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 This work concentrates the analysis of the system of automatic control of  
the directive diagram of the moving active electronically scanned array with a 

limited number of transceiver modules. The analysis revealed a number of 

shortcomings that lead to a significant increase in standard deviations, 

quadratic integral estimates, and an increase in transient time. The identified 
disadvantages lead to a decrease in the efficiency of the antenna system,  

an increase in the error rate at the reception, the inability of the system to react 

to disturbances applied to any point of the system in the event of a mismatch of 

a given signal/noise level. In accordance with the analysis, the mathematical 
model of the automatic control system of the directional diagram of the moving 

active electronically scanned array was considered, considering this a new 

method of estimating the quality indicators of the automatic control diagram of 

the directional diagram of the active electronically scanned array in a random 
setting and disturbing action was developed. The difference between  

the proposed method and the existing method is in the construction of  

an automatic control system with differential coupling equivalent to  

the combination due to the introduction of derivatives of the random setting 
action of the open compensation connection. 

Keywords: 

Active electronically scanned 

array 

Control system 

Differential coupling 

Mean-square error 

Radiation pattern 

Repeater 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Juliy Boiko, 

Department of Telecommunications and Radio Engineering, 

Khmelnytsky National University, 

11, Instytuts’ka str., Khmelnitsky, 29016, Ukraine. 

Email: boiko_julius@ukr.net 

 

 

1. INTRODUCTION 

Analysis of the technical characteristics of modern antennas and the experience of their use in 

different radio systems show that the active electronically scanned array (AESA) meets the requirements to 

the antenna systems of multifunctional radio equipment [1-6]. The use of AESA in mobile and space radio 

complexes can significantly increase the range of radio communication, quality, efficiency and volumes of 

transmitted information. As the energy resources of robotic search engines are generally limited, maintaining 

the high potential of AESA in the scanning sector is associated with minimizing all losses, both in the AESA 

tract and on the radio link. The fulfillment of these requirements is possible only by optimizing the AESA 

parameters, taking into account all the factors that affect its operation. 

Takashi Iida, Warren L. Stutzman, Gary A. Thiele, Constantine A. Balanis, Enson Change, Rick 

Sturdivant, Mike Harris and others have devoted themselves to the study of AESA, but they have not 
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consider improving the efficiency of broadcasting information in mobile radio systems at the expense of  

the antenna system of the translator [5-11]. The task of determining the values of the parameters of system of 

automatic control (SAC) directional pattern (DP) AESA is reduced to the estimation of the mean-square error 

(MSE) and quadratic integral estimates (QIE) of the automatic control system with differential feedback.  

In order to develop a methodology for assessing the quality of SAC DP AESA, the research was 

conducted. It can be divided into two stages: 

First stage is theoretical analysis: 

− Composite a system of equations describing the SAC with differential coupling; 

− Check the identity of constituent errors caused by the defining and disturbing actions to the combined 

system of automatic control with differential coupling for determine the compliance of constructed system; 

− Synthesis of parameters transfer function links of differential coupling according to conditions of 

minimization MSE and QIE, caused by the defining actions - change in the azimuth of the coupler. 

Second stage is modeling of system with definite parameters: 

− Modeling of the initial and system with differential coupling; 

− Input to system the necessary condition for increasing the order of astatism; 

− Assessment the MSE and QIE of system an accidental defining action; 

− Check the time of the transition process of SAC. 

 

 

2. RESEARCH METHOD  

Analysis of the existing methods of increasing the efficiency of the systems of automatic control of 

the active electronically scanned array showed that the most simple and transparent are the direct methods, 

among which are the frequency method, error coefficients, and QIE [12-16]. But the use of direct methods is 

not always appropriate in cases where it is not possible to determine with maximum precision in which 

element of the structural scheme of the modeled system there is the disturbing effect, i.e., it is random. 

There are two ways to solve this problem, namely: using direct methods; construction of  

an equivalent system for automatic control of the AESA radiation pattern. Thus, a prematurely modeled 

system will allow not only to estimate but also to control AESA parameters in real-time by time-limited 

computational operations. Based on the analysis, the functional diagram of this system while measuring one 

angular coordinate can be represented in the form shown in Figure 1. Tables and figures are presented center, 

as shown below and cited in the manuscript. 

 

 

 
 

Figure 1. Generalized functional diagram of SAC DP 

 

 

The input value of the system is the azimuth of the repeater βp (or the angle of the repeater location) 

the initial value is the azimuth of the antenna βpa(t) (or the azimuth of the repeater). Forasmuch as the signal, 

proportional to the magnitude and sign of the angular deviation of the repeater from the axis of  

the antenna-equal to the signal direction, is produced at the output of the phase detector, all elements, from  

the antenna of the receiving device and ending with the phase detector, are related to the evaluation and 

detection device. The rest of the elements intended to actuate the output devices and estimate the angular 

coordinates according to the output of the evaluation and detection device, are referred to the actuator.  

