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 In this paper, we obtain the left-handed circularly polarized (LHCP) and 
right-handed circularly polarized (RHCP) of triangular array eight patches 

antennas using corporate feeding-line for circularly polarized-synthetic 
aperture radar (CP-SAR) sensor embedded on unmanned aerial vehicle 
(UAV) with compact, simple, and efficient configuration. Although  
the corporate feeding-line design has already been developed, its design  
was for the side antenna view of 0° and only produced one of LHCP or 
RHCP instead of both. Here, the design for LHCP and RHCP eight patches 
array fed by corporate feeding-line having the side antenna view of 36° at  
f=1.25 GHz for CP-SAR are discussed. We use the 2016 version of computer 

simulation technology (CST) to realize the method of moments (MoM) for 
analyzing. The performance results, especially for gain and axial ratio (Ar) at 
resonant frequency are consecutively 13.46 dBic and 1.99 dB both of LHCP 
and RHCP. Moreover, the 12-dBic gain-bandwidth and the 3-dB  
Ar-bandwidth of them are consecutively around 38 MHz (3.04%) and 6 MHz 
(0.48%). Furthermore, the two-beams appeared at boresight in elevation 
plane for average beamwidth of 12 dBic-gain and the 3 dB-Ar LHCP and 
RHCP have similar values of around 12° and 46°, respectively. 

Keywords: 

Corporate feeding-line  

CP-SAR  

LHCP and RHCP  

MoM  

UAV 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Muhammad Fauzan Edy Purnomo,  
Department of Electrical Engineering, 

Brawijaya University, 167 M. T. Haryono St., Malang 65145, Indonesia. 

Email: mfauzanep@ub.ac.id 

 

 

1. INTRODUCTION 

There are two main types of radar images, which are the circularly scanning plan-position indicator 

(PPI) images and the side-looking images. The PPI applications are limited to monitor the air and naval 

traffic. Meanwhile, the side-looking images applied in remote sensing are divided into two types: (i) real 

aperture radar (RAR, usually called SLAR for side-looking airborne radar or SLR for side-looking radar),  

(ii) synthetic aperture radar (SAR). The radar captures a signal with a relatively low power level. In contrast 

to the other image techniques for instance RAR that uses the actual size of the antenna, SAR works with  

a comparatively small antenna which has a wide coverage area, high radiation efficiency, small conductive 

loss, and ease of excitation [1, 2]. The side antenna view is at the angle between 20° and 50°. This direction 
is called the range. 
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SAR is well-known as a multi-purpose sensor that can be operated in all weather and day-night 

time. Recently, many SAR sensors missions have been carried out in linear polarization (LP) such as 

horizontal-horizontal (HH), vertical-vertical (VV), and its combination with high power, sensitive to Faraday 

rotation effect, etc. [3, 4]. The interest in the SAR system is expected to increase research in the antenna that 

can be applied to the development of SAR system. The research aims to develop a technology that enables 

the transmission and reception of any information, such as images, imagery, topography, climate, etc. by 

using certain carrier media, i.e., unmanned aerial vehicle (UAV). There are many types of UAV based on  

the weight, size, and usage characteristics, such as heavy UAV, light UAV, medium UAV, small UAV, drone, 

microsatellite, etc. UAV is controlled directly by a device that have been programmed. It can transport SAR 

payloads such as flight control system, onboard computer, telemetry and command data handling, attitude 

controller, and sensor (including antenna both Transmitter, Tx and Receiver, Rx) [5]. Therefore, the platform 

of UAV is very perspective because it can be flown under the cloudy weather, unmanned, low cost, fast, and 

relatively low risk. Thus, UAV technology is a good alternative because the data obtained would be very 

detail and real-time, as well as could be acquired quickly with a lower price [6]. The SAR sensor employs  

the elliptical wave propagation and scatters the phenomenon by radiating and receiving the elliptically 

polarized wave, including different polarization as circular and linear polarization.  

Moreover, the circularly polarized-synthetic aperture radar (CP-SAR) is as an active sensor that  

can transmit and receive the C, S, and L-band chirp pulses for remote sensing application. The sensor is 

designed as a low cost, light, low power, low profile configuration to transmit and receive left-handed 

circular polarization (LHCP) and right-handed circular polarization (RHCP), where the transmission and 

reception both work in LHCP and RHCP [4]. These circularly polarized waves are employed to generate  

the axial ratio image (ARI), ellipticity and tilted angle images, etc. Hence, any information can be obtained 

from the earth and be able to overcome some limitations of the SAR sensor, such as high power, sensitive to 

Faraday rotation effect, the unwanted backscatter modulation signal and redistribution random back  

signal-energy, blurring and defocusing spatial variants, ambiguous identification, and low different features 

of backscatter [7]. 

