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Abstract 
 In multimedia transmission, it is important to rely on an objective quality metric which accurately 

represents the subjective quality of processed images and video sequences. Maintaining acceptable 

Quality of Experience in video transmission requires the ability to measure the quality of the video seen at 
the receiver end. Reduced-reference metrics make use of side-information that is transmitted to the 
receiver for estimating the quality of the received sequence with low complexity. This attribute enables  

real-time assessment and visual degradation detection caused by transmission and compression errors. A 
novel reduced-reference video quality known as the Spatial Information in Salient Regions Reduced 
Reference Metric is proposed. The approach proposed makes use of spatial activity to estimate the 
received sequence distortion after concealment. The statistical elements analysed in this work are based 
on extracted edges and their luminance distributions. Results highlight that the proposed edge dissimilarity 
measure has a good correlation with DMOS scores from the LIVE Video Database.  

  
Keywords: Video quality, quality of service, video signal processing, reduced-reference metric, ob jective 
video quality metric 
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1. Introduction 

In the recent emerging multimedia systems and applications, user requirements are 

going beyond requirements on connectivity, and users now expect the services to meet their 
requirements on quality. So, it is important to evaluate the quality of the received video 
sequence with minimal reference to the transmitted one. In this paper, a novel reduced-

reference video quality metric using edge-based feature on salient regions is developed and 
analysed. The metric relies on saliency as well as spatial information (SI) differences within 
frames of transmitted videos and received videos. A novel video quality measure is developed 

and known as Spatial Information in Salience Region Reduced Reference Metric (SISRR). The 
aim of this work is to discover an improved reduced-reference (RR) video quality metric (VQM) 
that makes use of the spatial information values incorporated with saliency maps of a 

transmitted and received sequences to estimate the quality of the received video in the 
presence of errors.  

Regions in a video frame are considered salient if they attract the visual attention of the 

viewer. Visual attention has been investigated in numerous research fields such as cognitive 
psychology, neuroscience and computer vision [1]. Saliency models can generally be divided 
into two categories based on the applications. Some saliency detection models are developed 

to predict human fixations [2]-[9] and some models are developed to identify salient regions or 
objects [10]-[14]. Fixation prediction models generally generate sparse separated salient 
regions whereas salient object detection produces smooth linked saliency regions in video 

quality assessment the salient object detections method is mostly employed. The aim of this 
paper is to design a reduced reference quality metric that makes use of salient region detection. 
Each pixel in a saliency map represents the importance of the object that contains the pixel in 

the scene. A saliency map allows high resolution analysis on the most relevant parts of the 
visual field. Therefore, image or video processing would be very efficient in processing complex 
scenes and its fixated region by the fovea [15]. 
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2. Previous Work 

The visual quality assessment task may seem simple, but it involves a set of complex 
mechanisms that are not completely understood. Koch and Ullman [16] proposed a model 
generating saliency maps and it was one of the significant and influential models in the field. 

The model has been since extended and advanced maps have been proposed over time [3,17]. 
These models fundamentally, find the dissimilarity of intensity, colour, orientation and other 
factors to determine the saliency of the image or frame. Based on each property, the 

dissimilarities values are summed over several scales to form conspicuity maps. The 
conspicuity maps are then normalised and merged to construct the saliency map. From the 
saliency map, maxima values are identified based on the thresholds designated for the models. 

Other approaches define saliency as local complexity where scale localised features with high 
entropy are measured [18]. Another approach to measure saliency is by using several variations 
of local symmetry operator as proposed in [19]. A better outcome with relation to human 

perception was observed compared to contrast saliency work of [3].  
The work in [20] considered prior high-level knowledge instead of typical bottom-up 

process when computing saliency maps. The high-level knowledge consists of combination of 

trained decision trees, where different sized windows are grouped into different object 
classifications. Pixels grouped into non-background are then considered to be in the       
saliency map.  

There are two general approaches in determining low-level saliency, using biological 
models or computational models [21]. These approaches can be further divided into the number 
of scales involved in the model algorithm, either a single scale or a number of scales. The 

salient region detection is based on the contrast determination filter over a few scales to 
produce several saliency maps. These maps are then pooled to create the final saliency map. 
This method has previously been used in [21] and has produced a good result in detecting 

saliency regions. The segmentation would be based on the hill-climbing algorithm. The novelty 
of this work is to find saliency maps that incorporated with HVS that is the edges as well spatial 
energy of the whole frame. In general, all saliency detection methods are based on finding the 

local contrast of the image or frame by comparing regions using different features. These 
features consist of the colour, intensity and orientation. Typically, each feature produced its own 
saliency map, and the combinations of all the features’ maps generate the final saliency  

map [22]-[25]. An approach to find the saliency map using center-surround differences using 
several feature maps of colour, intensity and orientation is proposed in [23] . This method 
reduced the computational time by using integral images in Visual Object Detection with a 