To compose a mathematical model of a control system, it is necessary to define the transfer functions of its 

individual elements [16, 17]. 

On the structural diagram as shown Figure 1, the influence of an accidental moment of changing  

the position of the antenna web created according to the curvature of the earth surface of the earth station Xc 
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(disturbing influence) is taken into account by the inclusion in the model of the second channel (KDI)  

the channel of disturbing influence with the transfer function. Schematic diagram of a system in which  

an equivalent integral-differential link (consistently adjusting link) with a transfer function KCAL(p)=K2(p) is 

included for correction instead of local negative feedback, and is shown in Figure 2. 

 

 

 
 

Figure 2. Structural diagram of automatic control of the AESA radiation pattern with integral-differential link  

 

 

To determine system quality indicators, it is necessary to find the transfer functions of the system 

with an error in advance. The constituent errors caused by the defining βp and disturbing Xc actions are 

described by the following equations: 

 

𝜃𝛽(𝑝) = 1
1+𝐾𝑂𝑙𝐶𝑆(𝑝)

𝛽𝑝
(𝑝), 𝜃𝑥(𝑝) =

𝐾7(𝑝)𝐾5(𝑝)𝐾6(𝑝)

1+𝐾𝑂𝑙𝐶𝑆(𝑝)
𝑋𝑐(𝑝). (1) 

 

According to (1) the transfer functions that connect 𝜃𝛽(𝑡) with 𝛽𝑝(𝑡) and 𝜃𝑥(𝑡) with 𝑋𝑐(𝑡) after substituting 

the values of the transfer functions of the original mathematical model are equal to: 

 

𝐾𝜃𝛽(𝑝) =
𝜃𝛽(𝑝)

𝛽𝑝(𝑝)
=

𝑎0𝑝6+𝑎1𝑝5+𝑎2𝑝4+𝑎3𝑝3+𝑎4𝑝2+𝑎5𝑝

𝑏0𝑝6+𝑏1𝑝5+𝑏2𝑝4+𝑏3𝑝3+𝑏4𝑝2+𝑏5𝑝+𝑏6
=

𝐷𝜃𝛽(𝑝)

𝐹𝜃𝛽(𝑝)
.  (2) 

 
𝑎0

` 𝑝4+𝑎1
` 𝑝3+𝑎2

` 𝑝2+𝑎3
` 𝑝+𝑎4

`

𝑏0
` 𝑝7+𝑏1

` 𝑝6+𝑏2
` 𝑝5+𝑏3

` 𝑝4+𝑏4
` 𝑝3+𝑏5

` 𝑝2+𝑏6
` 𝑝+𝑏7

` =
𝐷𝜃𝑀(𝑝)

𝐹𝜃𝑀(𝑝)
 . (3) 

 

It can be seen from (2) and (3) that the system with respect to the defining action 𝛽𝑝(𝑡) is static with 

the first-order astaticism, and with the disturbing action Xc is static. The permissible MSE of the control 

system, which shall not exceed the values in the angular and azimuth plane, are defined by the following 

expressions: 𝜀𝛽 = √𝜃𝛽
2 = √0,029 = 0,17∘; 𝜀𝑋 = √𝜃𝑋

2 = √2,286 × 10−9 = 0,00274grade. In addition to 

MSE, it is desirable to determine its dynamic errors while evaluating the accuracy of the RP AESA automatic 

control system. Dynamic errors are calculated CS RP AESA: 𝜃𝛽(𝑡) = 𝑙𝑖𝑚
𝑝→0

[𝑝𝐾𝜃𝛽(𝑝)𝛽𝑝(𝑝)],  

𝜃𝑝(𝑡) = 0,09grade, 𝜃𝑋(𝑡) =
𝑎4𝑀0

𝑏7
, where: 𝑎4 = 𝑘𝐷𝐼 × 𝑘𝑔𝑒𝑎𝑟𝑏𝑜𝑥 = 1,17 × 10−3; 𝑏7 = 55,3. 

The transient component of the error is determined by the expression: 𝜃С𝛽(𝑡) = 𝐴1𝑒𝑝1𝑡 + 𝐴2𝑒𝑝2𝑡 +

𝐴3𝑒𝑝3𝑡 + 𝐴4𝑒𝑝4𝑡 + 𝐴5𝑒𝑝5𝑡 + 𝐴6𝑒𝑝6𝑡 . In Figure 3. graphs of the transition function 𝜃С𝛽(𝑡)caused by a single 

step change in the azimuth of the coupler (a) and the valid frequency response (VFR) of system𝑃С𝛽(𝜔) (b). 

