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Abstract 

There is a high demand for underwater communication systems due to the increa se in current 

social underwater activities. The assumption of Gaussian noise allows the use of Traditional 
communication systems. However, the non-Gaussian nature of underwater acoustic noise (UWAN) results 
in the poor performance of such systems. This study presents an experimental model for the noise of the 

acoustic underwater channel in tropical shallow water at Desaru beach on the eastern shore of Johor in 
Malaysia, on the South China Sea with the use of broadband hydrophones. A probability density func tion 
of the noise amplitude distribution is proposed and its parameters defined. Furthermore, an expression of 
the probability of symbol error for b inary signalling is presented for the channel in order to verify the noise 
effect on the performance of underwater acoustic communication b inary signalling systems. 

  
Keywords: Underwater Acoustic Noise, student's t distribution, b it error rate, non-Gaussian signal 
detection. 
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1. Introduction 
Increased interest in defense applications, off-shore oil industry, and other commercial 

operations provides a motivation for research in signal processing for the underwater 

environment. In the underwater environment, acoustics waves are more practical for 
applications such as navigation, communication, and other wireless applications due to the high 
attenuation rate of electromagnetic waves. Acoustic propagation is characterized by three major 

factors: attenuation that increases with signal frequency, time-varying multipath propagation, 
and low speed of sound (1500 m/s) [1-3]. No two deployment regions within the ocean with 
have the same depths ranging from tens of meters to a few kilometers with node placement that 

varies from one network to another [4].  
Sources of underwater acoustic noise (UWAN) are manmade (shipping, aircraft over 

the sea and machinery sounds on the ship) and natural (rain, wind, marine lifeforms and 

seismic) [5]. As the attenuation of sound in the ocean is frequency dependent, the ocean acts 
as a low-pass filter for ambient noise. Results ambient noise power spectral density (PSD) is 
thus described as colored that is the noise has more power at the lower frequencies and less 

power at the higher frequencies [6]. The ambient noise comes from sources such as turbulence, 
breaking waves, rain, and distant shipping. While ambient noise is often approximated as 
Gaussian, in practice it is colored exhibiting a decaying power spectral density (PSD). The rate 

of decay is at approximately 18 dB/decade [7]. The underwater environment consists also site-
specific noise [7]. Site-specific noise, for example, exists for ice cracking in the polar region and 
acoustic noise due snapping shrimp in warmer waters. Unlike ambient noise, site-specific noise 

often contains significant non- Gaussian components. 
Several papers show that the noise in underwater acoustic channel does not follow the 

normal distribution. The actually probability density function (PDF) with extended tails shaped 

characterizes for this type of noise and have an accentuated impulsive behaviour [7-8]. 
In this paper, an experimental model for the noise of the acoustic underwater channel is 

developed from the analysis of field data measurements and a pdf is defined. For binary 

signaling, an expression for the binary error probability is determine for the channel. 
Additionally, simulations were conducted with experimentally collected noise, in order to define 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TELKOMNIKA (Telecommunication Computing Electronics and Control)

https://core.ac.uk/display/295538163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
file:///C:/Users/Septian/Desktop/New%20folder/28%2030Jan18%208001%20Error%20Performance%20Analysis.docx%23_ENREF_1
file:///C:/Users/Septian/Desktop/New%20folder/28%2030Jan18%208001%20Error%20Performance%20Analysis.docx%23_ENREF_4
file:///C:/Users/Septian/Desktop/New%20folder/28%2030Jan18%208001%20Error%20Performance%20Analysis.docx%23_ENREF_5
file:///C:/Users/Septian/Desktop/New%20folder/28%2030Jan18%208001%20Error%20Performance%20Analysis.docx%23_ENREF_6
file:///C:/Users/Septian/Desktop/New%20folder/28%2030Jan18%208001%20Error%20Performance%20Analysis.docx%23_ENREF_7
file:///C:/Users/Septian/Desktop/New%20folder/28%2030Jan18%208001%20Error%20Performance%20Analysis.docx%23_ENREF_7


              ISSN: 1693-6930 

TELKOMNIKA Vol. 16, No. 2, April 2018 : 681 – 689 

682 

the performance of binary underwater communication systems. The rest of this paper is 

organized as follows. Section 2 defines the signal model. Section 3 describes the results of 
noise model from collected data. The Error Performance Analysis Of binary phase shift keying 
(BPSK) Signal is explained in section 4. The results and discussion are discussed in Section 5 . 

