
TELKOMNIKA, Vol.12, No.2, June 2014, pp. 273~282 
ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013 
DOI: 10.12928/TELKOMNIKA.v12i2.1948   273 

  

Received March 23, 2014; Revised May 6, 2014; Accepted May 18, 2014 

Overview on Strategies and Approaches for FPGA 
Programming 

 
 

Tole Sutikno*1, Nik Rumzi Nik Idris2, Aiman Zakwan Jidin 
Department of Electrical Engineering, Faculty of Industrial Technology, 

Universitas Ahmad Dahlan, Yogyakarta, Indonesia 
Department of Energy Conversion, Faculty of Electrical Engineering, 

Universiti Teknologi Malaysia, Johor, Malaysia 
Department Electronics & Computer Engineering Technology, Faculty of Engineering Technology,  

Universiti Teknikal Malaysia Melaka, Melaka, Malaysia 
*Corresponding author, e-mail: tole@ee.uad.ac.id1, nikrumzi@fke.utm.my2, aimanzakwan@utem.edu.my3 

 
 

Abstract 
This paper presents an overview of strategies and approaches for FPGA programming. At first, 

design entry methods are briefly introduced. Then, the concepts of FPGA programming in some 
perspective viewpoints, such as: execution perspective, modelling perspective, programming style 
perspective, construction methodology perspective and synthesis perspective will be explained. Finally, the 
principle of VHDL programming use synchronization-evolution-action approach is introduced. 

 
Keywords: VHDL programming, programming style perspective, synthesis, synchronization-evolution-
action approach 

 
 

1. Introduction 
A field programmable gate array (FPGA) can be considered as a proper solution for 

boosting performance of controllers and for decreasing the gap between the analog and digital 
world [1-3]. FPGA can significantly accelerate the processing time of an algorithm [4, 5]. When 
addressed to fast ADC, the extremely fast computation capability of FPGA allows real-time 
computation of complex control algorithms in a few microseconds [2]. 

Today, FPGA vendors provide a fairly complete set of tools which allow high quality 
design process starting from the hardware description using VHDL. Generally, the design tools 
cover hardware design and verification tools (VHDL editor, synthesizer, place/route and physical 
implementation tools) [1, 6]. Some the examples are Quartus from Altera, Integrated Software 
Environment (ISE) from Xilinx [7] and Libero from Actel [8]. However, the understanding about 
perspectives of FPGA programming is needed to use the tools for realizing a digital design. 

 
 

2. Design Entry Methods 
Designing by hand on paper using techniques such as Boolean expressions, circuit 

schematics, Karnaugh maps, Quine-McCluskey (Tabular) minimization,  and state transition 
diagrams were used in the past to design digital circuits. Currently, the design process migrated 
to the computer using electronic design automation (EDA) tools [9-11].  

For entering a design into an EDA tool, a suitable design entry method is required. 
Typically, the design entry methods are following [12-14]: 
- Circuit schematics, present a graphical view of the design using logic gate symbols and 

interconnect wiring. 
- Boolean expressions can be entered as a text-based description in combinational logic 

designs. 
- HDL design entry, allows a description of the digital logic circuit or system operation to be 

entered in text form using a suitable language. 
- State transition diagrams, present a graphical view of state machine that identifies the 

design states and the transitions between states. 
The availability of a particular design entry method depends on the DEA tool used. 

 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by TELKOMNIKA (Telecommunication Computing Electronics and Control)

https://core.ac.uk/display/295538391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


                   ISSN: 1693-6930 

TELKOMNIKA  Vol. 12, No. 2, June 2014:  273 – 282 

274

3. Concepts of VHDL Programming 
VHDL is a hardware description language. However, the term “hardware” in this context 

is used in a wide variety of context, which covers the complete range of applications from 
complete systems such as personal computer to the small logical, and can be used for 
modelling digital hardware in a general way. VHDL is suitable for the design phases from 
system level to gate level. The existence of “IEEE Standard VHDL Language Reference 
Manual” has increased the use of VHDL and has enabled the creation and development of high-
performance computer-aided-design (CAD) tool [15-18].  