This paper presents the low power of triangular microstrip antenna for CP-SAR sensor application. 

This study involves developing array eight patches antennas that fundamentally construct the mold of 

substantial planar array using proximity coupled feed to yield the circular polarization (CP) rather than  

the other antennas operated in LP [8-10]. It is because the right pattern of basic construction determines  

the superiority of the designed array antenna using corporate feeding-line [11-14]. Although the corporate 

feeding-line design has already been developed [15, 16], its design was for the antenna view in the side of 0° 

angle and only produced one of LHCP or RHCP instead of both. Here, the design for LHCP and RHCP eight 

patches array fed by corporate feeding-line having low power and the antenna view in the side of 36° angle 

for CP-SAR application are discussed. Also, the study expresses that the modified lossless T-junction power 

divider 24 configurations both for LHCP and RHCP are capable of being reciprocal, matched, and lossless 

at all ports that become one of novelty in this paper. Hence, the contribution of this paper is to describe two 

models of CP i.e. LHCP and RHCP using corporate feeding-line with side antenna view of 36° that can work 

simultaneously as Tx/Rx for CP-SAR sensor application. 
 

 

2. RESEARCH METHOD 

The method of moments (MoM) is chosen in the numerical analysis for fast calculation. This method 

discretizes the integral into a matrix equation. This discretization can be considered as dividing the antenna 

surface into a small mesh [17]. To realize this method, we use computer simulation technology (CST) version 

2016 from corporate company CST STUDIO SUITE [18]. The numerical simulation of the equilateral triangular 

array eight patches antennas with truncated-tip are shown in section 3, especially at the resonant frequency,  

f = 1.25 GHz as a simple configuration embedded on UAV for CP-SAR application both for Tx and Rx. Table 1 

shows the specification and the desired target for the CP-SAR system [15], which influence the specification of 

the L-band CP-SAR UAV antenna. Each antenna can generate a wave that yields a CP. The technique to achieve 

CP can be easily obtained i.e. by adjusting the parameters properly (see Table 2), examining the size of 

perturbation segment, determining locus feed, and designing of corporate feeding [7, 11-12]. Therefore,  

the current distribution flow around patches that yield the significant variation performances of CP, especially  

S-parameter, frequency characteristic, input impedance, and radiation pattern. 

This paper discusses and analyzes the design of LHCP and RHCP array eight patches antennas at  

L-band for CP-SAR sensor application embedded on the UAV. The characteristic performance of this antenna  

is CP, particularly a circular to the left that makes it easier to transmit and receive signals to/from the earth.  
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This antenna is made by using the type of microstrip antenna that uniquely structured, so that it complies with  

the technical specifications and the desired goal, especially as Tx/Rx of remote sensing application [13].  
 

 

Table 1. Technical specification of CP-SAR on UAV 
No Antenna Parameters Specification of CP-SAR on UAV 

1 Resonant frequency (GHz) 1.25 

2 Pulse band wide (MHz) 233.31 

3 Axial ratio (dB)  3 

4 Antenna efficiency (%)  80 

5 Gain antenna (dBic) 12 

6 Azimuth beamwidth (°) ≥ 6.77 

7 Elevation beamwidth (°) 3.57 – 31.02 

8 Antenna size (m) 0.7  0.4 

9 Polarization (Tx/Rx) LHCP + RHCP 

 

 

Figure 1, Figure 2, and Table 2 show the configuration of an equilateral triangular array eight 

patches antennas with truncated-tip design including radiating patches and corporate feeding-line with their 

parameters [14]. Each of the radiating patches has the triangular shape of array antenna as the simple 

configuration of CP-SAR sensor. The parameter sizes of each patch (patch 1, patch 2, patch 3, patch 4,  

patch 5, patch 6, patch 7, and patch 8) are the same. Further, the corporate feeding-line has seven nodes of  

T-junction to distribute the current from the input port to radiating patches and reaches 24 patches which 

have the same length from the input port to radiating patches around 5.25λ or 854.7 mm. Then, the two 

orthogonal resonant modes of equal amplitudes and 90° phase difference with a compact TM21 CP operation 

on the resonant frequency at 1.25 GHz can be generated with a side-angle of 36° and create the stable 

radiation patterns which are slightly symmetric at the boresight beam. This case occurs because the location 

of corporate feeding-line is properly below the radiating patches which have the perturbation segment that 

make this construction different with other design [15, 16] and become a novelty for this research. Moreover, 

to examine the modified lossless T-junction power divider 24 configurations for both LHCP and RHCP as 

types of polarization approaching of reciprocal, matched, and lossless at all ports, it is given in the following 

explanation as proposed method for enhancing the performance of these antennas. 

