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Abstract 
This paper describes the technique to accelerate inpainting process using fourth order PDE 

equation using GPU CUDA. Inpainting is the process of filling in missing parts of damaged images based 
on information gleaned from surrounding areas. It uses the GPU computation advantage to process PDE 
equation into parallel process. Fourth order PDE will be solved using parallel computation in GPU. This 
method can speed up the computation time up to 36x using NVDIA GEFORCE GTX 670. 
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1. Introduction 

The Inpainting problem is the term for what researchers in image processing call “image 
interpolation”. Digital Image restoration technique using information gleaned from surrounding 
areas of image to fill the damages or missing parts of image is called inpanting. The origin of 
inpainting was begun in art world, it was used in restoration old oil painting. This term was firstly 
introduced into digital image processing in the work of Bertalmio, et al., [1].  

There are many applications of image inpainting. It can be used to remove scratches 
automatically from digital image or film, digital restoration of ancient painting, text erasing, and 
connect roads in satellite image [2]. 

 
 

 
 

Figure 1. Inpainting Problem 
 
 
In 1984, Geman and Geman used statistical approach for image restoration tasks [3]. 

This approach was to remove noise in the image, if the image structure was missing, this 
approach would be difficult to give fair result. The work of Bertalmio, et. al., introduced image 
inpainting as a new research area of digital image processing [1]. This work not only can 
remove noise, but also can repair structure of the image. The model is based on nonlinear PDE. 
When the damage area has large distances and complicated texture, this method will have 
difficulties to repair image.  

A different approach to inpainting was proposed by Chan and Shen [4]. They introduced 
the idea that well-known variational image denoising and segmentation models can be easily 
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adapted to the inpainting task by a simple modification. The model can successfully propagate 
sharp edges into the damaged domain. However, this model exacts a penalty on the length of 
edges, this technique cannot connect contours across large distances. One year after that, 
2002, Chan, Kang, and Shen introduced a new variational image inpainting model that 
addressed the shortcomings of the the total variation [5]. This method makes improvement in 
inpainting longer distances than before. Esedoglu and Shen adapted image segmentation to the 
inpainting problem [6]. This model can be solved rather quickly but this model cannot connect 
image across large distance. 

 In 2007, modified Cahn Hilliard being used for inpainting. It shown that this method give 
fast inpainting of binary images [2]. In 2009, Schönlieb, make research in modern PDE 
inpainting [7]. This research show us the advantage of fourth-order inpainting models over 
models of second differential order is in the smooth continuation of image contents even across 
large distance in the image. The research emphasise to make more research about faster 
numerical solvers for inpainting with higher-order equations than before.  

The most recent approach to inpainting is based on fourth order PDE method [8]. There 
are lots of researches trying to improve the quality and to reduce processing time of inpainting 
process using high order PDE method [5, 8].  A number of methods were suggested to solve 
inpainting problem, many of which are based on advanced mathematical techniques [1, 2], [4-6], 
8, 9]. This research is trying to accelerating inpainting process using different approach than 
advance mathematical techniques.  

High performance computing on GPU using CUDA library will be used to solve image 
Inpainting problem. Parallelized execution of high order PDE in image Inpainting would be a 
feasible optimization method. We will take the advantages of GPU multicore processor to 
increase the application performance by executing them in GPU cores [10]. The research of 
Guo and He, is one of the example that the use of GPU has been significantly increase the the 
lattancy time in digital image processing. They can speedup fractal image compresion process 
to 123 times faster compare to the traditional method [11]. That research gives an opportunity 
another image processing algoritm to use the power of GPU to speedup computation process.   

   This research will answer how significant the uses of GPU to increase the lattecy time 
in digital image inpainting using fourth order PDE.  
 
 
2. Inpainting Method 

Inpainting digital image is essentially interpolation process on filling missing parts of an 
image based on surrounding areas. The solution of this problem is using fourth order PDE 
equation. The inpainting problem is to to reconstruct the original image u in (damaged) domain 
D ⊂ Ω (Figure 1). Image f represent some given image defined on an image domain Ω. The 
discretization in space used finite difference and spectral methods, i.e., the fast Fourier 
transform, to simplify the inversion of the Laplacian ∆ for the computation of 𝑢𝑘+1.  The fourth 
order PDE inpainting equation:  
 

 𝑢𝑡 = ∆�−𝜖∆𝑢 + 1
𝜖
𝐹 ′(𝑢)� + 𝜆(𝑓 − 𝑢) , 𝑖𝑛 Ω,      (1) 

 
The Equation (1) is the work of Betrozzi, et al., using the fourth order PDE to solve inpainting 
problem [2]. Based on the work of Equation (1), Schönlieb, et al., [9] built another fourth order 
PDE equation:  
 

 𝑢𝑘+1−𝑢𝑘
∆𝑡

+  𝐶1∆∆𝑢𝑘+1 +  𝐶2𝑢𝑘+1 = 𝐶1∆∆𝑢𝑘+1 − Δ �∇. � ∆𝑢𝑘
|∆𝑢𝑘|

��  + 𝐶2𝑢𝑘 + 𝜆(𝑓 − 𝑢)  (2) 

 
The constants C1 and C2 are positive, and need to be chosen large enough to make this 

equation convex. The constants C1 and C2 must fulfill the condition of C1>1/ϵ , C2>λ_0. 
This equation has been proved by Schönlieb, et al., [9] have consistency, unconditional 

stability, and convergence.  
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3. GPU CUDA 
Commodity computer graphics chips, known generically as Graphics Processing Units 

or GPUs, are probably today’s most powerful computational hardware for the dollar. 
Researchers and developers have become interested in harnessing this power for general-
purpose computing, an effort known collectively as GPGPU (for “General-Purpose computing on 
the GPU”) [10]. 

