thus, we choose 

last chgRIndex Index+  as the bitrate index for the next segment, which provides a relatively rapid 
response to the available throughput while maintaining a user-friendly quality change. If 

< chgDifIndex Index , then bestRIndex  can be chosen safely. However, when the buffer level is 
higher than the maximum buffer threshold and  bestRIndexR  is less than the estimated throughput, a 

scheme to avoid buffer overflow is required. We increase bestRIndex  by 1 to prevent buffer 
overflow. After the application of this overflow-control measure, DifIndex  will be less than or 
equal to chgIndex , which is still a safe quality change. 

When 0oriD < , the current available throughput is insufficient to maintain the previous 
video quality. Bitrate reduction is inevitable. The current buffer level should be carefully 
considered in this case. If cur minB B≤ , then the buffer can be easily emptied if the selected bitrate 
is higher than the available throughput. We incrementally decrease bestRIndex  by 1 in a loop until 

 bestRIndexR  is less than the current available throughput. This strategy will cause the buffer level to 
increase during the download duration of the next segment to prevent playback freezes, but an 
unsafe change in quality may occur. If the buffer level satisfies Bmin cur maxB B< ≤ , the situation is 
relatively safe and a somewhat conservative scheme is adopted. First, we determine the best 
possible video quality ( lastRIndex k− ) by decreasing bitrate level in a loop to ensure that at least 
a minimum buffer is preserved. Then, a bitrate level that is no higher than lastRIndex k−  is 
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adopted. If DifIndex  is less than or equal to chgIndex , it reveals that the available throughput has 
not changed considerably. It is unnecessary to switch to bestRIndex  to adapt to the decreasing 
throughput. Therefore, nextRIndex  is set to the minimum value between 1bestRIndex +  and 

lastRIndex k− . If DifIndex  is larger than chgIndex , then a large throughput fluctuation has 
occurred. To adapt to the decreasing throughput quickly and safely, the maximum change in 
index corresponding to the safe variation range, chgIndex , is chosen. In accordance with the 
limits imposed above, nextRIndex  is set equal to the minimum value between last chgRIndex Index−  
and lastRIndex k− . Finally, if cur maxB B> , then a more conservative scheme is adopted to reduce 
the buffer. If chgDifIndex Index≤ , then nextRIndex  is simply set equal to the last bitrate lastRIndex  to 
ensure a smooth video quality. If chgDifIndex Index> , then nextRIndex  is decremented as 

1lastRIndex − , just in case an abrupt change in bitrate occurs when the buffer level switches from 
the current buffer state to the state <min cur maxB B B≤ . 

It should be noted that nextRIndex  must lie in a reasonable range of [ ]1, m  in our 
algorithm. 
 
 
4. Experiments and Discussion 

In this section, we give an overview of the experimental methodology and evaluate our 
bitrate adaptation algorithm on our HLS system. After reporting the results of the experiments, 
we present a simple discussion of our algorithm. 
 
4.1. Experiment Setting 

The structure of our HLS system is depicted in Figure 1 and consists of three 
components, i.e., a HLS server, a HLS client and wired local area network (LAN). On the server 
side, the original video was encoded in CBR mode to produce 20 available bitrate versions from 
100 to 2000 Kbps with a step of 100 Kbps. In addition, each version was chopped into 
segments of the same duration of 5 seconds (i.e., =5τ ). All segments and manifest files were 
stored on the version 2.4.9 Apache HTTP server that is integrated into Mac Mini 10.10.2. 
Moreover, the server’s Timeout was set to 60 s for alive connections. On the client side, the 
client was implemented on the Android 4.4.2 platform. All adaptation algorithms were 
implemented on the client. Three segments with the fourth bitrate index were buffered before 
the start of video playback. Each subsequent request was sent after the last segment had been 
completely received. Particularly, when the buffer level would be larger than the target buffer, an 
idle delay before the sending of the next request was set to account for a limited buffer capacity. 
In our experiments, the target buffer was set to 7 segment durations. Wired LAN is built by a 
TP-LINK router and there are no other devices except a HLS server and a HLS client in this 
LAN.  