For nine ports power divider, isolation between output ports, for example, port 2 and port 3  

(see Figure 1 and Figure 2), is essential for reducing cross-talk that can be caused by coupling between  

the ports [19-21]. By definition, a −9 dB power divider is an ideal passive lossless reciprocal nine  

ports device that divides power equally in magnitude and phase. The S-parameter matrix related to this 

device is (1). 
 

𝑆 = [𝑠𝑖𝑗]9×9
  (1) 

 

According to the matrix in (1), the condition for a lossless network is given by (2). 
 

𝑆𝑇𝑆∗ = 𝐼 or (𝑆∗)𝑇𝑆 = 𝐼 (2) 
 

We define that 𝑆𝑇and 𝑆∗ are a transpose and a conjugate matrix of S, respectively. The situation for  

a reciprocal network is described in (3). 
 

𝑆 = 𝑆𝑇  or 𝑠𝑖𝑗 = 𝑠𝑗𝑖  ;  for all 𝑖 and 𝑗 (3) 

 

Then, the condition for coefficient reflection load (ΓL) is 
 

𝛤𝐿 = 1 − |𝑠𝑖𝑗|
2

=
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑎𝑣𝑒

𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑤𝑎𝑣𝑒
; 0 ≤ 𝛤𝐿 ≤ 1; 𝑖, 𝑗 = 1, 2, . . , 9 (4) 

 

If ΓL = 1⌊0°, then it occurs an open circuit condition. If ΓL = 1⌊180°, this is a short circuit condition. 
If ΓL = 0, then this is a matched load circuit condition. Since all the nine ports of this power divider are 

matched, we have 𝑠𝑖𝑖 = 0 for matched load condition. In the S-matrix, the elements 𝑠23 and 𝑠32 are 

associated with the isolation between the output ports. These correspond to signals entering port 2 and exiting 

port 3, and vice versa. When the magnitudes of these elements are small, high isolation is achieved between 

the ports. For the lossless condition to be true, the S-matrix must be unitary and satisfy. 
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|𝑠12|
2 + |𝑠13|

2 + |𝑠14|
2 + |𝑠15|

2 + |𝑠16|
2 + |𝑠17|

2 + |𝑠18|
2 + |𝑠19|

2 = 1 (5) 
 

|𝑠19|
2 + |𝑠29|

2 + |𝑠39|
2 + |𝑠49|

2 + |𝑠59|
2 + |𝑠69|

2 + |𝑠79|
2 + |𝑠89|

2 = 1 (6) 
 

|𝑠12|
2 + |𝑠23|

2 + |𝑠34|
2 + |𝑠45|

2 + |𝑠56|
2 + |𝑠67|

2 + |𝑠78|
2 + |𝑠89|

2 = 1 (7) 
 

𝑠19
∗𝑠29𝑠39𝑠49𝑠59𝑠69𝑠79𝑠89 = 0 (8) 

 

𝑠89
∗𝑠78𝑠67𝑠56𝑠45𝑠34𝑠23𝑠12 = 0 (9) 

 

𝑠12
∗𝑠13𝑠14𝑠15𝑠16𝑠17𝑠18𝑠19 = 0 (10) 
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Figure 1. LHCP triangular array antenna 24 
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Figure 2. RHCP triangular array antenna 24 
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This case means that twenty of the elements 𝑠12, 𝑠13, 𝑠14, 𝑠15, 𝑠16, 𝑠17, 𝑠18, 𝑠19, 𝑠23, 𝑠29, 𝑠34, 𝑠39, 

𝑠45, 𝑠49, 𝑠56, 𝑠59, 𝑠67 , 𝑠69, 𝑠78, 𝑠79, and 𝑠89 must be equal to zero in order to satisfy (8)-(10). For more details 

of this analysis, 𝑠12, 𝑠13, 𝑠14, 𝑠15, 𝑠16, 𝑠17, 𝑠18, and 𝑠19 set equal to zero. However, it is clear that by setting 

𝑠12, 𝑠13, 𝑠14, 𝑠15, 𝑠16, 𝑠17, 𝑠18, and 𝑠19,  equal to zero, (6) is not satisfied. Consequently, when twenty of  

the elements 𝑠12, 𝑠13, 𝑠14, 𝑠15, 𝑠16, 𝑠17, 𝑠18, 𝑠19, 𝑠23, 𝑠29, 𝑠34, 𝑠39, 𝑠45, 𝑠49, 𝑠56, 𝑠59, 𝑠67 , 𝑠69, 𝑠78, 𝑠79, and 𝑠89 

are equal to zero, one of the (5)-(7) will not be satisfied. Thus a matched, reciprocal, lossless of nine ports 

network becomes impossible to realize [22-25]. 