 
3.1. An Execution Perspective 

The distinguishing of VHDL from other languages is in the way how assignments can be 
executed. Two basic types of statements are known as [19-21]: 
a. Sequential statements 

As in software programming languages, these statement types are executed one after 
another. So, the order of the assignment must be considered when use these types.  

b. Concurrent statements 
The types are active continuously where the order of the statements is not relevant. So the 
types are especially suited to model the parallelism of hardware. 

 
3.2. A Modelling Perspective 

Three important features of the modelling techniques are abstraction, modularity and 
hierarchy [22-25]. 
a. Abstraction 

VHDL is rich in language constructions which can be used to describe different 
abstraction levels. Abstraction levels are a way of hiding details of a particular set of 
functionality. It allows for the description of different parts of a digital system with different 
amounts of detail. Thus, hierarchical and modular approaches which are defined at different 
levels of abstraction for taking advantages of the VHDL can be use in digital circuit design  [22-
25].  

There are three different abstraction levels for hardware description languages have 
been defined to deal with the huge size of detailed information describing electronic devices. 
Each of level is characterized by a set of primitive component and by the size of information 
processed at that level [10, 22, 23].  
- Behavioural level 

The behavioural level is a simple way to describe the behaviour of a circuit. The level 
consists of the functional/algorithm description of the circuit. Usually, such descriptions are 
only simulatable, but not synthesizable. 

- Register transfer level (RTL) 
The RTL deals with words of bits using combinational and sequential devices such as word 
gates, multiplexers, decoders, arithmetic operators, registers, etc. Two different types of 
processes exist in RTL descriptions are the pure combinational process and the clocked 
process. All clocked processes infer flip-flops and can be described in terms of state 
machine. In depth of the state machine will explain in sections V and VI.  

- Gate level 
The logic level is well defined by switching theory based on Boolean or multi-valued 
algebra. It involves all of the logic gates processing Boolean of multiple-value bit-
information. The logic networks must be optimized. 

The complexity of designed ICs favoured the development of new design 
methodologies based on abstraction. Three strategies may be distinguished in design 
methodologies [26-29]: 
- Top-Down, proceeds hierarchically from an abstract level to a more detailed one by 

successive decomposition into subsystems. With top-down design, the circuit can first be 
modelled by making a behavioural model. The advantage of a behavioural model is that the 
designer can simulate the circuit at an early stage and discover any system errors. 
However, this level can be skipped in the top-down flow in many cases. It is only in the case 
of highly complex circuits (systems) or if a lot of circuits have to be designed at the same 
time.  
 



TELKOMNIKA  ISSN: 1693-6930  
 

Overview on Strategies and Approaches for FPGA Programming (Tole Sutikno) 

275

- Bottom-Up, achieves the design of more complex systems by assembling less complex 
ones. 

- Meet-in-the-middle, decomposes a system into subsystems until the parts of the resulting 
decomposition can be designed using a library of component and standard cells. This last 
approach is the most frequently used. 

b. Modularity 
For very large models, it is useful to split the whole code into many files that can be 

compiled separately. A big functional block can be split into smaller units and grouped closely 
related parts in self-contained sub-blocks, so-called modules. A complex system can be divided 
into manageable sub-systems by using this technique. From a functional point of view, the 
modules are easier to develop and make sense. This can be conducted by identification and 
extraction of some re-useable and independent modules [1, 22, 24]. 
c. Hierarchy 

Hierarchy is useful for splitting an initial, complex problem into simpler sub-problems 
that can be worked out separately to achieve a solution to the initial problem. Using hierarchies 
to handle complexities does not mean that the design becomes less complex (sometimes it 
becomes more complex instead), but it become easier to understand for designer. By using 
hierarchy method, building a design out of modules is possible. Each level of a hierarchical 
description may contain one or more modules that can even have different degrees of 
abstraction. The sub-modules of these models are present in the next lower hierarchical level 
[23-25]. 

