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Abstract 
Rank fusion meta-search engine algorithms can be used to merge web search results of multiple 

search engines. In this paper we introduce two variants of the Weighted Borda-Fuse algorithm. The first 
variant retrieves documents based on popularities of component engines. The second one is based on k 
user-defined toplist of component engines. In this research, experiments were performed on 
k={50,100,200} toplist with AND/OR combinations implemented on ‘UNIB Meta Fusion’ meta-search 
engine prototype which employed 3 out of 5 popular search engines. Both of our two algorithms 
outperformed other rank fusion algorithms (relevance score is upto 0.76 compare to Google that is 0.27, at 
P@10). The pseudo-relevance automatic judgement techniques involved are Reciprocal Rank, Borda 
Count, and Condorcet. The optimal setting was reached for queries with operator "AND" (degree 1) or 
"AND ... AND" (degree 2) with k=200. The ‘UNIB Meta Fusion’ meta-search engine system was built 
correctly. 
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1. Introduction 

There are many proposals for a meta-search engine (MSE). Given a query (a set of 
keywords), typically an MSE system retrieves web pages that are relevant to the query by 
exploiting all its underlying search engines. It sends the query to these engines; the results 
obtained are then merged and ranked. It returns final web documents ranked by relevance. In 
the Helios architecture [1] the MSE system uses standard merger and ranker modules. To 
achieve high performance it utilizes async I/O and parallel TCP connections with the remote 
search engines. In the Tadpole architecture [2, 3], the  rank fusion algorithms are based on a 
variety of parameters, such as the rank order and the number of times an URL appears in the 
results of each of its search engines components, to compute a weight for each collected results 
[2-4]. There is also the concern of user specific needs. For example, an MSE should ideally let 
the user choose his favourite search engines from an available list, and do query modifications, 
as well as explore available rank fusion techniques [2]. 

In general, rank fusion algorithms offer improvement of the relevance scores of the 
returned documents of multiple search engines. Dwork, Kumar, Naor, and Sivakumar propose 
the use of rank aggregation methods for MSEs viz. the Borda’s method, Footrule and Scaled 
Footrule, and Markov Chain methods [5]. Lam and Leung propose a complete directed graph 
viz. MST Algorithm [6]. Supervised rank aggregation methods such as Borda-Fuse and 
supervised Markov Chain based methods are investigated in [7]. KE algorithm [8] and its 
variants [4] exploit the ranking on the results that an MSE receives from its component engines, 
by considering the number of documents appearances in the component engines’ lists with 
equal reliability assumption of those engines. Another rank fusion MSE algorithm named Count 
Function [9] defines web documents ranking as summing ranks as per positions of a URL 
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divided by the count of URL documents. Aslam and Montague introduces a voting fusion 
method named Borda-Fuse which is an adaptation of the Borda Count election process [10]. 
Borda-Fuse, tested in two of the five tests using TREC test data, performed better than the best 
component IR system in the election results [10, 11]. Borda-Fuse that is extended to a weighted 
variant is called Weighted Borda-Fuse algorithm; it multiplies the points in which a retrieval 

system iS  assigns to a candidate URL with a system weight iW . By using improved 

performance weights, Weighted Borda-Fuse has the potential of outperforming CombMNZ [12]. 
The coverage of each search engine is limited, only about 1% of billion pages are in the 

surface web while the rest are in the deep web. Therefore it is interesting to know how to merge 
different search engines and how deep we should crawl the web to potentially retrieved still 
relevant documents. Getting less search engines report ranking scores, we can convert the 
local ranks into local ranking scores. The KE algorithm [13] is a score-based method that 
exploits ranking of the search results of the component engines where all those engines are 

treated equally reliable. Consider a document x. In KE, the local ranks ( ir ) of x as returned from 

all component engines of an MSE are summed and converted to a single weight score ( keW )  

using this formula: 
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 is the sum of all rankings from each search engines that the document appears, n 

is the number of component engines where the document appears in their results, m is the total 
number of component engines exploited, and k is the number of toplist documents crawled from 
each component engine. The lesser the weight, the better the ranking score is. 