 

 

Table 2. The parameters of triangular array antenna 24 
No. Parameters Values  No. Parameters Values 

1 a 95.2311 mm  17 q 114.855 mm 

2 p 101.38 mm  18 b 27.96 mm 

3 h 7.64 mm  19 c 80.2 mm 

4 t 1.5008 mm  20 d 90 mm 

5 s 40.7 mm  21 d1 120 mm 

6 w1 1.67 mm  22 e 18.755 mm 

7 w2 2.59 mm  23 f1 6 mm 

8 △w1 0.46 mm  24 f2 5.545 mm 

9  30°  25 u1 150.5 mm 

10 le 21 mm  26 u2 133.5 mm 

11 ls 21 mm  27 v 40.3 mm 

12 r1 0.4 mm  28 g1 400 mm 

13 lst 20.6 mm  29 g2 700 mm 

14 lf 20.17 mm  30 εr 2.17 

15 h1 1.6 mm  31 δ 0.0005 

16 h2 1.6 mm     

 

 

3. RESULTS AND ANALYSIS 

3.1.  The results of LHCP and RHCP modified lossless T-junction power divider 24 

The real and imaginary parts of S-matrix based on (3) and (4), when the radiating patches are 

excluded and only the modified lossless T-junction power divider 24 networks both of LHCP (Figure 1) and 

RHCP (Figure 2) are operated in CST software at f = 1.25 GHz, are shown in (11) and (12) [26]. 

 
𝑆𝐿𝐻𝐶𝑃

=

[
 
 
 
 
 
 
 
 
 

0.21 + 𝑗 0.02 −0.12 +  𝑗0.28  −0.11 + 𝑗 0.28
−0.12 + 𝑗 0.28 −0.3− 𝑗 0.2 0.65 +  𝑗0.07
−0.11 + 𝑗 0.28 0.65 +  𝑗0.07 −0.27 − 𝑗 0.2

−0.15 + 𝑗 0.33 −0.07 + 𝑗 0.34 −0.09 + 𝑗 0.34
−0.25 +  𝑗0.19 −0.26 + 𝑗 0.25 0.11 − 𝑗 0.06
−0.26 + 𝑗 0.2 −0.26 + 𝑗 0.25  0.11 − 𝑗 0.06

−0.16 +  𝑗0.32 −0.13 + 𝑗 0.28 −0.13+ 𝑗 0.28
0.12 − 𝑗 0.04 0.1 −  𝑗0.04 0.1 − 𝑗 0.04
0.12 − 𝑗 0.04 0.1 − 𝑗 0.04 0.1 − 𝑗 0.04

−0.15 + 𝑗 0.33 −0.25 + 𝑗 0.19 −0.26 +  𝑗0.2 
−0.07 + 𝑗 0.34 −0.26 +  𝑗0.25 −0.26 +  𝑗0.25
 −0.09 + 𝑗 0.34 0.11 − 𝑗 0.06 0.11 − 𝑗 0.06

−0.36 − 𝑗 0.22 0.57 + 𝑗 0.12 0.12 −  𝑗0.07
0.57 + 𝑗 0.12  −0.36 −  𝑗0.09 0.11 − 𝑗 0.09
0.12 −  𝑗0.07 0.11 − 𝑗 0.09 −0.37−  𝑗0.1

0.14 −  𝑗0.04 0.12 − 𝑗 0.04 0.12 − 𝑗 0.04
0.12 − 𝑗 0.07 0.11 − 𝑗 0.06 0.11 − 𝑗 0.06
0.56 + 𝑗 0.1 −0.27+  𝑗0.25 −0.26 + 𝑗 0.24

−0.16+ 𝑗 0.32 0.12 − 𝑗 0.04 0.12 − 𝑗 0.04
−0.13 + 𝑗 0.28 0.1 − 𝑗 0.04 0.1 − 𝑗 0.04
−0.13 + 𝑗 0.28 0.1 − 𝑗 0.04  0.1− 𝑗 0.04

0.14− 𝑗 0.04 0.12− 𝑗 0.07 0.56 + 𝑗 0.1
0.12− 𝑗 0.04 0.11− 𝑗 0.06 −0.27+ 𝑗 0.25
0.12− 𝑗 0.04 0.11− 𝑗 0.06 −0.26+ 𝑗 0.24

−0.36− 𝑗 0.23 −0.26+ 𝑗 0.19 −0.26+ 𝑗 0.19
−0.26+ 𝑗 0.19 −0.28− 𝑗 0.21 0.65 + 𝑗 0.06
−0.26+ 𝑗 0.19 0.65 + 𝑗 0.06 −0.3 − 𝑗 0.21 ]

 
 
 
 
 
 
 
 
 

 (11) 

 

We define that 𝑆𝑇
𝐿𝐻𝐶𝑃 and 𝑆∗

𝐿𝐻𝐶𝑃 are a transpose and a conjugate matrix of (11), respectively. 