Computational Attention System (VOCUS). However, due to reducing the feature saliency maps 
size to a lower scale, the final saliency map has lower resolution and losing data. However, the 
work done in this paper managed to maintain the resolution by resizing the feature saliency 

maps at         each scale. 
In [24], Hu et al. presented a thresholding analysis approach instead of a scale-space 

one. The approach uses histogram entropy thresholding of colour, intensity and orientation. In 

this work, the measures used are based on the spatial compactness measure as well as 
saliency density. The spatial compactness measure is performed by rounding up the exterior 
body of the salient regions and the saliency density is a function of weighing each individual 

magnitude of saliency features before combining them. A spatial attention saliency -based 
biological-driven computational model is proposed in [25]. The features that are taken into 
account to generate the saliency maps are luminance, colour and orientation at different scales. 

Then these magnitudes are aggregated and combined for each location in the image, which in 
turn using a bottom-up approach, are combined to generate the concluding saliency map. Work 
in [22] proposed a local contrast-based method to generate saliency map by using single scale 

operation and does not considered any biological model. The input to the operation consists of 
image that has been resized, and then colour quantized using CIELab space and also then sub-
divided into pixel blocks. The proposed operation consists of summing up differences between 

image pixels and their surrounding pixels within a small neighbourhood, which then produces 
the output of the saliency map. 
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3. Proposed Method 

The proposed RR metric generates saliency maps using low level features as well as 
using spatial information of the reference as well as distorted sequences’ frames. The algorithm 
of finding salient regions consists of computing the saliency map at different scales of the input 

image or frame, adding each of the saliency maps based on the different scales at each pixels 
and then the added values are averaged and normalised. This process generates the 
comprehensive visual saliency map. Figure 1 shows the flow diagram of the proposed SISRR. 

For the purpose of this work, no segmentation is performed due to the objective of this work. 
The aim is to produce a RR video quality metric using the information from the saliency regions 
combined with the SI. Therefore, there is no need for any segmentation to be performed.  

 
 

 
 

Figure 1. Block diagram of the proposed quality assessment, SISRR 
 
 

 
 

Figure 2. Visual saliency computation (adapted from [27]) 
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Figure 3. (a)The sub-region (R1) and its surrounding neighbour region (R2), (b) The width of R1 
remains the same, whereas the width of R2 varies by reducing by a factor of two each time for a 
smaller scale, (c) The frame is filter by scanning in raster method. Figure reproduced from [21] 

 
 

In this work, the local contrast of a region within a video frame with respect to its 

neighbourhood is used to determine the saliency. The local contrast is found by calculating the 
distance between average vectors of the pixels within the region to its respective average 
vectors pixels in the neighbourhood. as suggested by Achanta et al. [21] which used two low 

level features, colour and luminance. The method is easy to implement, noise tolerant and fast 
to compute compared to other complex saliency models.  The saliency detection managed to 
capture the salient regions successfully and the region scope is not too limited and also not too 

wide [26]. The flow diagram of the visual computation is shown in Figure 2.   
For each scale, the contrast value, c(   ) is determined as the distance D between the 

average vectors of the region R1 and region R2. The coordinate (   ) is the pixel position within 
the frame as shown in Figure 3 and can be calculated as follows: 

 

 (   )    *(
 

  
∑   
  
   

)  (
 

  
∑   
  
   

)+ (1) 

 

where N1 and N2 are the number of pixels in regions R1 and R2 respectively, and   is the vector 
of feature elements corresponding to a pixel. In order to generate feature vectors for colour and 

luminance, the CIELab colour space [28] is used. The average feature vector values of R1 and 
R2 are computed by using the integral image approach as applied in [29]. In this method, filter 
region scaling is performed instead of image scaling. This allows generating saliency maps of 

the same size and resolution as the input.  Filtering is performed at three different scales for 
each frame as seen in Figure 3 and the final saliency map is determined as the summation of 
saliency values across all three scales S: 
 

 (   )   
∑  (   )   (2) 

 
where  (   )  is an element of the summation saliency map M. The saliency map itself is 
obtained by pixel-wise summation of saliency values across the scales. 