CUDA is a parallel programming model developed by NVIDIA was started at 2006. The 
first CUDA SDK was released in the early 2007. A parallel system using CUDA consists of a 
host (CPU) and a device (GPU). The computation of tasks is done in GPU by a set of threads 
that run in parallel. The GPU architecture for threads consist of two-level hierarchy, namely 
block and grid (Figure 2). Block is a set of tightly coupled threads where each thread is identified 
by a thread ID, while grid is a set of loosely coupled of blocks with similar size and dimension 
[10]. 

The usage of GPU shows improvement performance in wide area such as Physical 
based simulation, signal processing, data processing,  image segmentation, computer vision 
and  image processing [10].  An example of the usage GPU for image processing is the work of 
Guo and Hei, they worked fractal image compression in GPU [11].  Their work can accelerate 
123 times faster than before. Not only in image processing the usages of GPU become popular, 
but also in data processing. It shown in the work of Xu and Xu, they worked a hybrid shorting 
algoritm with the power of GPU and CPU. This work can short one billion 32-bit float in no more 
than 5 seconds [12].   

 
 

 
 

Figure 2. CUDA Architecture 
 
 
4. GPU Combined Parallel Image Inpainting 

The acceleration inpainting process is a challagne to researchers. They are trying to 
use advance matemathical teqniques to improve the computation time but there another way to 
accelerate inpainting process using parallel execution in GPU. We realize that the use of GPU 
in inpainting problem will reduce the computation latancy time.  

Image source and mask inpainting should be inisialize in the CPU memory. In GPU 
memory, data only can be process in one dimensional array. Image data should be process to 
one dimensional array data. We will assign image soruce and mask to variable that can be 
transfer to GPU memory.   

The threads of a block are processed in the same streaming processor (SM), and the 
parallelization depends on the number of cores in the SM. The GPU architecture has a limit in 
the number of threads per block. In this work, a NVIDIA GeForce GTX-670 card with up to 1,024 
threads per block was used.  

The computations of fast Fourier transform use the CUDA library. The step to call 
CUFFT library is: create plan, execute plan and destroy plan. The computations need double 
presicion so we will use parameter CUFFT_Z2Z, which indicate double complex to double 
complex computation.  
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Step 1   : Image and mask inisialization  
Step 2   : Preprocessing data to transfer GPU 
Step 3   : Computation Variable inisialization 
Step 4   : Transfer data from CPU to GPU Memory 

 ---- Begin parallel data computation in GPU  ---- 
Step 5   : GPU variable and workload inisialization 
Step 6   : Inizialisation Calculation Parameter 
Step 7   : Parallel image and mask FF transform  
Step 8   : Parallel calculation curve  
Step 9 : Paralel curve FF transform  
Step 10 : Parallel Fourth Order PDE Inpainting in spectral domain 
Step 11 Parallel Inverse FF transform of inpainting result 
Step 12 : Inisialisation new curve 
                          Step 9-12 will be repeated until fair image condition 
Step 13 : Transfer data from GPU to CPU Memory 
Step 14 : Celan GPU Memory 

 ---- End parallel data computation in GPU  ---- 
Step 15 : Preprocessing data to CPU 
Step 16 : Show and save image Inpainting Result 

 
Figure 3. Algoritm parallel Inpainting forth order PDE in GPU 

 
 

We use the data variable from the research of Schönlieb, et al., [9]. The C1 variable is 
set to 200 and C2 variable is 100. We save this variable in register memory of GPU.  The curve 
calculation result and the fourth order inpainting result will be saved in global memory.  

After the iteration complete, the GPU will begin to transfer the data to CPU. The data 
will be process from the one dimensional array to two dimensional image array.  

 
 

5. Result Inpainting Fourth Order GPU 
The proposed method was simulated with an image of white rectangular on black 

background having the damage in the middle of the image. The damage area had gray colour. 
This image resolution was 100 x 100 pixels. The image test can be seen in Figure 3(a) while the 
required result should be seen as in Figure 3(f). This damage area can be easily seen in Figure 
3(a) with gray colour in the middle of the image. This initial test image had high MSE (9,795.40), 
low PSNR (8.22) and low SSIK (0.81). These indicators indicated that the initial image had high 
damage and small similarity. 