Patel and Shah propose to simply use the Count Function to compute the ranking of an 
MSE document [9]. The ranking of the document x is computed as follows: 
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where )(xPi  is the local rank of document x returned from a component engine. )(xPi  in (2) is 

same with ir  in (1). Unlike the KE algorithm, the documents are here ranked in descending 

order (the higher the weight the better the ranking score). 
Borda Count [10] is a voting-based data fusion that is adopted to a meta-search engine 

environment in the Weighted Borda-Fuse (WBF) algorithm [14, 15]. Different from the KE and 
Count Function algorithms, in WBF, component search engines do not have to be treated as 
equally realiable. The votes for a web document that lays on the local rank i of the component 
search engine j are 

  

)1)((max*)( ,  irwrV kkjji       (3)                                    

 

where jw  is the weight of j , and )(max kk r  is the number of toplist documents crawled from 

component search engine k. Retrieved web documents that appear in more than one search 
engines receive the sum of their votes. The documents are ranked in descending order of the 
total votes they receive (the higher the vote the better the ranking score) [3, 7, 10, 16]. 

Evaluation key parameters for ranking strategies in an MSE can be viewed (optionally) 
by its algorithmic complexity, rank aggregation time, overlap across search engines, and the 
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precisions from the user’s perspective [3, 17]. For situations where a search engine joins a 
meta-search engine on the fly [18], some rank fusion algorithms can not be implemented due to 
estimating a search engine score usually requires enough sample data from each component 
engine. In our work, we use several k-toplist values of component engines.  

Research of query operators’ utilization has reported that about 10% of search engine 
users use advanced query operators such as Boolean AND/OR (and the rest only use simple 
queries) [19]. We are interested in examining the effect of complexity degree of query, in 
particular degree one and two (using respectively one and two operators). According to [20], the 
performance of queries of complexity one outperform that of complexity two, in all cases; but is 
the decrease in relevance significant enough? All of our query experiments in this research are 
implemented on searching web documents using 3 search engines: Google, Altavista, and Fast 
search engine. It would be interesting to see whether the results are consistent using different 
component search engines. 

This paper introduces two variants of Weight Borda Fuse algorithm that aims to improve 
query relevance of web search results in a meta-search engine environment. The rest of this 
paper is organized as follows: Section 2 describes our prototype of meta-search engine system 
and the proposed Weighted Boda-Fuse variants, Section 3 reports our experimental results, and 
finally Section 4 gives some conclusions. 

 
 
2. The 'UNIB Meta Fusion' Prototype and The Algorithms 

To overcome issues defined in Section 1, we built a prototype of a user adaptive MSE 
called ‘UNIB Meta Fusion’ that allows a user to choose his favourite search engines and k-
toplist set up of retrieved web documents (k = 50, 100, 200). In this research we experiment 
with our two proposed variants of the WBF algorithm [14, 15], KE algorithm [8], and Count 
Function algorithm [9]. Relevance is computed using two IR metrics: precisions and MRR. All is 
measured from 10-toplist of MSE against 10-toplist of pseudo-relevance technique. 

 
 

 
 
Figure 1. The web interface of ‘UNIB Meta Fusion’. A user can choose his preferred rank fusion 

algorithm, k-toplist, combination of component search engines as well as query 
 
 

Our ‘UNIB Meta Fusion’ (Figure 1) is a meta-search engine prototype that supports a 
choice of 3 over 5 well-known search engines. Related to Figure 1, SE = {SE1, ... , SE5} is a list 
of component search engines: Google, Bing, Ask.com, Lycos, and Exalead, respectively. Since 
we intended this project for research purpose, processes of retrieving, parsing, merging, 
ranking, and reporting the results of the search engines are done separately in the off-line 
mode. The prototype will show only the list of URL results of the best rank fusion method. By 
‘UNIB Meta Fusion’ we especially want to investigate which rank fusion method outperforms the 
others, in different toplist retrieved documents’ setup. We modify the Weighted Borda-Fuse 
algorithm into 2 variants, called ‘Default’ WBF and ‘MyOwn’ WBF. ‘Default’ sets up the number 
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of retrieved toplist documents based on the popularity of a search engine whereas in ‘MyOwn’ 
the user is free in defining the combination of toplist of multiple components search engines. 