 
 

Wired LAN

HLS Server

HLS Client

DummyNet 

 
 

Figure 1. Testbed organization for experiments 
 
 
For a fair comparison, different algorithms should be evaluated under the same network 

conditions. The DummyNet network emulator [18] was used to control the available bandwidth. 
This emulator is easily configured on Windows. To control the available bandwidth on the client 
side in a simple manner, both DummyNet and our client were installed on a Windows 7 
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Professional desktop with a 3.10 GHz Intel Core i3 CPU and 4 GB of RAM. In addition, an 
Android virtual machine was needed to run our client on Windows. 

 

 
 

4.2. Throughput Estimation Experiment 
Before our bitrate adaptation algorithm was investigated, our throughput estimation 

method was evaluated separately in this experiment. The two throughput estimation methods 
proposed in [7] and [9] were implemented to demonstrate the effectiveness of our method. For 
simplicity, the methods of [7] and [9] are called the DFI method and the Thang method, 

Algorithm 1  Bitrate selection algorithm 
 Input: , , , las

e
cur tRIndexT T B   

 Output: nextRIndex  
1: 

bestori lastRIndex RIndexD −=   
2: 

next bestRIndex RIndex=   
3: if 0oriD ≥  then 
4:     if cur midB B≤  then 
5:         next lastRIndex RIndex=  
6:     else 
7:         if chgDifIndex Index≥  then 
8:             next last chgRIndex RIndex Index= +   

9:         else 
10:             if   & &

best

e
cur max RIndexB R TB ≥ <  then 

11:                  1next bestRIndex RIndex= +   
12:             end if 
13:         end if 
14:     end if 
15: else 
16:     if cur minB B≤  then 
17:         while 

bestRIndexR T>  then 

18:              1best bestRIndex RIndex= −   

19:         end while 
20:          next bestRIndex RIndex=   
21:     else if cur maxB B≤  then 

22:         0k =   
23:         while ( )( / 1)*

lastRIndex k cur minR T B Bτ− − > −  then 

24:             1k k= +  
25:         end while 
26:         if chgDifIndex Index≤  then 
27:             ( )1,next last bestRIndex min RIndex k RIndex− +=   
28:         else 
29:              ( , )next last last chgRIndex min RIndex k RIndex Index= − −   
30:         end if 
31:     else 
32:         if chgDifIndex Index≤  then 

33:              next lastRIndex RIndex=   
34:         else 
35:             1 next lastRIndex RIndex −=   
36:         end if 
37:     end if 
38: end if 
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respectively. Complex network conditions with both large fluctuations and short-term 
fluctuations were emulated using DummyNet. 

In our method, in order to obtain a smooth estimation when 0.1ρ <  and an aggressive 
estimation when 0.2ρ > , M  and 0ρ  were set to 21 and 0.167, respectively. In practice, we 
regard the fluctuations which are less than one step of bitrates (100 Kbps in our experiments) as 
the short-term fluctuations. Therefore, norT  was set to 1000 Kbps according to the assumption 
below equation (6) in section 3.1. minB  and maxB  were set to 1 and 4 segment durations, 
respectively. The experimental settings for the DFI method and the Thang method were set as 
described in [7] and [9]. Specifically, in the DFI method, c  was set to 0.167 for fairness and ε  
was set to 0.05 to obtain the optimal results. 

 
 

 
(a) Estimated throughput 

 
(b) Adapted bitrate  

 

 
(c) Buffer level 

 
Figure 2. Comparison of different throughput estimation methods 

 
 

Figure 2(a), Figure 2(b) and Figure 2(c) compare the results in terms of the estimated 
throughput, adapted bitrate and buffer level, respectively. Note that the bandwidth curve in each 
of the following figures represents the theoretical capacity of the link (controlled by DummyNet); 
the estimated throughputs are the results of the different throughput estimation methods; the 
adapted bitrate is the highest value that is lower than the estimated throughput, shown as 
equation (12); and the buffer level, which is shown on the right vertical axis in Figure 2(c), 
represents the current buffer state in seconds. 

The following behaviors can be observed from those figures. In the case of large 
fluctuations (e.g., 60-80 s and 220-240 s), the estimated throughputs of all methods respond 
quickly as a result of the dynamic control strategies. For this reason, they all have reasonably 
safe buffers (higher than 8 s). However, in the case of short-term fluctuations (e.g., 115-190 s 
and 257-332 s), the throughput estimated by the DFI method varies frequently with the 
fluctuating bandwidth, which causes fluctuations in the adapted bitrates. The Thang method 
obtains smooth estimates at high bandwidths (e.g., 257-332 s) but fluctuating estimates when 
the bandwidth is low (e.g., 115-190 s). By contrast, the proposed method obtains smooth 
estimates for all short-term fluctuations by virtue of the appropriate design of the normalization 
factor norT . Therefore, the proposed method achieves the smoothest adapted bitrate. In short, 
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the proposed method achieves a smooth response to short-term fluctuations and a fast 
response to large fluctuations. 

