
TELKOMNIKA, Vol.17, No.1, February 2019, pp.218~225
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v17i1.11599 218

Received June 7, 2018; Revised October 3, 2018; Accepted November 5, 2018

Private cloud storage implementation using
OpenStack Swift

Agustinus Noertjahyana*, Juan Reno, Henry Novianus Palit, Justinus Andjarwirawan
Informatics Engineering, Faculty of Industrial Technology, Petra Christian University

Siwalankerto St., Jawa Timur, Indonesia, 121-131, 031-2983456
*Corresponding author, e-mail: agust@petra.ac.id

Abstract
 The use of distributed and parallel computer systems is growing rapidly, requiring an appropriate

system to support its work processes. One technology that supports distributed computer systems is cloud
computing. This system can generate the need to maximize the use of existing computing resources, one
of which is in the form of cloud-based storage. The computer laboratory of Informatics Department of Petra
Christian University has very large resources, but they have not been optimized in the utilization of existing
storage devices. This condition gives the idea to utilize computers in the laboratory with cloud, so the
storage can be used well. This implementation used the OpenStack cloud framework, which could provide
IaaS service. From some existing OpenStack services, storage management used OpenStack Swift on its
processing. OpenStack Swift is a cloud-based storage service that leverages various computing
resources. After the implementation process, testing was done by way of data management, so storage
could store, retrieve, and delete data. In addition, testing was also done by turning off some physical
machines to ensure cloud services could remain well accessible, and measure the speed of data transfer
in cloud storage. The resulting data was used to evaluate the cloud storage systems that had been
created.

Keywords: cloud, distributed system, infrastructure as a service, OpenStack Swift, OpenStack, paralel
computing, private cloud storage

Copyright © 2019 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

The use of distributed and parallel computer systems is growing rapidly, requiring an
appropriate system to support its working processes. Along with the evolving needs that exist, a
computer system is also required to work quickly and have a low fault tolerant. One technology
that supports distributed computer systems like this is cloud computing.

Cloud Computing is a combination of the use of computer technology and
Internet-based development that is an abstraction of the hidden infrastructure [1-3]. In general,
cloud computing utilizes more than one computer that has been connected to each other
through a network. This distributed system can generate the need to maximize the use of
existing computing resources, one of which is in the form of storage in the form of cloud storage.
Computer systems like this can be pretty much found around us, some of them are in the
computer laboratory of Informatics Department of Petra Christian University.

The computer lab of Petra Christian University's Informatics department is a
considerable investment. However, in reality the use of the computers in the laboratory is not
optimal in terms of lecturing activities, and asa storage device. Each computer in the laboratory
has an average of 500 Gigabytes of storage. But the use of the storage is often uneven
because one computer’s storage may be used up, while other computers have plenty of storage
space left. Such conditions, provide ideas to utilize computers in the laboratory with the cloud
method for more efficient use of storage. With the specifications and existing computer facilities,
they can be utilized to become a private cloud computing system.

2. Literature Review

Cloud computing proves to be so disruptive to provide anyone with on demand remote
access to a large pool of third-party computing resources and services [4-8]. Private cloud is a

TELKOMNIKA ISSN: 1693-6930

Private cloud storage implementation using OpenStack Swift (Agustinus Noertjahyana)

219

Cloud Computing service, provided to meet the internal needs of an organization/company. In a
company, usually the IT Department is responsible as the provider of cloud services, and other
divisions within the company as its users [9]. As a Service Provider, of course, IT Department
must be responsible for the service to run well in accordance with service quality standards that
have been determined by the company, either infrastructure, platform or existing applications.
There are several advantages in using private cloud, i.e.
- Data security is guaranteed because the internal organization or company manages its own

system security.
- The internet bandwidth is saved when the service is accessed only from the organization's

internal network.
- Business process does not depend on internet connection, but it still depends on local

internet connection (intranet).
On the other hand, there are also some disadvantages that can arise with the use of

private cloud, i.e. it can be a large investment because the internal company or organization
itself must prepare its infrastructure, It takes manpower to care for and ensure the service goes
well and smoothly. By using less skilled personnel, the system security is less secure because
of poor settings.