Modularity and hierarchy help to simply and organize a design project.  
 

3.3. A Programming Style Perspective 
VHDL offers three styles of description: the behavioural, dataflow, and structural styles. 

In contrast to other languages, the VHDL model may include any combination of the three 
abovementioned styles [7, 8, 12, 19, 30]. 
a. Behavioural style 

A behavioural description models the system as to how the outputs act with the inputs. The 
behavioural style permits the designer to quickly test concept, where the designer can 
specify the high-level function of the design without taking much care how it will be done 
structurally. This description defines the functionalities of a device with a sequential 
algorithm with no reference to any structural implementation. For example, an adder will be 
modelled with an addition operation. The synthesized from behavioural descriptions will 
often end up using a lot of more resources than actually necessary, even after optimization.  

b. Dataflow style 
Dataflow describes how the system’s signals flow from the inputs to the outputs. At the 
dataflow or the RTL style, the system is represented by a concurrent set of equations 
involving user-defined functions, and arithmetic and logic operators operating on signals of 
arbitrary complex types. These equations express the flow of information through RTL 
functional modules implied by the functions and operators. A direct hardware 
implementation can be derived by mapping signals into wires and dataflow operators in RTL 
modules. For example, an adder will be constructed by mapping signals into wires and 
dataflow of the predefined languages operators XOR, AND, and NOT. 

c. Structural style 
In a structural style, the description lists the parts of the system and their interconnections. 
Structural descriptions model the system as components or gates. Actually, the 
functionalities of the components are not part of the description. The components are 
viewed as black boxes with regard to their interface. The resulting system is equivalent to 
an interconnected set of sockets. For example, an adder could be described as the 
interconnection of two half-adders and an OR gate. In this case the half-adder and the gate 
are viewed as black boxes. 

In VHDL, a description can mix different description styles. In fact, most the descriptions 
of moderate to large-size-systems are mixed. It is possible for describing some parts of the 
system using one description style and other parts using another style. 

 
 
 



                   ISSN: 1693-6930 

TELKOMNIKA  Vol. 12, No. 2, June 2014:  273 – 282 

276

3.4. A Construction Methodology Perspective 
Design of integrated circuit is a mapping process of functional description of a problem 

in order to satisfy a set of performance criteria. A construction methodology perspective may 
concentrate on any level of abstraction defined within this process: Recent literature on VHDL 
programming perspectives describe a number of distinct methodologies. All of these 
methodologies can be grouped into three mainstreams that differ in design philosophy [26-29]: 
a. Top-down approach (behavioural) 

The design process is started from high-level, behavioural descriptions of blocks that will 
realize certain functions. A good example for the top-down approach is logic synthesis 
methodology. Standard cell libraries based-VHDL description of a digital circuit has become 
a commonly used technique for automatic synthesis of such circuits. This approach is 
addressed to avoid the complexities of physical design and thus, speeds up the process. 
Yet, the weakness of this approach cannot solve a number of issues such as careful speed 
optimization and area minimization. 

b. Bottom-up approach (physical) 
The low-level elementary building blocks of the circuit are designed and combined to realize 
the desired function. A good example of the bottom-up design strategy is full-custom and 
mask-level design of elementary building blocks. This approach quickly becomes very 
difficult to manage the overall design complexity in larger FPGA designs. 

c. Meet-in-the-middle approach 
The design of complex systems should employ a combination of top-down and bottom-up 
approaches which is called the "meet-in-the-middle" approach, for most efficient results. 