 
4.3. Bitrate Adaptation Algorithm Experiment 

The second experiment was conducted to investigate the performance of our bitrate 
adaptation algorithm, i.e., the bitrate selection algorithm given the throughput estimation method 
investigated above. As described above, our bitrate selection algorithm already includes a 
strategy for preventing buffer underflow. Therefore, to best illustrate the performance of our 
bitrate selection algorithm, the parameter N  was set to 1 for this experiment. The other settings 
were the same as in the previous experiment. Furthermore, in our bitrate selection algorithm, we 
set minB , midB  and maxB  to 1.5, 2 and 6 segment durations, respectively. The bitrate thresholds 

LowThR , MidThR  and HigThR  were set to 700, 1000 and 1500 Kbps, respectively.  
 Another bitrate adaptation algorithm with good performance, QAAD [10], which 

estimates throughput based on samples of the download throughput, was implemented for 
comparison. The experimental settings were the same as in [10]. In particular, the predefined 
marginal buffer length µ  was set to 5 segment durations and the minimum buffer length δ  was 
set to 1.5 segment durations for this experiment. 

Complex network conditions with both large fluctuations and short-term fluctuations 
were emulated using DummyNet. The results in terms of the adapted bitrates and buffer levels 
are compared in Figure 3. The adapted bitrates are the outputs of the bitrate adaptation 
algorithms.  

From Figure 3(a), we can see that when bandwidth is sharply decreasing (e.g., 186-206 
s and 301-321 s), the QAAD algorithm result in large changes in bitrate (e.g., 214-231 s and 
342-358 s) because it initially attempts to change quality with the smallest possible step in 
bitrate. By contrast, the proposed algorithm attempts to ensure that each quality change is safe. 
This measure achieves smoother changes in quality. Moreover, the proposed algorithm has a 
faster reaction time in reaching the optimal bitrate (e.g., 0-48 s, 266-323 s and 364-419 s). 
Thus, the proposed algorithm yields a higher adapted bitrate. From Figure 3(b), it is evident that 
the proposed algorithm achieves a safe buffer. 

 
 

 
(a) Adapted bitrate 

 
(b) Buffer level 

Figure 3. Comparison of different bitrate adaptation algorithms 
 
 

To more clearly illustrate the advantages of the proposed algorithm, five additional 
experiments were conducted. We evaluated the performance based on the average values of 
the five sets of results. Several statistics regarding the tested algorithms are provided in Table 
1. The bitrate values are shown in the first three rows in units of Kbps. The next three rows 
concern the buffer values, and the results in terms of quality changes are shown in the last two 
rows. The “Maximum change in bitrate” in the third row is the largest bitrate difference between 
any two consecutive segments. The standard deviation (STD) in the second and fifth rows is 
used to quantify the amount of variation of the bitrate and buffer. The “Number of unsafe quality 

0 50 100 150 200 250 300 350 400 450
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Time (s)

Bi
tra

te
 (K

bp
s)

 

 

Bandwidth
QAAD Method
Proposed Method

0 50 100 150 200 250 300 350 400 450
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Bi
tra

te
 (K

bp
s)

 

 

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Time (s)

Bu
ffe

r l
ev

el
 (s

)

Bandwidth
QAAD Method
Proposed Method



TELKOMNIKA  ISSN: 1693-6930  
 

Towards Smooth and High-Quality Bitrate Adaptation for HTTP Adaptive… (Lihong Geng) 

913 

changes” reported in the last row refers to changes in quality that are outside of the safe 
variation range of the current bitrate. 