 
 

 
 

Figure 2. The architecture of ‘UNIB Meta Fusion’ 
 
 
Figure 2 shows the architecture of ‘UNIB Meta Fusion’ system. The Web Interface 

allows a user to submit a query, specify a choice of three search engines, and a number k for 
how many toplist documents will be retrieved from each of the specified search engine. The 
Query Parser creates an appropriate format for the query and passes the information of k–
toplist URLs and choices of search engines to Best Algorithm. Best Algorithm employs only best 
performed rank fusion algorithm viz. the algorithm that has the highest documents retrieval’s 
relevance score to a set of gold standard retrieval relevant documents generated by either Rank 
Relevance, Borda Count, or Condorcet technique such as suggested by Nuray and Can [21]. 
Best Algorithm then returns the merged and ranked list of documents to Query Parser that in 
turn will return sets of  [URL, title, snippet] as query search results into user. 

The Offline Query Processor is the most time consuming  part of this research. Given a 
list of queries, sets of k-toplist of component engines (k = 50, 100, 200), and sets of 
combinations of 3 out of 5 search engines, the HTTP Retrievers handles the network 
communications, and the Search Results Collector stores separately each k-toplist documents 
of the search engines. Results Parser parses the lists into URLs, titles, and snippets. These are 
then combined in Merger and Ranker and then  ranked  by one of the Rank Fusion Algorithms: 
KE, ‘Default’ WBF, ‘MyOwn’ WBF, and Count Function algorithm. We then carefully investigate 
and decide which algorithm that work best to be employed in Best Algorithm. 

The ‘UNIB Meta Fusion’ returns documents processed by the off-line query processor 
using 10 queries of two terms and three terms length (see Table 1). Those queries are extended 
further using operators AND/OR. For example, for three terms query of “Java applet 
programming” is combined further to form 4 different new queries: “Java AND applet AND 
  

 
Table 1. The Multi Domain Queries [20] 

Two Terms Queries Three Terms Queries 
database overlap 
multilingual OPACs 
programming algorithm 
road-map plan 
adolescent alcoholism 

comparative education methodology 
java applet programming 
indexing AND digital libraries 
geographical stroke incidence 
culturally responsive teaching 
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programming”, “Java AND applet OR programming”, “Java OR applet AND programming”,  and 
“Java OR applet OR programming”. Two terms length queries get a similar treatment. At the 
end, the  10 queries are extended into 30 different queries. 
 
2.1.  The User Defined ‘MyOwn’ WBF Algorithm 

The user defined  ‘MyOwn’ WBF algorithm allows a user to define his own search 

engine weights. By considering (3), we set the kr  of each search engine with an equal value of 

k-toplist; but with different weights as suggested by the user. The weights are usually 
proportionate with the user's trust of relevancy of the corresponding search engines. In other 
words, by using the user defined 'MyOwn' WBF algorithm we would like to know whether the 
MSE system will produce a good relevance score if we treat the system with different weights, 
given a user defined k values of k-toplist crawling document for all of component search 
engines. 

The ‘MyOwn’ WBF's processes for meta-search 3 of 5 search engines are as follow: 
Step 1.  The user specifies k; this determines the number of documents of all of component 

search engines will later retrieve (k-toplist), e.g. k = 200. 
Step 2. Define the set of search engines SE = {SE1, SE2, ... , SEn} that are available for meta-

searching. // In our case n = 5. 

Step 3. The user set the weight jw (j = 1, ... , n)  for each search engine in Step 2. // For 

example jw  = {50, 30, 20, 25, 15}.  

Step 4.  The user selects three out of n search engines to be used.  

Step 5. For each three engines from Step 4, set )(max kk r  to be the value of the constant k 

from Step 1 for each component engine. 
Step 6.  For each document found in the k-toplist returned by each component engine chosen in 

Step 4: 

Step 6a. Compute )( , jirV , using equation (3), where i is the ranking of the document 

in engine j. 
Step 6b. Compute the document's WBF ranking score: 
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Consider a document x. The total_SE is the number of search engines where 
document x is found. 

Step 7. Order the found documents descendingly by their WBF ranking scores. 
Step 8. Presents the top 10 documents obtained from Step 7 to the user. 