The transient function of the system of automatic control of the radiation pattern caused by the step change of 

the inertial moment of the antenna rotation mechanism 𝑋(𝑡) is determined by the following formula: 

 

𝜃С𝛽(𝑡) =
2

𝜋
∫

𝑃𝜃𝛽(𝜔)

𝜔
sin (𝜔𝑡)𝑑𝜔

𝜔𝑉𝐹

𝜔𝑚𝑖𝑛
, (4) 

 

where 𝑃𝜃𝛽(𝜔) = 𝑅𝑒[𝐾𝜃𝑋(𝑗𝜔)] valid frequency response (VFR) of the system with error caused by variable 

𝑋(𝑡). 

VFR 𝑃𝜃𝛽(𝜔) is shown in Figure 4. The curve of the transition function 𝜃𝐶Х(𝑡) for a single step 

action 𝑋0 = 1 is shown in Figure 4 (b). According to the timing of the transition process 𝑡𝑝 = 5,4 𝑠𝑒𝑐. is  

a static error 𝜃𝑋𝑠𝑡 = 2,1 × 10−5rad. For the case 𝑋0 = 1 of the curve of the transition process 𝜃𝐶Х(𝑡) is 

shown in Figure 4 (c). According to the graph the statistical error 𝜃𝑋𝑠𝑡 = 2,1 × 10−4rad. caused by  

the inertial effect on the rotating mechanism of the antenna 𝑋0 = 1. 
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(a) (b) 

 

Figure 3. Transient graphs of the function 𝜃С𝛽(𝑡) caused by a single step variable in the azimuth of 

the coupler (a) and the valid frequency response (VFR) of system 𝑃С𝛽(𝜔) (b) 

 

 

 
 

Figure 4. Graph of transients of SAC RP caused by disturbing action 𝑋(𝑡) 

 

 

Thus, as a result of the analysis, it was established that the original AESA directional control system 

is a first-order automatic control system with respect to the defining action (azimuth on the relay) and static 

with respect to the perturbing action (changes in the position of the AESA canvas), and it is characterized by 

significant root mean square and dynamic errors. The effects of these actions may lead to rejection of  

the chart orientation in the normal (level signal/noise error rate at the receiver relay). But in cases of  

non-compliance with these requirements, the task is to evaluate the random perturbations in order to 

compensate them in the system. Such an assessment is not possible due to the lack of reliable information 

about the area of the system of automatic control which receives accidental disturbance. 

Therefore, in the next step, it is necessary to consider the possibility of evaluating the system of 

automatic control by introducing derivatives of a random set point action using open compensation. That is, 

by building a combined system of automatic control with differential coupling, by which such estimation is 

possible. To compensate the effect of an accidental disturbing action (changing the position of the AESA 

canvas), applied not at the input of the system, it is necessary to enter a link to this action [18-21]. A block 

diagram of a mathematical model of the system of automatic control, which was introduced one differential 

link for indirect measurement 𝛼(𝑡) and 𝑋(𝑡) is shown in Figure 5. 

The differential link is constructed accordingly and consists of a section I (a straight chain with  

a transfer function 𝑝/𝑇𝑝 + 1 and a section II (positive feedback containing models of links 𝐾1(𝑝) and 𝐾3(𝑝) 

a link with a transfer function 1/𝑇𝑝 + 1, the adder ∑3 and the common element with the transfer function 

𝐾𝐵(𝑝). The signal 𝛽𝑝(𝑡) from the output of the adder ∑3 through the common correction link 𝐾𝐵(𝑝) arrives 

to the adder ∑4 where it consists of the converted voltage 𝑈2(𝑡)of the error signal 𝜃(𝑡). Let’s express  

the error 𝜃(𝑝) = 𝜃𝛼(𝑝) + 𝜃𝑋(𝑝), constituent errors caused by defining 𝛼(𝑡) and 𝑋(𝑡) disturbing actions. 
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𝜃𝛼𝐷(𝑝) =
1−𝐾3(𝑝)𝐾1(𝑝)

1

𝑇𝑝+1
𝐾𝐵(𝑝)

1+𝐾1(𝑝)𝐾2(𝑝)𝐾3(𝑝)
1

𝑝

𝛼(𝑝), (5) 

 

𝜃𝑋𝐷(𝑝) =
1−𝐾3(𝑝)𝐾1(𝑝)

1

𝑇𝑝+1
𝐾𝐵(𝑝)

1+𝐾1(𝑝)𝐾2(𝑝)𝐾3(𝑝)
1

𝑝

𝐾5(𝑝)
1

𝑝
𝑋(𝑝).  (6) 

 

A structural diagram of a combined SAC RP AESA with open connections on the defining and 

disturbing action of the equivalent SAC with differential communication is shown in Figure 6. Let’s express 

the error 𝜃𝐾(𝑝) = 𝜃𝐾𝛼(𝑝) + 𝜃𝐾𝑋(𝑝). 
 