 
 

Table 1. Statistics of Average Values of Five Experiments 
Statistics QAAD Proposed algorithm Improvement rate 
Average bitrate (Kbps) 1122 1232 9.8% 
STD of bitrates (Kb/s) 532 450 15.4% 
Maximum change in bitrate (Kbps) 937 408 56.5% 
Average buffer level (s) 29.8 21.7 -27.2% 
STD of buffer level (s)  7.78 7.01 9.9% 
Number of interruptions 0 0 0% 
Number of quality changes 52.6 31.4 40.3% 
Number of unsafe quality changes 2.6 2 23.1% 

 
 
From the statistics, we can see that the QAAD algorithm has a higher buffer level 

because of its conservative strategy and that neither algorithm suffers any interruptions. In fact, 
a higher buffer with no interruptions does not provide a better QoE for the user. Because the 
user will not notice a change in the buffer level unless the buffer is exhausted. As expected, the 
proposed algorithm results in fewer (unsafe) quality changes, smaller maximum change in 
bitrate and lower STD of bitrates, which implies that our bitrate adaptation algorithm can obtain 
smoother video quality. Furthermore, the proposed algorithm achieves a higher average bitrate. 
All of these results confirm that the proposed algorithm achieves a considerable advantage over 
the QAAD algorithm. 
 
4.4. Discussion 

As mentioned above, a throughput estimation method should be stable in the case of 
short-term fluctuations while also reacting quickly to large fluctuations. The method proposed in 
[6] achieves smooth estimation for short-term fluctuations but fails to cope with large 
fluctuations. The DFI method and the Thang method respond quickly to large fluctuations but 
yield fluctuating estimates in the case of short-term fluctuations. The results of the first 
experiment show that our throughput estimation method behaves well for both short-term 
fluctuations and large fluctuations.  

In our throughput estimation method, norT  is decided by the step of bitrates. All the 
steps are equal in our experiments. When the steps are not equal, this situation needs further 
research; for example, the smallest step can be chosen to decide norT . Besides, from the 
observations, we note that the normalization factor norT  plays an important role in the estimation 
of short-term fluctuations and the parameter M  plays an important role in the estimation of 
large fluctuations. With further research, a dynamic scheme can be designed for determining 

norT  and M  based on the characteristics of different networks.  
The algorithm proposed in [19] attempts to maintain a stable bitrate to ensure a smooth 

bitrate. However, this strategy causes eventual abrupt changes in bitrate in the case of large, 
rapid decreases in the available throughput. When the available throughput is increasing, the 
QAAD algorithm changes the quality with the smallest possible step to achieve a smooth bitrate. 
However, this strategy does not take full advantage of the available bandwidth. The proposed 
bitrate adaptation algorithm changes the quality within the safe variation range of the current 
bitrate. This strategy avoids abrupt change in bitrate and gets a high bandwidth utilization. The 
results of the second experiment indicate that our algorithm can get higher average quality and 
smoother video quality. It should be noted that the thresholds used to define our piecewise 
function are suitable for slow-motion [16] videos and some fast-motion videos. Thus, for videos 
with faster motion, these thresholds should be reset based on the JND. 

In most bitrate adaptation algorithms, m  different video qualities must inevitably be 
traversed to select the best bitrate (  bestRIndexR ). This is also true of our algorithm. Therefore, our 

algorithm’s time complexity is ( )O m , identical to that of the QAAD algorithm. 
In this paper, we focused purely on improving the performance of our bitrate adaptation 

algorithm for a single client. However, the case of multiple clients is both more practical and 
more challenging [20]. The question of how to achieve a balance between efficiency and 



                     ISSN: 1693-6930 

TELKOMNIKA  Vol. 14, No. 3, September 2016 :  904 – 915 

914 

fairness of the allocation of throughput resources poses a considerable challenge when multiple 
clients share a common link. This will be an interesting direction for future research. 
 
 
5. Conclusion and Future Work 

In this paper, a novel bitrate adaptation algorithm which includes a throughput 
estimation method and a bitrate selection algorithm was proposed for HTTP adaptive streaming. 
We implemented our throughput estimation method by predicting the difference between the 
estimated and instantaneous throughputs. Our bitrate selection algorithm was realized based on 
piecewise functions to determine the variation range of the current bitrate. The proposed 
method and algorithm were tested on our HLS system over a network emulated using 
DummyNet. The experimental results show that 1) our throughput estimation method yields a 
smooth response to short-term fluctuations and a fast response to large fluctuations and 2) our 
bitrate adaptation (selection) algorithm results in smoother changes in quality with a higher 
average quality.  

We have verified the good performance of our bitrate adaptation algorithm for a single 
client, and in future research, we will explore its feasibility for multiple clients, considering the 
efficiency and fairness of the allocation of throughput resources. 
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