 
Example 1:  

Consider a meta-search engine system built using ‘MyOwn’ WBF algorithm. Let n = 5, 
and the chosen search engines are SE1, SE2, and SE3, with k = 200 for all of them (this 
determines the k-toplist to be retrieved). Suppose the user specifies {50, 30, 20} as the weights 
of the component engines respectively. Assume we have 3 documents: Doc1, Doc2, and Doc3 
and several facts: 
- Doc1 is found respectively at rank 8,9, and 11 in the toplists of SE1, SE2, and SE3. 
- Doc2 is found at rank 9 and 13 in the toplists of SE1 and SE3; it is not found by SE2.   
- Doc3 is found respectively at rank 3, 5, and 4.   
The WBF scoring of these documents is then shown in Table 2. 

 
 

Table 2. The Scoring of WBF Algorithm by Considering (3)  
Query SE1  

(50%) 
SE2  

(30%) 
SE3  

(20%) 
WBF Ranking Score 

Doc1 50*(200-8+1) = 9650 30*(200-9+1) = 5760 20*(200-11+1)= 3800 (9650+5760+3800)*3 = 57630 
Doc2 50*(200-9+1) = 9600 Not found 20*(200-13+1)= 3760 (9600+0+3760)*2  

= 26720 
Doc3 50*(200-3+1) = 9900 30*(200-5+1) = 5880 20*(200-4+1)= 3940 (9900+5880+3940)*3 = 59160 
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Table 2 shows the ordering: Doc3 > Doc1 > Doc2.  
 

2.2.  The ‘Default’ WBF Algorithm 
The ‘Default’ WBF algorithm is a special instance of the ‘MyOwn’ WBF but with the 

differences in Step 1 and Step 5 of the ‘MyOwn’ algorithm. In ‘Default’ WBF, the k values for k-
toplist of each component engine are influenced by each component engine’s weight. In the 
‘Default’ WBF, consider 3 component search engines and k is an element of {50, 100, 200}, 

then for equation (3) we set )(max kk r  to be 200 for the engine with the highest jw ; 100 for the 

engine with the second highest jw , and 50 for the third engine.         

Example 2:  
Consider a meta-search engine system built using ‘Default’ WBF algorithm. Let n = 5, 

and the chosen search engines are SE1, SE2, and SE3. Suppose the user specifies {50, 30, 20} 
as the respective weigth of those engines. Assume we have 3 documents: Doc1, Doc2, and 
Doc3 and several facts: 
- Doc1 is found on SE1 in rank 8 from SE1 toplist, on SE2 in rank 9 from SE2 toplist, and on 

SE3 in rank 11 from SE3 toplist.   
- Doc2 is found on SE1 in rank 9 from SE1 toplist, not found on SE2, and on SE3 in rank 13 

from SE3 toplist.   
- Doc3 is found on SE1 in rank 3 from SE1 toplist, on SE2 in rank 5 from SE2 toplist, and on 

SE3 in rank 4 from SE3 toplist.   
Then the scoring of ‘Default’ WBF as on Table 3. 

 
 

Table 3. The Scoring of WBF Algorithm by considering (3) 
Query SE1  

(50%) 
SE2  

(30%) 
SE3  

(20%) 
WBF Ranking Score 

Doc1 50*(200-8+1) = 9650 30*(100-9+1) = 2760 20*(50-11+1) = 800 (9650+2760+800)*3 = 39630 
Doc2 50*(200-9+1) = 9600 Not found 20*(50-13+1) = 760 (9600+0+760)*2 = 20720 
Doc3 50*(200-3+1) = 9900 30*(100-5+1) = 2880 20*(50-4+1) = 940 (9900+2880+940)*3 = 41160 

 
 

From Table 3 we have Doc3 > Doc1 > Doc2 in the rank order of the MSE system. This 
rank order is influenced by WBF scores of each documents. The more relevant a document, the 
WBF will put it into higher position of web search retrieval of the MSE.  

 
 

3. Results and Analysis 
We have described two variants for ranking in WBF meta-search. We would like to 

compare them with other existing rank fusion algorithms: the KE algorithm [8] and the Count 
Function algorithm [9]. Queries are sent to each search engine, retrieving toplists until k {k = 50, 
100, 200} URLs have been crawled from each component search engine and merged by the 
four algorithms (‘Default’ WBF, ‘MyOwn’ WBF, KE, and Count Function). For evaluation, as the 
queries are multi domain (not limited such as TREC datasets; these multi domain queries are 
for simulating real world situations) and also since using human judgment is expensive, we 
evaluate our system using three different gold standards: Reciprocal Rank (RR), Borda Count 
(BC), and Condorcet methods. The lattests are known as “Pseudo-Relevance” datasets as 
suggested in [21].  