Another feature to be extracted is the spatial information (SI) itself. SI measurement 
evaluates the spatial information details. It is closely related to the perception of the human 
viewer, where the human viewer notices that changes or distortions occur spatially. SI 

measurement is standardised in ITU-T Recommendation P.910. The measurement has low 
computational complexity, as it is easy to calculate using well-known technique that is the Sobel 
filter. The Sobel filter is a simple high-pass, edge enhancement digital filter which is widely used 

in image processing. In short, SI is an indicator of edge energy. In order to calculate the value of 
SI for one video frame, a Sobel filter is first applied on the luminance values. The SI value of 
frame Fn at time n is then equal to the standard deviation of the image resulting from convolving 

frame Fn with the Sobel kernel:  
 

    {        [     (  )]} (3) 

 
 

4. Simulation Setup 
The test sequences were obtained from the LIVE Video Quality database [30]. The 

proposed metric is tested against the subjective quality score, DMOS, provided from the 
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subjective study carried out by LIVE [31-][32]. The DMOS values range from 0 to 100, where the 

smaller value expresses the greater quality and the larger value states the worse quality, are 
collected using the subjective test model specified in ITU-R BT 500.11. The subjective study 
was conducted using a single stimulus procedure with hidden reference removal and the 

subjects indicated the quality of the video on a continuous scale. Subjects also viewed each of 
the reference videos to facilitate computation of difference scores using hidden reference 
removal. From the database, 80 distorted video sequences were obtained from 10 different 

high-quality videos with a wide variety of content as reference videos.  
A set of 80 distorted videos are tested using two different distortion types: H.264 

compression and simulated transmission of H.264 compressed bitstreams through error-prone 

wireless networks, as these types of distortions relate the most to the work performed in this 
chapter. The diversity of distortion types is to test the ability of the proposed objective model to 
predict visual quality consistently across distortions. The H.264 compression system produces 

fairly uniform spatial and temporal distortions in the video. Network losses, however, cause 
transient distortions in the video, both spatially and temporally. The H.264 compressed videos 
exhibit a visual appearance of typical compression artifacts such as blur, blocking, ringing and 

motion compensation mismatches around the edges of the main body in the frame. Videos 
obtained from the wireless transmission error exhibit errors that are restricted to small regions of 
a frame. Errors sustained by an H.264 compressed video stream in a wireless environment are 

also spatio-temporally localised distortions, due to the small packet sizes or temporally  transient 
and appear as glitches in the video. A packet transmitted over a wireless channel is susceptible 
to transmission errors due to various factors such as shadowing, attenuation, fading and multi -

user interference in wireless channels.  
All of the ten uncompressed high-quality YUV sequences used have the resolution of 

768 x 432 pixels. Each sequence was assessed by 29 valid human subjects in a single stimulus 

study where the scores are based on a continuous quality scale. The DMOS from the subjective 
evaluations are used to compare with the differences between transmitted and received visual 
comprehensive saliency maps. The work scope deals mainly with streaming video over a 

multicast network that required the transported bitstream to be able to be decoded and 
displayed in real-time. In this work, all of the frames are used to determine the most suitable 
similarity measure. However, only the last reference frames in each GOP from both the 

reference and received sequences perform as inputs in the proposed quality assessment 
system. This is due to the fact that it is crucial in keeping the overhead bit rate as low as 
possible, as well its practicality and realistic in keeping with real-time wireless transmission over 

a multicast network scenario.  The system outputs a value to quantify the quality of the distorted 
sequence. The Live Video Database has been evaluated by many researchers and has been 
verified with various objective performance metrics [32]-[41]. 

 
 

5. Result Analysis 

The first analysis performed is the correlation between the DMOS and the quality 
measure resulting from the differences between the reference and the distorted. The correlation 
coefficients are acquired between the two parameters in order to compare and justify the 

performances relatively, in terms of prediction accuracy, monotonicity and consistency 
performances. Table 1 shows the performance of all objective models using LCC for each 
sequence and its average for every objective quality metric. The averaged performance across 

all sequences shows that SISRR, with LCC equals to 0.851, outperforms SSIM and VIFP, 
whereas PSNR has the highest correlation at 0.901. This shows that with additional information, 
that is the saliency features, the quality measure has increased its correlation with the 

subjective quality scores if compared to only using edge feature. Table 2 shows the 
performance of all objective models using LCC for each distortion types. All sequences’ LCCs 
are averaged for each distortion types and the overall average across both distortions shows 

that SISRR, with LCC equals to 0.941, outperforms PSNR and VIFP, whereas SSIM has the 
highest correlation at 0.943. This is again another improvement for SISRR when compared to 
EDIRR, where the LCC average across both distortions is 0.938. Table 3 compares the 

performance of all objective models using LCC, SROCC and KRCC for the entire LIVE Video 
Quality Database. These correlation coefficients are computed on each sequence and then 



                     ISSN: 1693-6930 

TELKOMNIKA  Vol. 16, No. 3, June 2018 :  965 – 973 

970 

averaged together to get the results. The results once again show that PSNR has the highest 

correlation, followed by the proposed metric, SISRR, which outperforms SSIM and VIFP.  
 