 
𝑆𝑅𝐻𝐶𝑃

=

[
 
 
 
 
 
 
 
 
 

0.21+ 𝑗 0.02 −0.16 +  𝑗0.32  −0.09+ 𝑗 0.34
−0.16+ 𝑗 0.32 −0.37− 𝑗 0.23 0.56 +  𝑗0.1
−0.09 + 𝑗 0.34 0.56 +  𝑗0.1 −0.37 − 𝑗 0.1

−0.13 + 𝑗 0.28 −0.13 + 𝑗 0.28 −0.11 + 𝑗 0.28
−0.26 +  𝑗0.19 −0.27 + 𝑗 0.19 0.12 − 𝑗 0.04
−0.26+ 𝑗 0.24 −0.27 + 𝑗 0.24  0.11 − 𝑗 0.06

−0.12 +  𝑗0.28 −0.07 + 𝑗 0.34 −0.15+ 𝑗 0.33
0.12 − 𝑗 0.04 0.13 −  𝑗0.07 0.14 − 𝑗 0.04
0.11 − 𝑗 0.06 0.12 − 𝑗 0.09 0.13 − 𝑗 0.07

−0.13 + 𝑗 0.28 −0.26 + 𝑗 0.19 −0.26 +  𝑗0.24 
−0.13 + 𝑗 0.28 −0.27 +  𝑗0.19 −0.27 +  𝑗0.24
 −0.11 + 𝑗 0.28 0.12 − 𝑗 0.04 0.11 − 𝑗 0.06

−0.3 − 𝑗 0.21 0.64 + 𝑗 0.06 0.1 −  𝑗0.04
0.64 + 𝑗 0.06  −0.28 −  𝑗0.21 0.1 − 𝑗 0.04
0.1 −  𝑗0.04 0.1 − 𝑗 0.04 −0.28−  𝑗0.2

0.1 −  𝑗0.03 0.12 − 𝑗 0.06 0.12 − 𝑗 0.04
0.1 − 𝑗 0.03 0.11 − 𝑗 0.06 0.12 − 𝑗 0.04
0.65 + 𝑗 0.06 −0.26+  𝑗0.25 −0.26 + 𝑗 0.19

−0.12+ 𝑗 0.28 0.12 − 𝑗 0.04 0.11 − 𝑗 0.06
−0.07 + 𝑗 0.34 0.13 − 𝑗 0.07 0.12 − 𝑗 0.09
−0.15 + 𝑗 0.33 0.14 − 𝑗 0.04  0.13− 𝑗 0.07

0.1 − 𝑗 0.03 0.1 − 𝑗 0.03 0.65+ 𝑗 0.06
0.12 − 𝑗 0.06 0.11 − 𝑗 0.06 −0.26+ 𝑗 0.25
0.12 − 𝑗 0.04 0.12 − 𝑗 0.04 −0.26+ 𝑗 0.19

−0.3 − 𝑗 0.2 −0.26+ 𝑗 0.25 −0.26+ 𝑗 0.19
−0.26 + 𝑗 0.25 −0.36− 𝑗 0.09 0.57 + 𝑗 0.11
−0.26 + 𝑗 0.19 0.57+ 𝑗 0.11 −0.36− 𝑗 0.22 ]

 
 
 
 
 
 
 
 
 

 (12) 

 

Also, we notice that 𝑆𝑇
𝑅𝐻𝐶𝑃 and 𝑆∗

𝑅𝐻𝐶𝑃 are consecutively a transpose and a conjugate matrix of (12).  

For reciprocity, they are clear for both LHCP and RHCP, i.e., 𝑆𝐿𝐻𝐶𝑃 = 𝑆𝑇
𝐿𝐻𝐶𝑃 and 𝑆𝑅𝐻𝐶𝑃 = 𝑆𝑇

𝑅𝐻𝐶𝑃.  