In this research, all experiments are executed on an Acer 4741 machine with an Intel 
core i3 and 5GB RAM. All prototyping processes from retrieval, parsing, merging, ranking, until 
presenting the query results to user, are implemented in Python. The language is efficient and a 
fast Python module, named webpy, helps in providing a user friendly interface of the MSE 
prototype. For the evaluation of the tasks in all of our experiments, we adopted two metrics that 
capture the relevance at different aspects [22]: 
 Precision at rank n (P@n): Precision at rank n is defined as the proportion of retrieved 

documents that is relevant with the gold standard, averaged over all documents. 
 Mean Reciprocal Rank (MRR): MRR measures where in the ranking the first relevant 

document (with the gold standard) is returned by the system, averaged over all the 
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documents. This measure provides insight in the ability of the system to return a relevant 
document at the top of the ranking. 

Table 4 to Table 6 shows the results in terms of both P@n and MRR of different k-
toplist compared to gold standards (Pseudo-Relevance). From these results, we can see that 
our proposed method (‘Default’ and ‘MyOwn’ WBF) achieves the best results in terms of both 
P@n and MRR. In general, these verifies the effectiveness of our proposed method for rank 
aggregation.  

For both WBF variants in all of experiments in this research we set up weights = {30, 
20,15,25,10} respectively for Google, Bing, AskJeeves, Lycos (powered by Yahoo!), and 
Exalead. All relevance scores is obtained using best P@10 of each rank fusion algorithm 
compare to best P@10 of Google. Google has chosen as a benchmark since Google shows 
best performance of any individual search engines. We order individual component engines by 
their weights for convenience (Table 4 to Table 6). 

 
 

Table 4. Results of Different Methods for MSE, compared to Pseudo-Relevance Sets at k=50  
System P@10_RR P@10_BC P@10_Condorcet MRR_RR MRR_BC MRR_Condorcet 

MSE Rank Fusion Performance 
MyOwn WBF 0.6563 0.6950 0.5577 0.9853 0.9627 0.4339 
Default WBF 0.6530 0.7300 0.6300 0.8877 0.7543 0.4453 
KE 0.6650 0.6613 0.5763 0.9132 0.8747 0.4009 
Count 
Function 0.2687 0.2483 0.3050 0.3238 0.1373 0.1417 
Individual Component Engines Performance 
Google 0.3267 0.3437 0.2933 0.4113 0.4356 0.2949 
Lycos 0.2893 0.3073 0.2643 0.4088 0.4432 0.2899 
Bing 0.1783 0.1800 0.1630 0.3385 0.3299 0.2015 
Ask.com 0.2010 0.2013 0.1907 0.3625 0.3676 0.2053 
Exalead 0.0680 0.0627 0.0727 0.1188 0.1227 0.1135 

 
 

Table 5. Results of Different Methods for MSE, compared to Pseudo-Relevance Sets at k=100  
System P@10_RR P@10_BC P@10_Condorcet MRR_RR MRR_BC MRR_Condorcet 

MSE Rank Fusion Performance 
MyOwn WBF 0.7103 0.7470 0.6023 0.9764 0.9340 0.4097 
Default WBF 0.6683 0.6953 0.6447 0.9294 0.9285 0.4378 
KE 0.6970 0.6993 0.5957 0.9214 0.8870 0.3875 
Count 
Function 0.2533 0.2273 0.3000 0.3205 0.1277 0.1409 
Individual Component Engines Performance 
Google 0.2987 0.3097 0.2863 0.3909 0.4264 0.3015 
Lycos 0.2717 0.2853 0.2567 0.3829 0.4091 0.2715 
Bing 0.1663 0.1693 0.1583 0.3242 0.3255 0.2006 
Ask.com 0.1960 0.1980 0.1827 0.3468 0.3574 0.2036 
Exalead 0.0633 0.0597 0.0643 0.1334 0.1406 0.0995 

 
 