𝜃𝐾𝛼(𝑝) =
1−𝐾1(𝑝)𝐾3(𝑝)

1

𝑇𝑝+1
𝐾𝐵(𝑝)

1+𝐾1(𝑝)𝐾2(𝑝)𝐾3(𝑝)
1

𝑝

𝛼(𝑝),  

 

𝜃𝐾𝑋(𝑝) =
1−𝐾1(𝑝)𝐾3(𝑝)

1

𝑇𝑝+1
𝐾𝐵(𝑝)𝐾5(𝑝)

1

𝑝

1+𝐾1(𝑝)𝐾2(𝑝)𝐾3(𝑝)
1

𝑝

𝑋(𝑝).  

 

Thus, the equivalence result of the expressions for the determination of errors 𝜃𝐾𝛼(𝑝) and 𝜃𝐾𝑋(𝑝)  

the combined system of automatic control of the radiation pattern were clearly obtained, with the expressions 

for the determination of errors of the SAC with differential coupling 𝜃𝛼𝐷(𝑝) and 𝜃Х𝐷(𝑝). This conclusion, in 

turn, allows using the proposed SAC for the direct evaluation of the random actions and transients of  

the SAC RP AESA, since the differential connection, as well as the open compensation bonds of  

the combined system does not affect the stability of the closed system. 

Considering that the differential coupling system as shown in Figure 5 is equivalent to the combined 

system as shown in Figure 6, we will synthesize the differential coupling of the SAC RP AESA due to  

the lack of influence on the stability of the closed part of the SAC RP AESA. Simultaneous minimization of 

root mean square and quadratic integral errors of transients caused by defining 𝛼(𝑡) and disturbing 

𝑋(𝑡) actions is carried out in accordance with the method of minimizing root mean square errors and  

QIE [22, 23]. Reduction of the root mean square errors 𝜀𝛼 and 𝜀𝑋 is carried out by increasing the order of  

the astaticism of the system with respect to defining action 𝛼(𝑡) from the first to the second, and  

the transformation of a static system of disturbing action 𝑋(𝑡) into astatic with the first-order astaticism.  

To increase the order of astaticism from the first to the second relatively 𝛼(𝑡) it is necessary to enter into  

the system the first derivative of the defining action, and to convert static to astatic relatively 𝑋(𝑡), a signal 

proportional to the disturbing action should be entered into the system. 

 

 

  
 

Figure 5. Structural diagram of the system of 

automatic control of directional AESA diagram with 

differential coupling for indirect measurement of the 

setting 𝛼(𝑡)and disturbing 𝑋(𝑡) 

 

Figure 6. Structural diagram of the combined 

system of automatic control of the AESA 

directional diagram with open links on the set 

𝛼(𝑡) and disturbing action 𝑋(𝑡) 

 

 

More illustrative approach to solving the problem of estimating the quality indicators of the transient 

process of the system is to calculate a QIE of the system of automatic control RP AESA [24-27]. Transfer 

function of differential communication on the set action, 
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𝐾𝐵(𝑝) =
𝜏1(𝜏𝛼𝑝+1)(𝑇𝑝+1)

(𝑇1𝛼𝑝+1)(𝑇2𝛼𝑝+1)
=

𝐷𝐵(𝑝)

𝐹𝐵(𝑝)
,  (7) 

 

𝐾𝑋𝑇(𝑝) =
𝜏1𝑋𝑝+𝜏0𝑋

𝑇1𝑋𝑝+1
=

𝜏0𝑋(𝜏𝑋𝑝+1)

𝑇1𝑋𝑝+1
=

𝐷𝐾(𝑝)

𝐹𝐾(𝑝)
, (8) 

 

where 𝜏𝑋 = 𝜏0𝑋/𝜏1𝑋. According to Figure 6 the transfer function for the disturbing action 𝑋(𝑡) 

 

𝐾𝑋(𝑝) = 𝐾5(𝑝)
1

𝑝
𝐾𝛼(𝑝) =

𝑘𝑋(𝜏𝛼𝑝+1)

(𝑇5𝑝+1)(𝑇1𝛼𝑝+1)(𝑇2𝛼𝑝+1)
,  (9) 