 
 

Table 1. Latency Inpainting process CPU and GPU 

Iterations 
Latency (sec) 

Speedup CPU GPU 
10,000 155.99 4.31 36.19 
50,000 780.00 21.65 36.03 

100,000 1,560.16 43.37 35.98 
200,000 3,120.28 86.50 36.07 

 
 

The latency of inpainting process using fourth order PDE has been noted both in CPU 
and GPU to repair the damage area. As shown in Table 1, the CPU computation time was 
slower than GPU computation time. The computation time for 10,000 iterations in CPU was 
155.99s and in GPU  was 4.31s. These were the computation time for 100,000,000 data (100 x 
100 x 10,000 iterations). The computation time for 200,000 iterations in CPU was 3,120.28s and 
in GPU was 86.50s. These were the computation time for 2,000,000,000 data (100 x 100 x 
200,000 iterations). The parallel computation using GPU was showing 36x latency speedup 
than using CPU. 
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(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 4. (a)Test image with damage in the middle (b). Inpainting 10.000 
iterations (c) Inpainting 50.000 iterations (d). Inpainting 100.000 iterations (e). 

Inpainting 200.000 iterations  (f) Test image without damage 
 
 
The GPU have been applied to solve inpainting problem using fourth order PDE 

equation in Equation (2). The result of the 10,000 iterations is shown in Figure 3(b). This image 
was trying to reconstruct the white rectangular in the middle of the image. In 10,000 iterations, 
the rectangular almost connected. In 50,000 iterations as shown in Figure 3(c), the white 
rectangular already connected and the black background was reconstructed. After 100,000 
iterations, we can see only small area of black background that hasn’t repaired like in Figure 
3(d). In 200,000 iterations, Figure 3(e) already has the same structure like in Figure 3(f).  This is 
proved by the SSIK value of 0.98. 
  
 

 
 

Figure 5. Line chart of latancy comparison GPU and CPU 
 
 

Table 2. Image Quality Metric 
Iterations MSE PSNR SSIK 

0 9,795.40 8.22 0.81 
10,000 7,628.24 9.30 0.74 
50,000 2,663.89 13.88 0.84 
100,000 663.59 19.91 0.88 
200,000 29.25 33.47 0.98 
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The outcome of inpaiting process using fourth order PDE as simulated by the authors  
is shown in Figure 3(e) and the required result was shown is Figure 3(f). It was found that the 
iterations in GPU and the quality of the image are correlated. If we increase the iteration, the 
quality of the image will increase. It was shown in Table 2, that after 200,000 iterations the MSE 
decreased from 9,795.40 to 29.25 ,PSNR increased from 8.22 to 33,47 and SSIK increased 
from 0.81 to 0,98. 

We use sample image to test the real problem reparing the damage picture. We used 
the three girls old grayscale portrait that have folded damage like in Figure 6(a).  This picture 
dimension is 483 x 405 pixels. We are running the algoritm execution in both CPU and GPU.  

 
 

Table 3. Latency Inpainting old portrait  latancy CPU and GPU 

Iterations 
Latency (sec) 

Speedup CPU GPU 
500 124,80 2,58 48,39 

1.000 249,61 5,12 48,76 
2.000 499,29 10,21 48,91 

 
 
Similar from the simulation before, the CPU computation time was slower than GPU 

computation time. The computation time for 500 iterations in CPU was 124,80 s and in GPU  
was 2,58s. These were the computation time for 97.807.500 data (483 x 405 x 500 iterations). 
The computation time for 1.000 iterations in CPU was 249,61s and in GPU was 5,12s. These 
were the computation time for 195.615.000 data (483 x 405 x 1.000 iterations). The computation 
time for 2.000 iterations in CPU was 499,29s and in GPU was 10,21s. These were the 
computation time for 391.230.000data (483 x 405 x 2.000 iterations). The parallel computation 
using GPU was showing 48x latency speedup than using CPU. 

 
 

 
(a) 

 
(c) 

 
(b) 

 
(d) 

Figure 6. (a) Damage picture; (b) Inpainting 500 iterations; (c) Inpainting 1.000 iterations; 
(d) Inpainting 2.000 iterations 
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The GPU have been applied to solve inpainting problem in Figure 6(a) using fourth 
order PDE equation in Equation (2). The result of the 500 iterations was shown in Figure 6(b). 
This image was trying to repair small damage in the body and the background, but we can still 
see the damage in the area around the girl eyes. In 1.000 iterations, the damage in the girl eye 
reduce this was shown in Figure 6(c). But the face line of the giril is not connected yet. In 2.000 
the face line around the girls eye already connected like was shown in Figure 6(d).  
 
 
6. Conclusion 

In this paper, the authors presented a technique for accelerating inpainting problem 
using GPU as computation tools. This method aims to reduce the heavy computation problem of 
fourth order PDE and to employ the use of GPU in parallelism to gain computation speed. This 
improvement was accomplished by using NVDIA GEFORCE GTX 670 to calculate data in 
parallel computation. The proposed concept proved a speedup to 36x in the simulation model 
and speedup to 48x in the simulation picture. It was also shown that the use of GPU CUDA can 
be applied in the image inpainting area. 
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