 
3.5. A Synthesis Perspective 

Synthesis is the translation process from a description of a hardware device at higher 
abstraction level into an optimized implementation on a lower level abstraction. This process 
may be done by human or a computer assisted program. There are two common categories of 
the synthesis process [10, 20, 26, 31-35]:  
a. Behaviour to structure 

The gap between the high-level behavioural specification of a digital circuit and its structure 
are bridged high-level synthesis. The high-level synthesis as opposed to logic synthesis 
which optimizes only combinational logic, deals with memory elements, the interconnection 
structure such as buses and multiplexers, and the sequential aspects of a design. The 
behavioural specification aims at describing only the functionality of a circuit, or what the 
circuit must do. On the other hand, circuit structure gives strong hints about the circuit's 
implementation or how it is built. The structure is described by a netlist, a list of components 
and their interconnections. 

b. Structure to physical layout 
Transformation from structure to physical layout representation is called physical design. 
Physical design Physical design includes two major parts: (i) the first part is the refinement 
process between the structural and physical views which derives a layout for a netlist; and 
(ii) The second part involves the analysis and tuning of a circuit's electrical characteristics. 
The main tasks in physical design include floor planning, placement and routing and circuit 
extraction. 

The synthesis process can also be viewed in three different levels [10, 20, 26, 31-35]: 
a. Behaviour synthesis  

Behavioural synthesis allows design at higher levels of abstraction by automating the 
translation and optimization of a behavioural description, or high-level model, into an RTL 
implementation which fits in with existing design flows. This method can be selectively 
applied to portions of a design. It will derive the greatest benefit from the using a higher level 
of abstraction. This behavioural design flow increases design productivity, reduces errors, 
and speeds verification. 

b. Logic synthesis 
Logic synthesis involves both combinational and sequential logic design.  
The process of state minimization and then the state encoding process are addressed if a 
stable diagram or table is given.  For describing the relationships between input, current 
state and output and next state, the optimized truth tables or Boolean expressions can be 
used after the encoding is completed. The next step, the mapping process converts the 



TELKOMNIKA  ISSN: 1693-6930  
 

Overview on Strategies and Approaches for FPGA Programming (Tole Sutikno) 

277

optimized truth table or Boolean expression into gates of a particular technology. 
c. Physical synthesis 

Physical synthesis is the last stage in a synthesis design flow and is where the individual 
gates are placed and routed on the specific FPGA platform. 

 
 
4. Using Arithmetic Operations and Types 

In VHDL, the declaration of the constants, signals, variables, functions and parameters 
can be conducted with a type that defines and restricts their characteristics. When objects are 
assigned to a type, they are restricted to the values and operations for that type [18, 36, 37]. 

Altera recommends using the following types [37]: 
a. STD_LOGIC and STD_LOGIC_VECTOR types. These types are defined in IEEE Std 1164-

1993 [38]. A copy of the std_logic_1164 package, which includes these types, is provided in 
the ieee library in the \quartus\libraries\vhdl\ieee directory. 

b. BIT and BIT_VECTOR types. These types are defined in IEEE Std 1076-1987 [15]. A copy 
of the standard package, which includes these types, is provided in the std library in the 
\quartus\libraries\vhdl\std directory. 

c. SIGNED and UNSIGNED types. These types are provided in the std_logic_arith, 
numeric_std, and numeric_bit packages in the ieee library in the \quartus\vhdl\ieee 
directory. 

  
 
5. State Machine 

Boolean form can be used to specify all programmable logic designs. However using 
non-Boolean models are easier to conceptualize and implement some designs. The one such 
model is state machine model. A state machine represents a system as a set of states, the 
transitions between them, along with the associated inputs and outputs. So, it is a particular 
conceptualization of a particular sequential circuit which can be used for many other things 
beyond logic design and computer architecture [27, 33, 35, 39, 40]. 

A finite state machine (FSM) or simply a state machine is a model of behaviour 
composed of a finite number of states, transitions between those states, and actions. It is like a 
"flow graph" where we can see how the logic runs when certain conditions are met [27, 33-35, 
39, 40]. 

 
 
6. Synchronization-evolution-action approach in state machine 

A state machine is acting as a sequential circuit. The use of state machines is an 
effective means of implementing control functions. The current state “state vector” of the 
machine is stored in the state memory; and the next state of the machine is determined base on 
the current state and the inputs acquired [27, 33, 35, 39, 40]. 