 

where 𝑘𝑋 = 𝑘5𝜏1, 𝑇1𝛼 = 𝑇. 
The obtained transfer function 𝐾𝑋(𝑝) differs from that required 𝐾𝑋𝑇(𝑝) by two aperiodic units, but this 

connection transmits a signal proportional to the disturbing action and its first derivative, that is, the system has 

become astatic to the disturbing action 𝑋(𝑡). Substituting the value of the transfer functions of the system as 

shown in Figure 6 and founded value of 𝐾𝐵(𝑝) from (7) in formulas (5) and (6) and considering 𝑇1𝛼 = 𝑇,  
we get: 

 

𝜃𝛼𝐷 =
(𝑇1𝑝+1)[(𝑇3𝑝+1)(𝑇1𝛼𝑝+1)(𝑇2𝛼𝑝+1)−𝑘3𝑘1𝜏1𝜏𝛼𝑝−𝑘3𝑘1𝜏1]𝑝

[(𝑇1𝑝+1)(𝑇3𝑝+1)𝑝+𝑘1𝑘2𝑘3](𝑇1𝛼𝑝+1)(𝑇2𝛼𝑝+1)
𝛼(𝑝),  

 

𝜃𝑋𝐷 =
(𝑇1𝑝+1)[(𝑇3𝑝+1)(𝑇1𝛼𝑝+1)(𝑇2𝛼𝑝+1)−𝑘3𝑘1𝜏1𝜏𝛼𝑝−𝑘3𝑘1𝜏1]𝑘5

[(𝑇1𝑝+1)(𝑇3𝑝+1)𝑝+𝑘1𝑘2𝑘3](𝑇1𝛼𝑝+1)(𝑇2𝛼𝑝+1)(𝑇5𝑝+1)
𝑋(𝑝), (10) 

 

The condition of increasing the order of astaticism of the SAC RP AESA from the first to the second 

relatively defining action 𝛼(𝑡) and the transformation of the static system into systems of the first order of 

astaticism relative to the disturbing action 𝑋(𝑡) is the following expression 1 − 𝑘1𝑘3𝜏1 = 0. Based on this 

condition we find 𝜏1 = 1/𝑘1𝑘3 = 1/(4 ⋅ 1,5) = 0,16666. 
Let’s find the value 𝜏1 in accordance with the condition of increasing the order of astaticism 

corresponds to the value 𝜏1𝑜𝑝𝑡 at which 𝜀𝛼 and 𝜀𝑋 of the system of automatic control of the RP AESA is 

minimized. Write the transfer functions of the system with an accuracy to determine the parameters 

𝜏2,𝑇1𝛼,𝑇2𝛼. 

 

𝐾𝜃𝛼𝐷(𝑝) =
(𝑇1𝑝+1)[(𝑇3𝑝+1)(𝑇1𝛼𝑝+1)(𝑇2𝛼𝑝+1)−𝜏𝛼𝑝−1]𝑝

[(𝑇1𝑝+1)(𝑇3𝑝+1)𝑝+𝑘1𝑘2𝑘3](𝑇1𝛼𝑝+1)(𝑇2𝛼𝑝+1)
,   

 

𝐾𝜃𝛼𝐷(𝑝) =
(𝑇1𝑝+1)[(𝑇3𝑝+1)(𝑇1𝛼𝑝+1)(𝑇2𝛼𝑝+1)−𝜏𝛼𝑝−1]𝑘5

[(𝑇1𝑝+1)(𝑇3𝑝+1)𝑝+𝑘1𝑘2𝑘3](𝑇1𝛼𝑝+1)(𝑇2𝛼𝑝+1)(𝑇5𝑝+1). (11) 

 

The block diagram of the source system is shown in Figure 2 is described by the equations, 

 

𝐾1(𝑝) =
𝑘1

𝑇1𝑝+1
; 𝐾2(𝑝) = 𝑘2; 𝐾3(𝑝) =

𝑘3

𝑇3𝑝+1
; 𝐾4(𝑝) =

𝑘4

𝑝
; 𝐾5(𝑝) =

𝑘5

𝑇5𝑝+1
, (12) 

 

with parameters 𝑘1 = 4; 𝑘2 = 2; 𝑘3 = 1,5; 𝑘4 = 1; 𝑘5 = 1,2; 𝑇1 = 0,003𝑠𝑒𝑐; 𝑇3 = 0,009𝑠𝑒𝑐;  𝑇5 = 𝑇3 =
0,009𝑠𝑒𝑐. From equation of the system with an accuracy 𝜃(𝑝) = 𝜃𝛼(𝑝) + 𝜃𝑋(𝑝), where, 

 