The matched ports of the divider set for LHCP 𝑠11 = 0.21 +  j0.02, 𝑠22 = −0.3 − j0.2,  

𝑠33 = −0.27 − j0.2, 𝑠44  = −0.36 − j0.22, 𝑠55 = −0.36 − j0.09, 𝑠66 = −0.37 − j0.1, 𝑠77  = −0.36 − j0.23,  

𝑠88 = −0.28 − j0.21, and 𝑠99 = −0.3 − j0.21 and for RHCP 𝑠11  = 0.21 + j0.02, 𝑠22 = −0.37 − j0.23,  

𝑠33 = −0.37 − j0.1, 𝑠44  = −0.3 − j0.21, 𝑠55 = −0.28 − j0.21, 𝑠66 = −0.28 − j0.2, 𝑠77  = −0.3 − j0.2,  

𝑠88 = −0.36 − j0.09, and 𝑠99 = −0.36 − j0.22 are relatively close to zero. It means that only a little of  

the incident waves on the matched port will be reflected or not exit the ports. Thus, the reflected waves at  

the ports will close to zero. We get that both LHCP and RHCP are almost the lossless of the power divider  

in (2) and fulfill (5)-(10) as seen in (13) and (14). 
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𝑆𝑇𝑆∗
𝐿𝐻𝐶𝑃 =

[
 
 
 
 
 
 
 
 
 

0.922 0.0012+ 𝑗 0.0052 −0.0047 + 𝑗 0.0147
0.0012 − 𝑗 0.0052 0.9338 −0.0189+ 𝑗 0.0055

−0.0047− 𝑗 0.0147 −0.0189− 𝑗 0.0055 0.9234

0.0018 + 𝑗 0.0098 −0.0037 + 𝑗 0.019 −0.0026 + 𝑗 0.0105
−0.0146+ 𝑗 0.0048 −0.007+ 𝑗 0.0025 0.0138+ 𝑗 0.0027
−0.0157+ 𝑗 0.0019 −0.02− 𝑗 0.0015 0.0143+ 𝑗 0.0016

−0.002+  𝑗0.0149 −0.0048 + 𝑗 0.0142 −0.0065+ 𝑗 0.0111
0.0191+ 𝑗 0.0006 0.0125− 𝑗 0.0006 0.0122 + 𝑗 0.0007
0.0193− 𝑗 0.0004 0.0126− 𝑗 0.0014 0.0123 − 𝑗 0.0001

0.0018− 𝑗 0.0098 −0.0146− 𝑗 0.0048 −0.0157− 𝑗 0.0019
−0.0037− 𝑗 0.019 −0.007 − 𝑗 0.0025 −0.02+ 𝑗 0.0015
−0.0026− 𝑗 0.0105 0.0138 − 𝑗 0.0027 0.0143− 𝑗 0.0016

0.9274  −0.0245− 𝑗 0.0064 0.0241+ 𝑗 0.0104
−0.0245+ 𝑗 0.0064 0.9286 0.0040− 𝑗 0.0000
0.0241− 𝑗 0.0104 0.004− 𝑗 0.0000 0.9257

0.0126+  𝑗0.0013 0.0229+ 𝑗 0.0002 0.0224+ 𝑗 0.0015
0.0212− 𝑗 0.0084 0.0147− 𝑗 0.0032  0.0145 − 𝑗 0.0018

−0.0174+ 𝑗 0.0078 −0.0148 + 𝑗 0.0029 −0.0189+ 𝑗 0.0054
−0.002 − 𝑗 0.0149 0.0191− 𝑗 0.0006 0.0193+ 𝑗 0.0004
−0.0048− 𝑗 0.0142 0.0125+ 𝑗 0.0006 0.0126+ 𝑗 0.0014
−0.0065− 𝑗 0.0111 0.0122− 𝑗 0.0007 0.0123+ 𝑗 0.0001

0.0126 − 𝑗 0.0013 0.0212+ 𝑗 0.0084 −0.0174− 𝑗 0.0078
0.0229 − 𝑗 0.0002 0.0147+ 𝑗 0.0032 −0.0148− 𝑗 0.0029
0.0224 − 𝑗 0.0015 0.0145+ 𝑗 0.0018 −0.0189− 𝑗 0.0054

0.914 −0.0276 − 𝑗 0.0024 −0.0178+  𝑗0.0004
−0.0276+ 𝑗 0.0024 0.9379 −0.0181− 𝑗 0.0014
−0.0178− 𝑗 0.0004 −0.0181 + 𝑗 0.0014  0.9393 ]

 
 
 
 
 
 
 
 
 

≈
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          (13)  

 
𝑆𝑇𝑆∗

𝑅𝐻𝐶𝑃 =

[
 
 
 
 
 
 
 
 
 

0.922 0.0002+ 𝑗 0.0123 −0.0076 + 𝑗 0.0159
0.0002 − 𝑗 0.0123 0.9291 −0.0184− 𝑗 0.0072