The state machine usually works in two phases. In the first phase, the new state is 
calculated, and in the second phase the new state is sampled into a register. In general, for 
describing a state machine in VHDL, an enumeration type for the states can be declared, and 
process statements can be utilized for the state registers and the next-state logics. Other way 
uses three different processes: one to decode next state, one to assign current state and one 
for the output signals [27, 33, 35, 39, 40]. In order to be more readable and easier to debug, this 
thesis introduces synchronization-evolution-action approach as the way of describing as state 
machine in VHDL. 
d. Synchronization   :  a process to synchronize the state transition at every clock cycle i.e. the 

state transition will only occur at the rising edge of the designated clock. 
e. Evolution              :  to describe the condition of the state transition, from current state to 

another state 
f. Action                  :  to generate the appropriate output signal for each current state. 

 
 
 
 
 



                   ISSN: 1693-6930 

TELKOMNIKA  Vol. 12, No. 2, June 2014:  273 – 282 

278

library ieee; 
use ieee.numeric_std.all; 
use ieee.std_logic_1164.all; 
 
Entity machine is 
  port (clk, inp, rst: in std_logic; 
        otp          : out std_logic_vector(3 downto 0)); 
end machine; 
 
Architecture Moore of machine is 
-- state declaration 
type state_type is (st0, st1, st2, st3);  
signal state: state_type; 
 
begin 
  -- clocked process (first process) 
  machine_process: process(clk,rst) 
  begin 
     if rst = '1' then state<=st0; 
     elsif clk'event and clk='1' then 
       case state is 
         when st0=> if inp='1' then 
                      state<=st1; 
                    end if; 
         when st1=> if inp='0' then 
                      state<=st2; 
                    end if; 
         when st2=> if inp='1' then 
                      state<=st3; 
                    end if; 
         when st3=> if inp='0' then 
                      state<=st0; 
                    end if; 
       end case; 
     end if; 
  end process; 
 
  -- combinational process (second process) 
  output_process: process(state) 
  begin 
    case state is 
      when st0=> otp <="0000"; 
      when st1=> otp <="1001"; 
      when st2=> otp <="1100"; 
      when st3=> otp <="1111"; 
    end case; 
  end process; 
end Moore; 
 
 

Figure 1. A Moore machine uses two processes 
 
 
library ieee; 
use ieee.numeric_std.all; 
use ieee.std_logic_1164.all; 
 
Entity machine is 
  port (clk, inp, rst: in std_logic; 
        otp          : out std_logic_vector(3 downto 0)); 
end machine; 
 
Architecture Moore of machine is 
-- state declaration 
type state_type is (st0, st1, st2, st3);  
signal current_state, next_state: state_type; 
 
begin 
  -- combinational process #1 (first process) 
  P0: process(current_state,inp) 
  begin 
    case current_state is 
         when st0=> if inp='1' then 



TELKOMNIKA  ISSN: 1693-6930  
 

Overview on Strategies and Approaches for FPGA Programming (Tole Sutikno) 

279

                      next_state<=st1; 
                    end if; 
         when st1=> if inp='0' then 
                      next_state<=st2; 
                    end if; 
         when st2=> if inp='1' then 
                      next_state<=st3; 
                    end if; 
         when st3=> if inp='0' then 
                      next_state<=st0; 
                    end if; 
     end case; 
  end process; 
 
  P1: process(clk,rst)  -- second process 
  begin 
   if rst = '1' then current_state<=st0; -- reset state 
   elsif clk'event and clk='1' then 
     current_state<=next_state; 
   end if; 
  end process; 
 
  -- combinational process #2 (third process) 
  P2: process(current_state) 
  begin 
    case current_state is 
      when st0=> otp <="0000"; 
      when st1=> otp <="1001"; 
      when st2=> otp <="1100"; 
      when st3=> otp <="1111"; 
    end case; 
  end process; 
end Moore; 
 