𝜃𝛼(𝑝) =
1

1+𝐾1(𝑝)𝐾2(𝑝)𝐾3(𝑝)𝐾4(𝑝)
𝛼(𝑝),   (13) 

 

𝜃𝑋(𝑝) =
𝐾5(𝑝)𝐾4(𝑝)

1+𝐾1(𝑝)𝐾2(𝑝)𝐾3(𝑝)𝐾4(𝑝) 𝑋(𝑝), (14) 

 

the images of the components of the system accuracy caused by the defining 𝛼(𝑡)and disturbing 𝑋(𝑡) 

actions. According to (13) and (14), the transfer functions of the system that associate 𝜃𝛼(𝑡)with 𝛼(𝑡) and 

𝜃𝑋(𝑡) with 𝑋(𝑡) (after substituting the values of the transfer functions of (14), given that 𝑇3 = 𝑇5), we obtain, 

 

𝐾𝜃𝛼(𝑝) =
𝜃𝛼(𝑝)

𝛼(𝑝)
=

(𝑇1𝑝+1)(𝑇3𝑝+1)𝑝

(𝑇1𝑝+1)(𝑇3𝑝+1)𝑝+𝑘𝑝
=

𝑎0𝑝3+𝑎1𝑝2+𝑎2𝑝

𝑏0𝑝3+𝑏1𝑝2+𝑏2𝑝+𝑏3
.  

 

𝐾𝜃𝑋(𝑝) =
𝜃𝑋(𝑝)

𝑋(𝑝)
=

𝑘4𝑘5(𝑇1𝑝+1)

(𝑇1𝑝+1)(𝑇3𝑝+1)𝑝+𝑘𝑝
=

𝑎0
` 𝑝+𝑎1

𝑏0𝑝3+𝑏1𝑝2+𝑏2𝑝+𝑏3
, (15) 
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where 𝑎0 = 𝑇1𝑇3 = 2,7 × 10−5; 𝑎1 = 𝑇1 + 𝑇3 = 1,2 × 10−2; 𝑎2 = 1; 𝑏0 = 𝑇1𝑇3 = 2,7 × 10−5; 𝑏1 = 𝑇1 +
𝑇3 = 0,012;  𝑏2 = 1; 𝑏3 = 𝑘1𝑘2𝑘3𝑘4 = 12; 𝑎0 = 𝑘4𝑘5𝑇1 = 0,0036; 𝑎1 = 𝑘4𝑘5 = 1,2. 

From comparisons (11) and (15), it follows that the differential coupling parameters are not included 

into the characteristic equation of the closed circuit of the system (𝐹𝜃𝛼 = 0, 𝐹𝜃𝑋 = 0), and therefore do not 

affect its stability. But the introduction of differential coupling in the SAC leads to the formation of new 

roots in the characteristic equation of 𝐹𝜃𝛼𝐷 = 0, 𝐹𝜃𝑋𝐷 = 0, equal to 𝑝1𝛼 = −1/𝑇1𝛼, 𝑝2𝛼 = −1/𝑇2𝛼. These 

roots will be matched by the new components 𝐴1𝛼𝑒𝑝
1𝛼𝑡 , 𝐴2𝛼𝑒𝑝

2𝛼𝑡 , 𝐴1𝑋𝑒𝑝
1𝛼𝑡 , 𝐴2𝛼𝑒𝑝

2𝛼𝑡 , leading to  

an additional phase shift of the SAC RP. Thus, in order that these components do not have a significant effect 

on the transient functions of the SAC RP, that is 𝐼𝐶𝛼 , 𝐼𝐶𝑋, we find the roots of the characteristic equation 

according to (15). 

 

𝐹𝜃𝛼(𝑝) = 2,7 × 10−5𝑝3 + 0,012 × 𝑝2 + 𝑝 + 12 = 0,    

 

When the parameters of the system are equal 𝑝1 = −14,411; 𝑝2 = −90,95; 𝑝3 = −339,083, and 

the transient component of the system accuracy is caused by a change in the setting action 𝛼(𝑡). 