 

Table 1. The LCC between DMOS and SISRR, PSNR, SSIM and VIFP for each test sequence 
Video Dataset Sequence SISRR PSNR SSIM VIFP 

LIVE 
(Both distortions) 

BlueSky 0.962 0.957 0.967 0.953 
Mobile&Calendar 0.791 0.936 0.670 0.709 
PedestrianArea 0.758 0.915 0.651 0.503 

ParkRun 0.815 0.975 0.827 0.851 

RiverBed 0.766 0.926 0.730 0.728 
RushHour 0.849 0.877 0.820 0.656 
SunFlow er 0.721 0.656 0.670 0.638 

Shields 0.981 0.952 0.965 0.989 

Station 0.893 0.878 0.927 0.919 
Tractor 0.970 0.933 0.947 0.936 
Average 0.851 0.901 0.817 0.788 

 
 

Table 2. The LCC between DMOS and EDIRR, PSNR, SSIM and VIFP for different distortion 
sources 

Video Dataset 
Correlation 
Coefficient 

SISRR PSNR SSIM VIFP 

LIVE 

(Wireless distortions)  
LCC 

0.892 0.877 0.896 0.862 

LIVE 
(H.264 Compressions) 

0.990 0.988 0.990 0.989 

Average  0.941 0.933 0.943 0.926 

 

 
Table 3. Comparing the quality scores between SISRR and DMOS using LCC, SROCC and 

KRCC 
Video Dataset Sequence SISRR PSNR SSIM VIFP 

LIVE 
(Both distortions) 

LCC 0.851 0.900 0.817 0.788 
SROCC 0.801 0.867 0.767 0.714 

KRCC 0.689 0.779 0.636 0.571 
Average 0.780 0.849 0.740 0.691 

 
 

The results reported for the different distortion types for all of the databases presented 
in Table 2 also shows that SISRR outperforms PSNR and VIFP on wireless distortion induced 
images and it also performs on a par with PSNR, SSIM and VIFP for H.264 compressions 

distortions. It can be observed from Table 3 that these results are comparable with the verified 
results in [33] where extensive work has been done to compare subjective scores. The 
performance of all objective quality assessments used in this paper were validated using 

metrics relating to prediction accuracy, monotonicity and consistency as recommended in [42]. 
In addition, the proposed method exhibits very little complexity relative to all other methods 
(except PSNR) as shown in Table 4. Complexity was measured as the average execution time 

on an Intel i7-2600 CPU @ 3.40GHz PC and was normalised relative to the execution time of 
PSNR. All test metrics were realised in Matlab except MOVIE, which is realised in C.  

 

 
Table 4. Comparison of the performance of video quality assessment (VQA) algorithms for 

wireless distortion (LIVE DATABASE) 
Prediction Model VQA Complexity 

PSNR FR 1 
SSIM FR 13 

VIFP FR 49 
VQM FR 681 

MOVIE FR 2206 

STRRED RR 97 
STIS-SSIM RR 9 

STIRR RR 3 
SISRR RR 2 
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The results in Figure 4 shows the screenshots, salient pixels, the SI pixels as well as 

the comprehensive visual saliency maps using the proposed method on Bluesky sequence from 
LIVE database. From the results, it can be observed that the proposed method highlights the 
edges within the salient regions only. This observation reflects on the correlations achieved with 

the DMOS as edge differences have a higher perceptual significance to quality, in terms of 
structural distortion. 

 

 

     
 

     
 

 
   (g)                (h) 

 
Figure 4. Bluesky screenshot of the (a) reference (ref.) frame (b) tested frame. Saliency map of 

the (c) ref. frame (d) tested frame. SI filtered of the (e) ref. frame (f) tested frame. The 
comprehensive visual saliency map of the (g) ref. frame and (h) tested frame.  

 

 
6. Conclusion 

In this paper, the possibility of extracting video quality information using the RR video 

quality metric by analysing the SI and salient regions using low level features of luminance and 
colour is examined. A novel method named Spatial Information in Salience Region Reduced 
Reference Metric (SISRR) is proposed in this paper. The metric is performed by comparing the 

combination of spatial and salient information of the original and distorted sequences based on 
the idea that edge differences have a higher perceptual significance to quality, in terms of 
structural distortion. The method is easy to implement, low complexity and fast enough to be 

used in real-time applications. The saliency maps have high resolutions which reflect the same 
resolutions as the input frames.  

Even though the results show that PSNR has the highest performance in correlation 

with DMOS, the rank is followed by the proposed metric, SISRR, which outperforms SSIM and 
VIFP.The results obtained from SISRR shows some moderate correlations with quality values 
estimated by a number of full reference objective quality metrics which shows its suitability for 

simple albeit less accurate video quality assessment. It was also shown to outperform some full 
reference metrics when tested on the wireless distortion part of the LIVE video database. 
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