Finally, the conclusion of the paper is elaborated in Section 6.  
 
 

2. Signal Model 
Many applications assumed that, the received signal can be defined as follows:  
  

 [ ]   [ ]   [ ] (1) 
 

where  ( )is the M-ary PSK signal of interest and  ( ) is the UWAN. The assumptions of 
Gaussian distribution for UWAN are described in [8]. However, recent work suggested that the 

UWAN follows t-distribution [9] and stable alpha distribution [10].  
The power spectrum density (PSD) of white Gaussian noise is a constant over the 

complete frequency range, all frequencies range with a magnitude of   
 . For a given time 

instant, it has shaped probability distribution function pdf   ( ) given by [11]: 
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where    represent the standard deviation. The delta function on the autocorrelation functions 

means that adjacent samples are independent with all samples are Gaussian with the same 
statistical properties. Thus, he observed samples are considered independent identically 
distributed (i.i.d). Because of the underwater acoustic noise (UWAN) is contain of many 

individual sources, A precise identification of the distribution is required [5-6]. Some publications 
have stated that the UWAN does not follow the Gaussian distribution [6, 9, 12, 13]. Instead, it 
follows probability density function with extended tail shape, reflecting an accentuated impulsive 

behaviour due to the high incidence of large amplitude noise events. Thus, the distribution of 
data is appropriately described by the Student's t distribution [14-15]. 

 

 
3. Data Collection and Non-Gaussian Noise Model  

Field trials were conducted at Desaru beach (1°35.169ʹN, 104° 21.027′E) to collect 

signal samples and investigate the statistical properties of UWAN. The signals were received at 
a frequency range of 7 Hz –22 KHz by using a broadband hydrophone (Dolphin EAR 100 
Series). The measurements were obtained at depths from 1m to 7m from the seafloor, which is 

at a depth of 8 m. The wind speed was approximately 7 Kn, and the surface temperature was 
approximately 27C° [14]. Figure 1 shows the time representation of the collected data at depths 
of 3 meters and 7 meters where the impulsive nature of the noise can be clearly observed.  

 
 

 

 

(a) 3 Meters (b) 7 Meters 
 

Figure 1. Time Representation of the UWAN at Depths of 3 Meters and 7 Meters. 
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The distributions obtained from the collected data were compared with the Gaussian 

distribution and Student's t distribution with the distribution fitting tool in MATLAB.  
The comparison results clearly show that the amplitude of the UWAN generally follows the 
Student's t distribution, as shown in Figure 2. Therefore, the UWAN does not validate the 

assumption of Gaussian distribution. Clearly, the noise amplitude distribution fitted with the 
Student's t distribution. The Student’s t     is expressed as [16]. 
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⁄ ]
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(  

  

 
)

 
(   )

 
⁄

 (3) 

 

where Γ(·) is the gamma function and   is the degree of freedom that controls the dispersion of 
the distribution. The pdf represented in Equation 3 has a zero mean and a variance equal to 
 
(   )⁄  for    . 

 

 

 
 

3 Meters Depth 7 Meters Depth 
 

Figure 2. Comparison of the Amplitude Distribution of the UWAN with the Gaussian Distribution 
and t-Distribution. 

 

 
Table 1 indicates the degree of freedom for different depths. For a short period of time, 

on the order of a few seconds, the UWAN can be assumed to be stationary [17]. 