−0.0076− 𝑗 0.0159 −0.0184+ 𝑗 0.0072 0.9256

−0.0031 + 𝑗 0.0129 −0.0025 + 𝑗 0.0085 −0.0097 + 𝑗 0.0092
−0.017− 𝑗 0.0003 −0.0162+ 𝑗 0.0028 0.0141+ 𝑗 0.0001
−0.0139− 𝑗 0.0045 −0.013− 𝑗 0.0015 0.0097− 𝑗 0.0041

0.0055+  𝑗0.0034 −0.0108 + 𝑗 0.0269 −0.0041+ 𝑗 0.0086
0.0171 + 𝑗 0.003 0.015 + 𝑗 0.01 0.0212 + 𝑗 0.0006
0.0132 − 𝑗 0.001 0.0067+ 𝑗 0.0023 0.0233 − 𝑗 0.0087

−0.0031− 𝑗 0.0129 −0.017 + 𝑗 0.0003 −0.0139+ 𝑗 0.0045
−0.0025− 𝑗 0.0085 −0.0162− 𝑗 0.0028 −0.013+ 𝑗 0.0015
−0.0097− 𝑗 0.0092 0.0141 − 𝑗 0.0001 0.0097+ 𝑗 0.0041

0.928  −0.0117− 𝑗 0.0025 0.0091+ 𝑗 0.0063
−0.0117+ 𝑗 0.0025 0.9247 0.0114+ 𝑗 0.0086
0.0091− 𝑗 0.0063 0.0114− 𝑗 0.0086 0.9237

0.0043−  𝑗0.0086 0.0045+ 𝑗 0.0029 0.0262− 𝑗 0.0007
0.0066− 𝑗 0.0065 0.0172+ 𝑗 0.0043  0.0202+ 𝑗 0.0001
−0.0215− 𝑗 0.006 −0.0197− 𝑗 0.0061 −0.0187+ 𝑗 0.0034

0.0055 − 𝑗 0.0034 0.0171− 𝑗 0.0030 0.0132+ 𝑗 0.001
−0.0108− 𝑗 0.0269 0.015− 𝑗 0.01 0.0067− 𝑗 0.0023
−0.0041− 𝑗 0.0086 0.0212− 𝑗 0.0006 0.0233+ 𝑗 0.0087

0.0043 + 𝑗 0.0086 0.0066 + 𝑗 0.0065 −0.0215+ 𝑗 0.006
0.0045 − 𝑗 0.0029 0.0172 − 𝑗 0.0043 −0.0197+ 𝑗 0.0061
0.0262 + 𝑗 0.0007 0.0202 − 𝑗 0.0001 −0.0187− 𝑗 0.0034

0.9362 −0.015+ 𝑗 0.0046 −0.0128+  𝑗0.0129
−0.015− 𝑗 0.0046 0.9334 −0.0163+  0.0019
−0.0128− 𝑗 0.0129 −0.0163 − 𝑗 0.0019  0.9288 ]
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          (14) 

 

3.2.  The results of LHCP and RHCP of triangular array antennas 24 

When the radiating patches and the modified lossless T-junction power divider 24 networks are run 

in the CST software, the results show in Figure 3 to Figure 9 for simulation of triangular array antenna 24, 

in the case of S-parameter, input impedance, frequency characteristic, radiation pattern, and antenna 

efficiency at around resonant frequency [14, 27]. Figure 3 shows the relationship between the reflection 

coefficient (S11 of the corporate feeding-line of array antenna) and the frequency for the simulation of LHCP 

and RHCP Tx/Rx triangular array antenna. From this figure, it can be seen that the S11 value and the S11 

bandwidth at the resonant frequency, f = 1.25 GHz both LHCP and RHCP are about −23.13 dB and 36 MHz 

(2.88%), respectively. 

Figure 4 depicts the input impedance characteristic of Tx/Rx. This figure shows that the real part of 
simulation at the resonant frequency of 1.25 GHz both of LHCP and RHCP is 50.15 Ω, close to the value of 

50 Ω. The reactance part of this antenna is 7.02 Ω, and then it looks inductive. If we see the feed network,  

the length from each patch to input port should be fixed at l λ/4 (l = 1, 3, 5, etc.) to achieve the optimal 

current intensity [15]. In this work, we use l = 21. Figure 5 shows that the values of gain and axial ratio for 

simulation of triangular array antenna at the direction of θ = −36° (LHCP) and θ = 36° (RHCP) and  

the resonant frequency, f = 1.25 GHz are about 13.46 dBic and 1.99 dB, respectively. Moreover, the 12-dBic 

gain-bandwidth and the 3-dB Ar-bandwidth are consecutively around 38 MHz (3.04%) and 6 MHz (0.48%). 