Cloud Computing is a combination of the use of computer technology in a single
computing and development with an internet base. According to NIST [10], there are five
characteristics of a system called cloud computing, among others, as follows:
- Resource Pooling, which is a physical or virtual computing resource collected by service

providers to meet the needs of many customers with multi-tenant models. These computing
resources can be used dynamically by customers to meet their needs.

- Broad Network Access, which is a cloud service provider capability through a network that
can be accessed using multiple end devices.

- Measured Service, which is a service to optimize and monitor services related to computing
resources such as bandwidth, storage, processing, and so on.

- Rapid Elasticity, which is a service from cloud providers can be used by cloud consumer
dynamically to raise or lower the service capacity. The service capacity provided is usually
unlimited, and the consumer service can freely and easily select the desired capacity at any
time.

- Self Service, which is a configuration service for Cloud Consumer independently services
that want to be used through a system, without the need of human interaction with the cloud
provider.

Beyond the existing characteristics, cloud computing has three types of services offered
to customers or users concerned [11]. The services are described as follows: Software as a
Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS).

2.1. OpenStack

OpenStack is a cloud platform that consists of several free and open source softwares
to provide Cloud IaaS service both in personal and in large scale [12]. It can be interpreted that
OpenStack is a service that acts as a middleware to unify the diversity of layers such as
network, storage, hardware, operating system, and so forth. OpenStack consists of many parts
that have different functions. Quoted from the OpenStack document [13], there are several
components that are parts of OpenStack. These components include:
- Nova, whichis the main computing engine in OpenStack to deploy and manage large

numbers of virtual machines and instances in handling computational tasks.
- Swift, which is a storage system for objects and files.
- Cinder, which is a block storage component, which is more analogous to the idea of a

traditional computer that can access a specific location on a disk drive.
- Neutron, which provides networking capabilities for OpenStack. This helps to ensure that

each component of the OpenStack deployment can communicate with each other quickly
and efficiently.

- Horizon, which is the OpenStack dashboard of graphical interface. In this dashboard
provides system administrators to see what is happening in the cloud and manage it as
needed.

- Keystone, which is the service identity that is central to all usage in OpenStack cloud. All
services provided by the cloud must have permission to use the service.

 ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 1, February 2019: 218-225

220

- Glance, which is an image service for OpenStack that refers to an image (or virtual copy) of
the hard disk.

- Ceilometer, which is a telemetry service within the cloud to provide billing services to
individual users.

- Heat, which is an orchestration component of OpenStack, to store the needs of cloud
applications in a file that defines what resources are required for the application. This is
necessary in managing the infrastructure to run cloud services.

2.2. OpenStack Swift

OpenStack Swift is popular open source software used to build very large-scale storage
systems [14]. OpenStack Object Swift is a scalable multi-tenant object storage system, and it
can manage unstructured data [15]. In this case, OpenStack Swift has several components to
support existing object storage services. Existing components include the following:
- Proxy server, which plays a role in uploading files, modifying metadata, and creating

containers. It can use cache to improve its performance.
- Account servers, which manage accounts related to Swift service.
- Container servers, which manage container mappings or folders contained in OpenStack

Swift.
- Object servers, which manage actual objects on storage nodes like files and so on.
- Periodic process, which serves as a replication service in ensuring consistency or availability

within the cluster.
- WSGI middleware, which authenticate OpenStack Identity.
- Swift Client, which serves as a user facility in sending user permissions commands via the

command line.
- Swift-init, which creates a script that initializes in the ring file.
- Swift-recon, which retrieves information about clusters that have been collected by the

swift-recon middleware.

3. System Planning
3.1. Working Scheme

OpenStack Swift provided the IaaS service with the system work scheme used as
Figure 1.

Figure 1. OpenStack Swift working scheme

As in Figure 1, the explanation of the Openstack Swift work scheme is as follows:
1. Auth server, in this case, is also known as node controller role in client authentication

process that accessed the system. The node controller installed the keystone service which

TELKOMNIKA ISSN: 1693-6930

Private cloud storage implementation using OpenStack Swift (Agustinus Noertjahyana)

221

was the means of authentication in OpenStack. The client provided information in the form of
user and password to be verified by keystone service.