 

𝜃𝐶(𝑡) = 𝐴1𝑒𝑝1𝑡 + 𝐴2𝑒𝑝2𝑡 + 𝐴3𝑒𝑝3𝑡 = 𝐴1𝑒−14,411𝑡 + 𝐴2𝑒−90,95𝑡 + 𝐴3𝑒−339,083𝑡 .   (16) 

 

From the three components of the transient component of the error, the slowest decaying first component 

𝐴1𝑒−14,411𝑡corresponds to the smaller absolute value of the root 𝑝1 = −14,411. That is, the new components 

of the transient components of the error 𝐴1𝛼𝑒𝑝
1𝛼𝑡 , 𝐴2𝛼𝑒𝑝

2𝛼𝑡 can be attenuated much faster  
𝑝1𝛼 = 10 × (−14,411) = −144,11; 𝑝2𝛽 = 15 × (−14,411) = −216,165. From 𝑇1𝛼 = −1/𝑝1𝛼 =

6,939 × 10−3, 𝑇2𝛼 = −1/𝑝2𝛼 = 4,626 × 10−3, 𝑑1 = 𝑇1𝛼 + 𝑇2𝛼, 𝑑2 = 𝑇1𝛼𝑇2𝛼. 
The smallest absolute root 𝑝1 = −14,411 of the characteristic equation𝐹𝜃𝛼(𝑝) is also the smallest 

for the original SAC equation 𝐹𝜃𝛼(𝑝) = 0, so the new components 𝐴1𝑋𝑒𝑝1𝑋𝑡 , 𝐴2𝑋𝑒𝑝2𝑋𝑡of the transition 

function 𝑋(𝑡)will also attenuate faster than its first component 𝐴1𝛼
1 𝑒𝑝1𝑡. Let’s define 𝜏2 of the transfer 

function (13) of the differential coupling by which the QIE of the transition function caused by 𝛼(𝑡) is 

minimized. According to the Raleigh formula [16], the QIE of a transition function caused by a single 

stepping action 𝛼(𝑡). 

 

𝐼𝐶𝛼𝐷 =
1

2𝜋
∫ |𝐾𝜃𝛼𝐷(𝑗𝜔)

1

𝑗𝜔
|

2

𝑑𝜔,
+∞

−∞
 (17) 

 

Or substituting from (15) 𝐾𝜃𝛼𝐷 we have: 

 

𝐼𝐶𝛼𝐷 =
1

2𝜋
∫ |

𝑎0(𝑗𝜔)5+𝑎1(𝑗𝜔)4+𝑎2(𝑗𝜔)3+𝑎3(𝑗𝜔)2

𝑏0(𝑗𝜔)5+𝑏1(𝑗𝜔)4+𝑏2(𝑗𝜔)3+𝑏3(𝑗𝜔)2+𝑏4(𝑗𝜔)+𝑏5
|

+∞

−∞

2

𝑑𝜔, (18) 

 

After calculations we get the value of the optimal one 𝜏2𝑎𝑜𝑝𝑡 = 0,00303. Substituting 𝐾𝜃Х𝐷 according to (17) 

we have: 

 

𝐼𝐶Х𝐷 =
1

2𝜋
∫ |

𝑎0
1(𝑗𝜔)4+𝑎1

1(𝑗𝜔)3+𝑎2
1(𝑗𝜔)2+𝑎3

1

𝑏0
1(𝑗𝜔)6+𝑏1

1(𝑗𝜔)5+𝑏2
1(𝑗𝜔)4+𝑏3

1(𝑗𝜔)3+𝑏4
1(𝑗𝜔)2+𝑏5

1(𝑗𝜔)+𝑏6
1|

2

𝑑𝜔 .
+∞

−∞
 (19) 

 

After calculations we get the value of the optimal one 𝜏2 = 𝜏2𝑋𝑜𝑝𝑡 = 0,003451. Comparing the obtained 

values we can conclude that the value 𝜏2𝑋𝑜𝑝𝑡 is almost indistinguishable from 𝜏2𝛼𝑜𝑝𝑡. That allows asserting 

the possibility of direct estimation of SAC parameters by means of the built system of automatic control of 

the AESA directional diagram with differential coupling as shown in Figure 5. 

 

 

3. RESULTS AND ANALYSIS 

In order to confirm the conclusions about the possibility of increasing the quality indicators of  

the SAC DP AESA with use of one differential link modeling was implemented at Matlab. The simulation 

model of SAC DP AESA is shown in Figure 7.  

The simulation model was synthesized to determine the main characteristics of an automatic control 

system. Characteristics were defined as error of defining action βp (t); mean square errors εβ(t); transition 

process θSβ(t). The description and course of the research process is described below. 
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Figure 7. Simulation models initial system of SAC DP AESA and system with differential coupling  

without channel of disturbing action X(t) 
 

 

3.1.  Simulation models 

Parameters of simulation models are according to the parameters consideration before. The first and 

second derivatives of the setting action has injected into the system by the differential coupling. The first 

derivative (parameter τ2aopt) is synthesized to according the condition of increasing the order of the astaticism 

of the system from the first to the second, the second derivative (parameter τ2Xopt) – accordingly to condition 

of minimization of quadratic integral errors of transients function caused by defining actions βp(t).  