 

Figure 2. A Moore machine uses three processes 
 
 
 
library ieee; 
use ieee.numeric_std.all; 
use ieee.std_logic_1164.all; 
 
Entity machine is 
  port (clk, inp, rst: in std_logic; 
        otp          : out std_logic_vector(3 downto 0)); 
end machine; 
 
Architecture Moore of machine is 
-- state declaration 
type state is (st0, st1, st2, st3);  
signal current_state, next_state : state; 
 
begin 
 
synchronization:  
process (clk, rst) is 
begin 
if rst = '1' then 
  current_state <= st0; 
elsif rising_edge(clk) then 
  current_state <= next_state; 
end if; 
end process; 
 
evolution:  
process (inp, current_state) is 
begin 
     --default state evolution 
     next_state <= current_state; 
   
     case current_state is 
       when st0=> if inp='1' then 



                   ISSN: 1693-6930 

TELKOMNIKA  Vol. 12, No. 2, June 2014:  273 – 282 

280

                    next_state <=st1; 
                  end if; 
       when st1=> if inp='0' then 
                    next_state <=st2; 
                  end if; 
       when st2=> if inp='1' then 
                    next_state <=st3; 
                  end if; 
       when st3=> if inp='0' then 
                    next_state <=st0; 
                  end if; 
       end case; 
end process; 
 
action:  
process (current_state) is 
begin 
  case current_state is 
    when st0=> otp <="0000"; 
    when st1=> otp <="1001"; 
    when st2=> otp <="1100"; 
    when st3=> otp <="1111"; 
  end case; 
end process; 
 
end Moore; 
 
 

Figure 3. A Moore machine uses Synchronization-evolution-action approach 
 
 
library ieee; 
use ieee.numeric_std.all; 
use ieee.std_logic_1164.all; 
 
Entity machine is 
  port (clk, inp, rst: in std_logic; 
        otp          : out std_logic_vector(3 downto 0)); 
end machine; 
 
Architecture Moore of machine is 
-- state declaration 
type state is (st0, st1, st2, st3);  
signal current_state, next_state : state; 
 
begin 
 
synchronization:  
process (clk, rst) is 
begin 
if rst = '1' then 
  current_state <= st0; 
elsif rising_edge(clk) then 
  current_state <= next_state; 
end if; 
end process; 
 
evolution_and_action:  
process (inp, current_state) is 
begin 
      --default state evolution 
   next_state <= current_state; 
      --default output 
   otp <="0000"; 
    
     case current_state is 
       when st0=> if inp='1' then 
                    next_state <=st1; 
        otp <="0000"; 
                  end if; 
       when st1=> if inp='0' then 
                    next_state <=st2; 
        otp <="1001"; 



TELKOMNIKA  ISSN: 1693-6930  
 

Overview on Strategies and Approaches for FPGA Programming (Tole Sutikno) 

281

                  end if; 
       when st2=> if inp='1' then 
                    next_state <=st3; 
        otp <="1100"; 
                  end if; 
       when st3=> if inp='0' then 
                    next_state <=st0; 
        otp <="1111"; 
                  end if; 
       end case; 
end process; 
 
end Moore; 
 
 

Figure 4. A Moore machine uses Synchronization-evolution-action approach: evolution and 
action steps are merged 

 
 

In some cases, the evolution and action steps can be merged so that unnecessary 
register usages or latch problems can be avoided. 

 
 

7. Conclusion 
This paper has presented an overview of FPGA Programming. FPGA platforms and 

perspectives of VHDL programming, included some perspectives (execution, modelling, 
programming style, construction methodology and synthesis) have been presented. Finally, the 
synchronization-evolution-action approach in state machine is introduced. 
 
References 
[1]  Monmasson E, Cirstea MN. FPGA Design Methodology for Industrial Control Systems-A Review. 