2. If the client authentication was successful on the controller node, then the process would
proceed to the proxy server node. In the proxy server node, files sent by the client were
processed for storage in the available storage nodes. In general, proxy server nodes played
a role in every data management activity that involved storage nodes, i.e. storage, retrieval,
and data deletion. Proxy server nodes also managed sync, balancing, and data replication
processes.

3. Data that were received by proxy server node were then processed to the storage node. The
storage process was divided into two, namely the container and the object. Object was
stored in each container so that one container could have many objects, while one object
was only contained in one container. The proxy server node passed the data and was
received by the storage node in the hashing form. The successful data storage process
returned the output to the client in the form of a successfully saved file name along with its
hashing code.

4. During the process of retrieving and deleting data from the storage node, the proxy server
sent a hashing code to recognize the file to be retrieved or deleted. This process did not
return any output to the client, but the client could check directly the changes to the directory
or object list in the system.

3.2. Network Design

From the network design shown in Figure 2 for the use of OpenStack Swift, the network
used was 192.168.11.0 with subnet mask/24, ie 255.255.255.0. The Default Gateway that was
used in accordance with the IP Address was owned by the router, i.e. 192.168.11.1. While the
DNS server used was 203.189.120.4 and 203.189.120.7. This network used several computers
in the this research, which were divided into one controller node, one proxy server node, three
storage nodes, and one client.

Figure 2. Network diagram configuration

3.3. Storage Node Disk Partition

The disk partition was performed only on the Storage Node, which provided the
capacity for the Operating System as well as OpenStack Swift itself. This partition was created
because Swift could not be performed on a disk used by other system. In this case, the disk
partition used for Swift was 100 Gigabyte, while Ubuntu used 250 Gigabyte. The disk partition
was done as in Figure 3.

 ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 1, February 2019: 218-225

222

Figure 3. Disk partition in storage node

3.4. Network Configuration
Routers played a role in forming a new network, which were used in the Openstack

system. It was intended that the ongoing process did not disrupt the network outside the
system. The router used was the Buffalo AirStation Router, with the following steps:
1. The admin performed a Router reset, then accessed to 192.168.11.1 address with

username using root without password. This address displayed the configuration page of
the existing router.

2. The admin configured in the Wireless Connection menu section to manage the existing
network with existing DHCP IP Pool. In this case, the admin created a new network on
192.168.11.0 with Pool of 64 as shown in Figure 4.

Figure 4. Configuration on router

3.5. IP Address Configuration
For each node, it needed to be assigned a static IP Address, so that the available

nodes could be identified with each other. The subnet mask used was 255.255.255.0 or/24. The
default gateway used was 192.168.11.1 in accordance with the existing IP Address on the
Router. The DNS server used was 203,189,120.4 based on the existing network. These three
configurations were applied to all nodes used. On the other hand, the node controller had IP
Address 192.168.11.2, the proxy server node had IP Address 192.168.11.3, and the storage
node had a range of IP addresses starting from 192.168.11.4 to a number of existing storage
nodes.

TELKOMNIKA ISSN: 1693-6930

Private cloud storage implementation using OpenStack Swift (Agustinus Noertjahyana)

223

3.6. Basic Environment
One of the settings that needed to be set up to install on OpenStack was the Basic

Environment, or basic environment. This environment became the physical basis in shaping the
system. Some of the required environments were storage nodes and node controllers with the
Ubuntu Server 14.04 LTS operating system. For each node used, the hardware specifications
used were as follows: Processor: Intel Core i5-3340@3.1 GHz (4 cores/4 threads), RAM:
16 GB, Disk: 250 GB and Connection: 1 interface 100Mbps Ethernet.

In addition, the installation of the basic components was required by OpenStack in the
form of OpenStack packages. In installing OpenStack packages, the Juno cloud repository
needed to be added to the source-list of the Advanced Package Tool (APT). After adding the
cloud repository, the existing APT needed to apt-get update and apt-get dist-upgrade.