 
 

Table 1. Degree of Freedom for Different Depth 
Depth (m) Analysis period (Sec) Degree of freedom (v) 

1 1.85 2.94 
3 1.26 2.91 

5 1.55 2.82 
7 1.12 2.8 

 
 

From the Table above, the average degree of freedom is approximately 3. The analysis 
of the UWAN shows that its characteristics are not the same as AWGN. The pdf of the UWAN 
follows a Student’s t distribution, in contrast to the assumption of a Gaussian pdf proposed in a 

previous study [8]. However, to allow modeling a random variable   with variance > 2, it is 
possible to make the following change of variables: 
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and consequently, a new scaled pdf function can be written as: 
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For    , then the pdf formula is obtained by: 
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and also for    , the pdf is: 
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4. Error Performance Analysis Of BPSK Signal 

From the previously estimated pdf, it is possible to evaluate an expression of the 

probability of symbol error for binary signaling through the UWAN channel.The system model  is 
as shown in the Figure 3. 

 

 

 
 

Figure 3. Simplified Block Diagram with BPSK Transmitter-Receiver. 
 
 

For BPSK signal the amplitudes of the transmitted symbols are given by +A or −A, and then 
these functions for degree of freedom 3 can be defined as: 
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Thus, for a binary equiprobable source, the probability of symbol error in the detection of an 
antipodal signal corrupted by additive noise can be directly calculated by integration of any of 

the likelihood functions, i.e. 
 

    (  ) (   )   (  ) (   )⁄⁄  

 
(10) 

if p(s1)=p(s0)=0.5, then: 



TELKOMNIKA  ISSN: 1693-6930  

 

Error Performance Analysis in Underwater Acoustic Noise ... (Nor Shahida Mohd Shah) 

685 

   ∫  (   )⁄   
 

 

 
(11) 

 

The energy of each bit is given by Eb = A
2
Tb, where Tb is the bit interval. In addition, the average 

power spectral density of the noise can be expressed by No = σ
2
/B, where B = 1/2Tb is the 

bandwidth occupied by the baseband signal. Without generality loss, assuming that the 
amplitude of the pulses is unitary, i.e. A = 1, then the noise variance σ

2
 can be related to the 

signal-to-noise ratio (SNR) per bit Eb/No, according to the following relationship: 
 

   
 

(
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Finally, changing the variables in Equation 8 and applying the result in Equation 11, it follows 

that the symbol error probability of the binary UWAN channel can be estimated as:  
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In same method, for degree of freedom equal 4, the symbol error probability of the binary 
UWAN channel can be estimated as: 
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The theoretical error performance of the additive white Gaussian noise (AWGN) channel, can 

be estimated as [18]: 
 

   
 

 
    (√

  

  
 ) (15) 

 
In the same manner, the symbol error probability of the QPSK modulation and 16-PSK 
modulation in UWAN channel can be derived. 

 
 

5. Results and Analysis 

The different M-ary PSK modulation techniques (BPSK, QPSK and 16-PSK) are tested 
in UWAN and compared with the traditional channel (AWGN). Figure 4 shows graphs of the 
symbol error probability Pe as a function of Eb/No for binary bipolar signaling. The red trace is 

the estimation for the error probability for the UWAN channel obtained directly from Eq. 13, 
while black continuous trace shows the theoretical error performance of the additive white 
Gaussian noise (AWGN) channel. Simulation results, shown as blue continuous trace, are also 

presented for the UWAN. The Figure 5 shows graphs of the symbol error probability Pe as a 
function of Eb/No for binary bipolar signaling for degree of freedom equal 4. 