IEEE Transactions on Industrial Electronics. 2007; 54(4): 1824-1842. 
[2]  Naouar MW, Monmasson E, Naassani AA, Slama-Belkhodja I, Patin N. FPGA-Based Current 

Controllers for AC Machine Drives-A Review. IEEE Transactions on Industrial Electronics. 2007; 
54(4): 1907-1925. 

[3]  Sutikno T, Facta M. An Efficient Strategy to Generate High Resolution Three-Phase Pulse Width 
Modulation Signal Based on Field Programmable Gate Array. International Journal of Computer and 
Electrical Engineering. 2010; 2(3): 413-416. 

[4]  Medical Imaging Implementation Using FPGAs.  White Paper: Altera Corporation. 2010. 
[5]  Monmasson E, Idkhajine L, Naouar MW. FPGA-based Controllers. IEEE Industrial Electronics 

Magazine. 2011; 5(1): 14-26. 
[6]  Monmasson E, Idkhajine L, Cirstea MN, Bahri I, Tisan A, Naouar MW. FPGAs in Industrial Control 

Applications. IEEE Transactions on Industrial Informatics. 2011; 7(2): 224-43. 
[7]  Gonzalez-Concejero C, Rodellar V, Alvarez-Marquina A, Icaya E, Gomez-Vilda P. An FFT/IFFT 

Design versus Altera and Xilinx Cores.  International Conference on Reconfigurable Computing and 
FPGAs (ReConFig '08). 2008: 337-342. 

[8]  Mahdian P, Griebling M. VHDL implementation of a bidirectional interface for 3ATI avionic sub-
systems.  The 23rd 2004 Digital Avionics Systems Conference (DASC 04). 2004. 2: 11.C.5-.1-7. 

[9]  Alderighi M, Casini F, D'Angelo S, Mancini M, Pastore S, Sterpone L, et al. Soft Errors in SRAM-
FPGAs: A Comparison of Two Complementary Approaches. IEEE Transactions on Nuclear Science. 
2008; 55(4): 2267-2273. 

[10]  Richards MA. Simulation libraries for system-level design. Computer. 1995; 28(2): 76-77. 
[11] Jung Uk C, Quy Ngoc L, Jae Wook J. An FPGA-Based Multiple-Axis Motion Control Chip. IEEE 

Transactions on Industrial Electronics. 2009; 56(3): 856-70. 
[12]  Drayer TH, Tront JG, Conners RW, Araman PA. A development system for creating real-time 

machine vision hardware using field programmable gate arrays.  Proceedings of the 32nd Annual 
Hawaii International Conference on Systems Sciences (HICSS-32). 1999: 5. 

[13]  Grout I. Digital Systems Design with FPGAs and CPLDs: Elsevier Science. 2011. 
[14]  Mezei I, Malbasa V. Using VHDL to Improve an FPGA Based Educational Microcomputer. The 

International Conference on Computer as a Tool (EUROCON 2005). 2005: 799-802. 
[15]  IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-1987. 1988:0_1. 
[16]  IEEE Standards Interpretations: IEEE Std 1076-1987, IEEE Standard VHDL Language Reference 

Manual. IEEE Std 1076/INT-1991. 1992:1. 
[17]  IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2002 (Revision of IEEE Std 

1076, 2002 Edn). 2002:0_1-300. 



                   ISSN: 1693-6930 

TELKOMNIKA  Vol. 12, No. 2, June 2014:  273 – 282 

282

[18]  IEEE Standard VHDL Language Reference Manual - Redline. IEEE Std 1076-2008 (Revision of IEEE 
Std 1076-2002) - Redline. 2009:1-620. 

[19]  Hodges BR, Proicou MC, hatrum TC. A distributed kernel for VHDL simulation.  Proceedings of the 
IEEE 1990 National Aerospace and Electronics Conference (NAECON 1990). 1990; 1: 215-220. 

[20]  Cogswell MC, Wood DE. A hybrid event-simulation/cycle-simulation environment for VHDL-based 
designs.  1997 Proceedings VHDL International Users' Forum. 1997: 258-263. 