3.7. Framework and Application

The framework used was OpenStack Pike version, so the software was a number of
components that operated on OpenStack based cloud system. These components were
separated into several nodes: a node controller, a proxy server node, as well as multiple storage
nodes. In the design of private clouds in the laboratory, the components used were shown in
Figure 5.

Figure 5. Nodes schema

4. Testing and System Evaluation
4.1. Data Management

In the storage, data management process became the main priority. The basic form of
data management was when the system could run its role to store, retrieve, and delete the files
it contains. This was intended for the storage to be run and used well by the user. There were
three kinds of data management, namely storage, retrieval, and data deletion.

4.2. Storage Node Deactivation

The second test was related to distributed systems, which had more than one storage
node to form a cloud storage. Testing was done by turning off one or more storage nodes and
evaluating system performance. The evaluation was related to the process of data management
in the storage that had been made, and indicated whether or not there was disruption in the
process of storing, retrieving, and deleting data. The storage node disabling conditions were
illustrated in Figure 6 and 7.

There were three kinds of testing related to storage node disabling, i.e. storage,
retrieval, and data deletion. In testing for data retrieval, two cases were used. The first case was
the retrieval when one or more storage nodes were turned off as in Figure 6, with storage of all
storage nodes lit up. The second was to retrieve data from the system associated with testing
data storage, where the condition of some storage nodes was turned off as shown in Figure 6.
From the first case test, the system succeeded in providing the data to be stored by the client.

Testing in the storage of a file try.txt was done with two things, namely disabling only on
storage node 3 as in Figure 6 as first case,and disabling the storage node 2 and storage node 3
as in Figure 6 as second case.

In the process of deleting data, there were two types of testing performed. The first case
was when only one storage node was active, assuming the file storage in the storage node was
evenly distributed as shown in Figure 6. The second case was when at least two active storage
nodes with file storage in the storage node were evenly distributed as in Figure 7. From the first

 ISSN: 1693-6930

TELKOMNIKA Vol. 17, No. 1, February 2019: 218-225

224

case, the client did not succeed in deleting the test.txt file from the storage node swift. Then, in
the second case, the same case as the first case occured where the client also could not delete
the files contained in the storage node. The resulting output was the same, i.e. Service
Unavailable (Error 503). Based on the error, it showed that file deletion had to involve all
storage nodes in active condition. Test conditions were not only on the object, but also on the
process of removal of containers in swift.

Figure 6. Storage node no.3 deactivation

Figure 7. Storage node no.2 and no.3 deactivation

4.3. Data Transfer
The third test was related to the speed of data transfer from client to system in the form

of storage node. This test was performed to compare the speed of data transfer in swift with
disk to disk in general. In testing data transfer, three types of files with varying sizes
were used, i.e.
1. Try1.zip for 10 kilobytes as the first case
2. Try 2.zip for 1 megabyte as the second case
3. Try3.zip for 100 megabytes as the third case

Recording was done in the process of storing, retrieving, and deleting data in the
storage node, and using measurements in seconds. Data transfer testing measured three main
things, namely storage, retrieval, and data deletion.

4.3.1. Store Data
For the first case, the client uploaded the try1.zip file to the swift system in the three

active storage nodes. For the second case, the client uploaded the try2.zip file to the swift
system in the three active storage nodes. For the third case, the client uploaded the try3.zip file
to the swift system in the three active storage nodes. The results of the data storage test are
shown in Table 1.

Table 1. Store Data Time Testing
No. Condition Case 1 Case 2 Case 3

1 All Storage Node : Active 28.17s 28.75s 41.04s
2 One of Storage Nodes Inactive 32.56s 35.18s 58.22s

4.3.2. Retrieve Data
For the first case, the client downloaded the file coba1.zip from the swift system in the

three active storage nodes. For the second case, the client downloaded the try2.zip file from the
swift system in the three active storage nodes. For the third case, the client downloaded the file
coba3.zip from the swift system in the three active storage nodes shown in Table 2.