As can be viewed in Figure 4, the UWAN channel appears to be slightly less prone to 

errors compared to the AWGN channel, up to a SNR level of approximately 3 dB. After this 
point, the error probability for the UWAN channel becomes significantly larger in relation to the 
AWGN channel, and the performance gap enlarges for increasing SNR levels. Although 

behavior in the UWAN channel at low SNR seems to be counterintuitive, it can be explained due 
to the shape of the probability density function. The UWAN pdf has wider tails and, 
consequently, slimmer and taller central body when compared with the normal curve. Thus, for 

low SNR conditions, i.e., high noise environments, the error probability in (11) corresponds to 
the area of one entire tail and a considerable portion of the central body half of the pdf. The tail 
area of the UWAN pdf is larger than the normal but, in compensation, there is section in the 
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central body where the Gaussian pdf surpasses the UWAN pdf as shown in Figure 6. Since the 

probability density is higher in the central body, the difference between the areas in this region 
more than compensates for the area deviation in the tails. 

 

 

 
 

Figure 4. symbol error performance for AWGN and UWAN channels with degree  
of freedom d=3 

 
 

 

Figure 5. Symbol error performance for AWGN and UWAN channels with degree  

of freedom d=4 
 
 

 
 

Figure 6. Comparison between the amplitude distribution of the underwater 
acoustic noise and the Gaussian pdf 
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The symbol error probability is illustrated in Figure 7, where Pe is represented as a 

function of the Eb/No for QPSK signalling for the degree of freedom equal to 3 and 4. 
 
 

 
(a) (b) 

 

Figure 7. QPSK symbol error performance for AWGN and UWAN channels with degree of 
freedom (a)d=3 and (b)=4. 

 

 
For 16-PSK modulation family, the symbol error probability as a function of Eb/No, with 3 and 4 
degrees of freedom is presented in figure 8. 

 

  
(a) (b) 

 
Figure 8. 16-PSK Symbol Error Performance for AWGN and UWAN Channels with Degree of 

Freedom (a)d=3 and (b)=4 

 
 
Table 2 show the SNR critical values which the performance in underwater channel 

after this values will be worse than the performance in AWGN channel for different modulation 
techniques and degree of freedom 3 and 4. As shown in Table 2, When the M value for M-ary 
PSK modulation is increased the critical value for the SNR also increased, on the other hand, 

the BER for all the M-ary PSK based digital modulation schemes is decreased gradually with 
increasing values of Eb/No. 
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Table 2. SNR Critical Values for UWAN Channel better than AWGN Channel 

Modulation 
SNR (dB) 

d=3 d =4 

BPSK 3 3 
QPSK 6.5 6.5 

16-PSK 11 11 

 
 
For high SNR environments, as expected, the frequent incidence of impulsive events in 

the UWAN channel produces severe degradation in the system performance when compared to 
the AWGN channel. Given the poor performance of the UWAN channel under these conditions, 
it is recognized that employing some error control coding technique would be essential to 

mitigate the unwanted effect of the noise and, in this way, contributing to get reliable underwater 
acoustic communications. 
 

 
4. Conclusion 

Underwater acoustic noise (UWAN) in tropical shallow waters shows an accentuated 

impulsive behavior and, consequently, does not follow the Gaussian distribution. The analysis of 
field data measurements has shown that the noise amplitude distribution presents good fitting 
with the Student’s t distribution. Thus, in this article it has been proposed an empirical model for 

the distribution of the UWAN based on this distribution and the probability density function.The 
bit error probability could be derived for the uncoded UWAN channel and it was observed that 
UWAN channel is slightly less prone to errors, compared with the AWGN channel, up to a SNR 

level of approximately 3 dB, 6.5 dB and 11dB for BPSK, QPSK and 16-PSK modulation 
techniques respectively.After these points, the error probability for the UWAN channel 
surpasses the AWGN channel and the difference gradually increasing for high SNR. For high 

SNR values, the impulsive events produces severe performance is degraded compared with the 
AWGN channel. Therefore, when the error rates below 10

-5
, the SNR exceeding 15 dB, 16 dB 

and 15 dB for BPSK, QPSK, and 16-PSK modulation techniques, respectively. 
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