[21]  Bui H, Tahar S. Design and synthesis of an IEEE-754 exponential function. 1999 IEEE Canadian 
Conference on Electrical and Computer Engineering. 1999; 1: 450-455. 

[22]  Agha G, Frolund S, Wooyoung K, Panwar R, Patterson A, Sturman D. Abstraction and modularity 
mechanisms for concurrent computing. IEEE Parallel & Distributed Technology: Systems & 
Applications. 1993; 1(2): 3-14. 

[23]  Rothermel K, Helbig T. Clock hierarchies: an abstraction for grouping and controlling media streams. 
IEEE Journal on Selected Areas in Communications. 1996; 14(1): 174-184. 

[24]  Leong C, Bento P, Lousa P, Joao N, Rego J, Rodrigues P, et al. Design and test issues of an FPGA 
based data acquisition system for medical imaging using PEM. IEEE Transactions on Nuclear 
Science. 2006; 53(3): 761-769. 

[25]  Brackenbury LEM, Plana LA, Pepper J. System-on-Chip Design and Implementation. IEEE 
Transactions on Education. 2010; 53(2): 272-81. 

[26]  Olsen G. System design considerations for FPGA synthesis. Idea/Microelectronics Conference 
Record (WESCON/94). 1994: 592-595. 

[27]  Donzellini G, Ponta D. A bottom-up approach to digital design with FPGA.  2011 IEEE International 
Conference on Microelectronic Systems Education (MSE). 2011: 31-34. 

[28]  Jimenez J, Martin JL, Zuloaga A, Bidarte U, Arias J. Comparison of two designs for the multifunction 
vehicle bus. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2006; 
25: 797-805. 

[29]  Gohringer D, Becker J. High performance reconfigurable multi-processor-based computing on 
FPGAs.  2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and 
Phd Forum (IPDPSW). 2010: 1-4. 

[30]  Yan Y, Zhu JG, Guo YG. Initial rotor position estimation and sensorless direct torque control of 
surface-mounted permanent magnet synchronous motors considering saturation saliency. IET 
Electric Power Applications. 2008; 2(1): 42-8. 

[31]  Camposano R. From behavior to structure: high-level synthesis. IEEE Design & Test of Computers. 
1990; 7: 8-19. 

[32]  Huang R, Vemuri R. PAHLS: towards run-time synthesis for FPGAs. 2005 International Conference 
on Field Programmable Logic and Applications. 2005: 739-740. 

[33]  Rawski M, Selvaraj H, Luba T, Szotkowski P. Application of symbolic functional decomposition 
concept in FSM implementation targeting FPGA devices. 2005 Sixth International Conference on 
Computational Intelligence and Multimedia Applications. 2005: 153-158. 

[34]  Szotkowski P, Rawski M. Symbolic Functional Decomposition Algorithm for FSM Implementation.  
The International Conference on Computer as a Tool (EUROCON 2007). 2007: 484-488. 

[35]  Giomi JC. Finite state machine extraction from hardware description languages.  Proceedings of the 
Eighth Annual IEEE International ASIC Conference and Exhibit. 1995: 353-357. 

[36]  IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008 (Revision of IEEE Std 
1076-2002). 2009:c1-626. 

[37]  Using Arithmetic Operations and Types (VHDL). ALTERA. 
[38]  IEEE Standard Multivalue Logic System for VHDL Model Interoperability (Stdlogic1164). IEEE Std 

1164-1993. 1993:0_1. 
[39]  Koster M, Teich J. (Self-)reconfigurable finite state machines: theory and implementation. 

Proceedings on Design, Automation and Test in Europe Conference and Exhibition. 2002: 559-566. 
[40]  Tiwari A, Tomko KA. Saving power by mapping finite-state machines into embedded memory blocks 

in FPGAs.  Design, Automation and Test in Europe Conference and Exhibition. 2004; 2: 916-921. 
 
 
 