TELKOMNIKA ISSN: 1693-6930

Private cloud storage implementation using OpenStack Swift (Agustinus Noertjahyana)

225

Table 2. Retrieve Data Time Testing
No. Condition Case 1 Case 2 Case 3

1 All Storage Node : Active 18.23s 47.08s >15m
2 One of Storage Nodes Inactive 22.52s 1m12s >20m

4.3.3. Delete Data
For the first case, the client deleted delete1.zip file in the swift system in the three active

storage nodes. For the second case, the client deleted delete2 a try2.zip file in the swift system
in the three active storage nodes. For the third case, the client deleted delete3 cobaz.zip file in
the swift system in three active storage nodes. After the entire file deletion process succeeded,
the execution time of file deletion processing is shown in the Table 3.

Table 3. Delete Data Time Testing
Condition Case 1 Case 2 Case 3

All Storage Nodes Active 16.64s 19.82s 22.34s

5. Conclusion
From the design results of the private cloud storage system in the laboratory, it can be

concluded that: The development of cloud-based private storage in OpenStack Swift can
overcome the data loss that may occur due to the destruction of a physical machine in a
computer lab. The stored data can still be accessed properly by using other computers in one
network and the same system. With the existence of private storage system through swift,
unused storage can be utilized in large amount in each physical machine. Each physical
machine has a hard disk of one Terabyte that can be used in part for private storage. The use of
this capacity in addition to overcome the data loss can also be used to store all types of files
through the client connected in the system.

References
[1] M Jamil. Cloud Computing Teori dan Aplikasi. Yogyakarta: Penerbit Deepublish. 2016.
[2] Z Wang, H Chen, Y Fu, D Liu, Y Ban. Workload balancing and adaptive resource management for

the swift storage system on cloud. Future Generation Computer Systems. 2015; 51: 120-131.
[3] L Sen, Chan FTS, Yang J, Niu B. Understanding the effect of cloud computing on organizational

agility: An empirical examination. International Journal of Information Management. 2018; 43: 98-111.
[4] D Pietro, Riccardo, Giacobbe, Maurizio, Puliafito, Carlo, Scarpa, Marco. J2CBROKER as a Service:

A Service Broker Simulation Tool Integrated in OpenStack Environment. 2018: 261-277.
[5] N Frederic, Y Yang. A Literature Survey on Resource Management Techniques, Issues and

Challenges in Cloud Computing. TELKOMNIKA Telecommunication Computing Electronics and
Control. 2017; 15(4): 1918-1928.

[6] J Jintao, Y Wensen, G Lei. Research on Batch Scheduling in Cloud Computing. TELKOMNIKA
Telecommunication Computing Electronics and Control. 2016; 14(4): 1454-1461.

[7] I Pietri, R Sakellariou. Mapping virtual machines onto physical machines in cloud computing: A
survey. ACM Computing Surveys (CSUR). 2016; 49(3): 49.

[8] PT Endo, et al. Self-organizing strategies for resource management in Cloud Computing: State-ofthe-
art and challenges. Cloud Computing and Communications (LatinCloud), 2nd IEEE Latin American
Conference on. 2013.

[9] PGSC Nugraha. Implementasi Private Cloud Computing Sebagai Layanan Infrastructure as a Service
(IAAS) Menggunakan OpenStack. Bali: Jurnal Ilmiah Ilmu Komputer Universitas Udayana. 2015.

[10] NIST. SP 800-145. The NIST Definition of Cloud Computing. Computer Security Resource Center.
2011.

[11] S Martinelli, H Nash, B Topol. Identity, Authentication, and Access Management in OpenStack:
Implementing and Deploying Keystone. California USA: IBM Incorporation. 2015.

[12] I Anwar. Cloud Matrix Book. Meruvian Cloud Team. 2011.
[13] T Rosano. An Overview of OpenStack Architecture. Portugal: Polytechnic Institute of Coimbra. 2014.
[14] Kota T, Masahiro S. Recent Activities Involving openstack swift. Regular Articles. NTT Technical

Review. 2015; 13(12).
[15] OpenStack. Object Storage. URI=https://docs.openstack.org/security-guide/object-storage.html.

2017.

https://docs.openstack.org/security-guide/object-storage.html
https://docs.openstack.org/security-guide/object-storage.html