Table 6. Results of Different Methods for MSE, compared to Pseudo-Relevance Sets at k=200 
System P@10_RR P@10_BC P@10_Condorcet MRR_RR MRR_BC MRR_Condorcet 

MSE Rank Fusion Performance 
MyOwn WBF 0.7253 0.7630 0.5953 0.9683 0.8880 0.3979 
Default WBF 0.6200 0.6377 0.6280 0.9153 0.9376 0.4463 
KE 0.7050 0.7213 0.5887 0.9131 0.8541 0.3777 
Count 
Function 0.2503 0.2203 0.3003 0.3218 0.1270 0.1450 
Individual Component Engines Performance 
Google 0.2653 0.2703 0.2743 0.3843 0.4300 0.3116 
Lycos 0.2370 0.2437 0.2417 0.3506 0.4027 0.2789 
Bing 0.1497 0.1527 0.1497 0.3245 0.3361 0.2179 
Ask.com 0.1884 0.1887 0.1747 0.3489 0.3613 0.2234 
Exalead 0.0580 0.0563 0.0573 0.1418 0.1404 0.0980 
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The data in Table 4 are that of k-toplist with k = 50. Table 4 clearly shows that the 
highest relevance score (P@10) for ‘MyOwn’ WBF is 0.6950 for Borda Count, two times higher 
than that of Google (2.02 times); that of ‘Default’ WBF is 0.7300 for Borda Count, also two times 
higher than that of Google (2.12 times); and that of KE is 0.6650 for Reciprocal Rank that 
almost two times higher than that of Google (1.93 times). From Table 4, the best P@10 for 
Count Function is only 0.3050 for Condorcet that below the P@10 of Google (lesser, 0.89 
times). From the MRR perspective, in general at k = 50 the two WBF methods outperform the 
others  (WBFs do quite well in getting the first correct position). 

Table 5 shows the same data, but for k = 100. It also shows improvement in P@10 with 
highest relevance score is for ‘MyOwn’ WBF with 0.7470 for Borda Count (2.41 times higher 
than P@10 of Google). The highest score of ‘Default’ WBF is now 0.6953 for Borda Count 
pseudo-relevance sets (2.25 times); that of KE is now 0.6993 for Borda Count (2.26 times); and 
Count Function is 0.300 for Condorcet (lesser, only 0.97 times). All against best P@10 of 
Google. In terms of MRR, the two WBF algorithms still perform better than the others. 

Table 6 shows the results for k-toplist with k = 200. From Table 6 the highest 
improvement in relevance score (P@10) against best P@10 of Google for ‘MyOwn’ WBF is 
0.7630 for Borda Count pseudo-relevance sets (2.78 times than that of Google); for ‘Default’ 
WBF the highest is 0.6377 for Borda Count pseudo-relevance sets (2.32 times); for KE method, 
the highest is 0.7213 for Borda Count pseudo-relevance sets (2.63 times); and for Count 
Function the highest is 0.3003 for Condorcet (1.09 times). All against P@10 of Google. In 
general as others k-toplist, at k = 200 the MRR of WBFs also stable outperform other rank 
fusion methods. 

As a conclusion, both the ‘Default’ WBF and the user defined ‘MyOwn’ WBF produce 
best results. They outperform other algorithms such as KE [13] and Count Function [9]. The 
relevance of Count Function algorithm is far below the WBFs, this is due to the simplicity of the 
algorithm that only computes the sum of local rank of document x returned from each 
component engines divides by total number of occurence of x in all meta-search engine 
components. The Count Function algorithm does not consider neither popularities of component 
engines nor the number of crawled toplist documents. KE algorithm concerns about how many 
number of toplist documents crawled from each component engines but popularities are missed. 

From experiments also we found that the best k-toplist of each component search 
engines (in terms of precision) is reached for k = 200 (‘MyOwn’ WBF with precision of 2.78 
times higher than that of Google), followed by 2.41 times higher for ‘MyOwn’ WBF with k = 100, 
and 2.12 times higher for ‘Default’ WBF with k = 50, all compared to Google. Therefore the best 
methods found among rank fusion methods are the Weighted Borda-Fuse algorithms. The 
‘Default’ WBF is suitable for small datasets while the ‘MyOwn’ WBF is suitable for bigger 
datasets (e.g. >100-toplist crawled from each component engine). The best gold standard is 
achieved by Borda Count technique. 