When the Switch 1 is closed, an intermittent random defining action is inputted to the system in 

parallel, the spectral density of which is 𝑆𝛽(𝜔) =
2𝛽𝛺2

𝜔2+𝛽2, and shaped by lag element and integrator. Oscillogram 

of error of defining action βp(t) is shown in Figure 8. To quantify the impact of differential coupling to the MSE 

errors of both systems through computing devices 1 and 2, which determine the MSE according to the formula 

𝜀𝛽 = √𝜃𝛽
2, are supplied at the oscilloscope. The curve 𝜀𝛽(𝑡) as shown in Figure 9 correspond to MSE value of 

error initial system, the curve 𝜀𝛽𝐷 is to the MSE error of system with differential coupling.  

 

 

 
 

Figure 8. Oscillogram of error of defining action βp(t):  

(a) – 𝜃𝛽(𝑡) initial system; (b) – 𝜃𝛽𝐷(𝑡) system with differential coupling 

 

 

The results of experimental values and calculation values of MSE for two system are submitted at  

the Table 1. When the Switch 2 is closed, a single step action 𝛽𝑆𝑝(𝑡) = 1(𝑡) is inputted to the systems.  

The curves of the transition functions are shown in Figure 10. When the Switch 3 is closed, a defining action 

that varies according to linear principle 𝛽𝐿𝑝(𝑡) = 𝛽1𝑡, where 𝛽1 = 5
𝑔𝑟𝑎𝑑

𝑠
 as shown in Figure 11. 
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Figure 9. Plots of mean square errors of SAC: 𝜀𝛽(𝑡) – initial system; 𝜀𝛽𝐷 – system with differential coupling 
 

 

 
 

Figure 10. Plot of the transition process at single step action 𝛽𝑆𝑝(𝑡): 𝜃𝑆𝛽(𝑡) - initial system; 𝜃𝑆𝛽𝐷(𝑡) - system 

with differential coupling (10) 
 

 

 
 

Figure 11. Plot of the transition process at defining action that varies according to linear principle 

 𝛽𝐿𝑝(𝑡) = 𝛽1𝑡: 𝜃𝐿𝛽(𝑡) - initial system; 𝜃𝐿𝛽𝐷(𝑡) - system with differential coupling  
 

 

Table 1. Calculation values and experimental values of MSE SAC DP AES 
MSE of system and theirs relation Calculation values Simulation results 

𝜀𝛽 0.17 0.175 

𝜀𝛽𝐷 0.059 0.06 

𝜀𝛽/𝜀𝛽𝐷 2.881 2.91 

𝜀Х 4.781×10-5 5.5 ×10-5 

𝜀Х𝐷 9.581 10-6 1 ×10-5 

𝜀Х/𝜀Х𝐷 4.99 5.5 

 

 

3.2.  The results of research 

Quality assessment of impact differential coupling to playback error of random defining action is 

shown in Figure 8. Comparison the results may prove the using of differential coupling is able to reduce 

reproduction error of random defining action. According to the Table 1, the calculated mean square errors, 

caused by random error of defining action, for two systems are exactly meets data obtained at the simulation. 

According to the Figure 10, the basic quality parameters of transition process at system with differential 

coupling are better than at initial system. In particular, the transitory period has decreased by 1.84 times. 

The transition functions of SAC DP AESA obtained from the simulation coincide with the calculated 

ones. The constant errors of both systems are zero, which corresponds to their calculated values. According to 

the Figure 11, we conclude that with a linear change of the azimuth of the repeater in the initial system,  

a constant dynamic error occurs 𝜃𝛽(𝑡) = 0,09 grad, corresponding to the calculated value. So the quality of  

the transition process at the system with differential coupling has improved significantly. The constant error of 

system with differential coupling is zero, which corresponds to the theoretical calculations. 

 

 

4. CONCLUSION  

The use of the proposed method makes it possible to evaluate the dynamic characteristics of  

the system of automatic control of the radiation pattern of the active electronically scanned array, and to 
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improve the quality of the system. The conditions of increasing the order of astaticism for the built system of 

automatic control of the AESA radiation pattern with differential coupling for the setting action 

(τ2aopt=0,00303) and (τ2Xopt=0,00345) for the random disturbance action were obtained, and their approximate 

equality shows the equivalence of this system to the combined one. The results of the modeling of the control 

system with high reliability confirmed the validity of the theoretical calculations obtained and convinced that 

the quality indicators of control system of directional AESA diagram could be significantly improved by 

means of input to the system a differential coupling. The application of the proposed method could improve 

the basic quality parameters of transition process and also the energy efficiency of the active phased antenna 

array at the disturbing action. Thus, the solved partial interrelated tasks are indicating the achievement of  

the goal of the research. 
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