Figure 6 and Figure 7 depict the relationship between gain and elevation or θ-angle produced from 

the triangular array antenna (negative-θ for Az = 180° or 270° and positive-θ for Az = 0° or 90°) as azimuth 

direction of CP-SAR at f = 1.25 GHz (see Figure 6 for Az = 0° or x-z plane and Figure 7 for Az = 90° or y-z 

plane). At the elevation −36° (LHCP) and 36° (RHCP), the average of maximum gain and the axial ratio 

value of the triangular array antenna are about 13.49 dBic and 1.99 dB in both of azimuth angle, respectively. 

These figures also show that the beamwidth of the major lobes that exceed the target gain of 12 dBic both 

LHCP and RHCP are around 12°, from −42° to −30° (Az = 180° and Az = 270°or negative-θ) and from 30° to 

42° (Az = 0° and Az = 90° or positive-θ). Moreover, the simulated 3-dB Ar-beamwidth both LHCP  

and RHCP are 38°, from −55° to −17° (Az = 180° and Az = 270°) and 53°, from 4° to 57° (Az = 0°  

and Az = 90°). The simulated gain-beamwidth of 12 dBic both LHCP and RHCP are achieved. The simulated 
3-dB Ar-beamwidth for LHCP and RHCP are almost satisfied the targeted elevation beamwidth of  

3.57°– 31.02° in Table 1 for better resolution of CP-SAR using UAV. 

Figure 8 describes the characteristic of azimuth/conical pieces radiation generated by the triangular 

array antenna in the area of θ = −36° (LHCP) and θ = 36° (RHCP) at the resonant frequency of 1.25 GHz. 

From this figure, we can see that the peaks of the gain are 13.46 dBic at ϕ = 0° and 13.41 dBic at ϕ = 180°, 

while the axial ratio values of 1.89 dB at ϕ = 0° and 1.88 dB at ϕ = 180°. In addition, the values of  

the gain-beamwidth of 12 dBic are equal to 33° (from ϕ = 344° to ϕ = 17° and from ϕ = 164° to ϕ = 197°). 

While, the values of the axial ratio beamwidth of 3 dB are 95° (from ϕ = 310° to ϕ = 45°) and 87° (from  

ϕ = 137° to ϕ = 224°). These results exhibit that the targeted azimuth beamwidth of ≥ 6.77° obtains  

the resolution of CP-SAR using UAV. Figure 9 shows the antenna efficiency which means the radiation 
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efficiency for LHCP = 84.32% and RHCP = 84.33% on a target frequency of 1.25 GHz. These results 

indicate that the targeted antenna efficiency of 80% is achieved for CP-SAR using UAV. 

 

 

 
 

Figure 3. S-parameter, 24 patches 

 
 

 
 

Figure 4. Input impedance, 24 patches 

 
 

 
 

Figure 5. Frequency characteristic, 24 patches 

 

 

 
 

Figure 6. Elevation x-z plane, 24 patches 
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Figure 7. Elevation y-z plane, 24 patches 
 
 

 
 

Figure 8. Conical x-y plane, 24 patches 
 
 

 
 

Figure 9. Antenna efficiency, 24 patches 
 
 

4. CONCLUSION 

The characteristics of LHCP and RHCP triangular array eight patches antennas using corporate 

feeding-line at L-band frequency have been studied for CP-SAR embedded on small UAV. In general,  

we obtained a good agreement between the simulated results and the technical specification of CP-SAR on 

UAV namely: (i) the values of gain and axial ratio (Ar) at the resonant frequency of both LHCP and RHCP 

were 13.46 dBic and 1.99 dB, respectively, (ii) the two-beams appearing on boresight in elevation plane had 

similar values for each other i.e. for average gain-beamwidth of 12 dBic and the 3-dB Ar-beamwidth  

were consecutively around 12° and 46° that exceed the targeted elevation beamwidth of 3.57°–31.02°.  
(iii) the average azimuth values of the gain-beamwidth of 12 dBic and Ar-beamwidth of 3 dB at the resonant 

frequency of 1.25 GHz and both θ = −36° (LHCP) and θ = 36° (RHCP) were 33° and 91°, respectively. 

These results exhibited that the targeted azimuth beamwidth of 6.77° achieved CP-SAR resolution with 

UAV. (iv) The antenna efficiency was about LHCP = 84.32% and RHCP = 84.33% on a target frequency of 

1.25 GHz. These results indicated that the targeted antenna efficiency of 80% was achieved for CP-SAR 

using UAV. 
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