From Table 4 to Table 6, mostly in all cases the weight that has been set up influence 
the result. For example, high weight on Google will most probably give Google as the best 
search engine. Except for ask.com that always better than Bing. The Ask.com uses the 
ExpertRank algorithm that performs better than Bing that uses best trail finding algorithms. The 
ExpertRank algorithm is based on the HITS algorithm that uses a scheme in which every web 
page is assigned two scores: the hub score and the authority score. When compare to Google’s 
PageRank algorithm, the Google search engine had more relevant top results, higher quantity of 
relevant results and that its results remained more stable than the ExpertRank algorithm [23]. 
While Google’s search algorithms are very dependent on HTML text when it comes to indexing 
websites, multimedia contents (images, video, audio, Flash, and others) are far better with Bing 
[24]. In all of our experiments we ignore any multimedia contents and focus on text (structured 
information) this is the rationale for why ask.com always better than Bing. The Exalead search 
engine provides hybrid searching over typed information extracted from structured databases, 
as well as searching over unstructured text [25]. This semantic search engine is not too success 
in our experiments, again because we only focus on structured information.  

Furthermore, considering the length of the queries, in Table 7 and Table 8 we focus on 
the use of two or three terms query since most query (97%) of all queries in World Wide Web 
having less than 6 terms [26]. In our experiments, we do not use queries from TREC since their 
length average are longer than common queries on internet. Table 7 shows the effect of length 
of query terms. From the results we know that using two or three terms are optional since there 
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are no significant difference in the relevance scores (P@n and MRR). Table 7 supports result in 
[20] that performance of the query complexity 2 terms always outperforms the performance of 
the 3 terms, but in our case the difference is not significant thus we leave this as a choice to 
user.  

 
 

Table 7. Performance of Borda Count Pseudo-Relevance based on Length of Terms 
Length of Terms P@1 P@3 P@5 P@10 MRR 

Three terms 0.6100 0.5629 0.5053 0.3610 0.4909 
Two terms 0.6470 0.5926 0.5404 0.3920 0.5257 

 
 
Table 8. Performance of Borda Count Pseudo-Relevance based on Operators 

Operators P@1 P@3 P@5 P@10 MRR 

AND 0.7074 0.6222 0.5806 0.4424 0.5725 
OR 0.5867 0.5630 0.5001 0.3416 0.4789 
AND ... AND 0.6378 0.6116 0.5630 0.4244 0.5495 
AND ... OR 0.6151 0.5593 0.5053 0.3562 0.4879 
OR ... AND 0.5945 0.5503 0.4860 0.3379 0.4696 
OR ... OR 0.5926 0.5304 0.4670 0.3255 0.4568 

 
 
To examine the effect of complexity degree of query length, we analyzed queries with 

degree 1 = 1 operator (two terms) and degree 2 = 2 operators (three terms). As operators we 
use AND/OR combinations. Table 8 shows relevance scores of Borda Count pseudo-relevance 
sets obtained from the ‘UNIB Meta Fusion’ MSE prototype. From Table 8 we suggest the use of 
operator "AND" for degree 1 and operators "AND ... AND" for degree 2 that stable in producing 
relevant results.  

 
 
4. Conclusions 

In this paper we briefly described two rank fusion algorithms: ‘MyOwn’ WBF and 
‘Default’ WBF as well as their implementation on the ‘UNIB Meta Fusion’, a meta-search engine 
prototype. From experiments we showed that our variants of Weighted Borda-Fuse algorithms 
stable outperforms other MSE rank fusion methods. We showed that the weight that has been 
set up influence the result. The ‘Default’ WBF is best for small datasets while the ‘MyOwn’ WBF 
is best for larger datasets. The best value of k-toplist for crawling the web is achieved for k = 
200. Furthermore, we suggest the use of operators "AND" or "AND ... AND" each for degree 1 
and degree 2 queries to increase relevance with user needs. From experiments there are no 
significant difference in relevance if a user uses either two or three terms queries while browsing 
a search engine. As a general conclusion, our system, the MSE prototype ‘UNIB Meta Fusion’, 
was built correctly.  
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