
TELKOMNIKA, Vol.16, No.6, December 2018, pp.2835~2843
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v16i6.8955 2835

Received February 14, 2018; Revised September 27, 2018; Accepted October 24, 2018

Stochastic Computing Correlation Utilization in
Convolutional Neural Network Basic Functions

Hamdan Abdellatef*, Mohamed Khalil-Hani, Nasir Shaikh-Husin, Sayed Omid Ayat
VeCAD Research Laboratory, School of Electrical Engineering, Faculty of Engineering,

Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
*Corresponding author, e-mail: hamdan.abdellatef@gmail.com

Abstract
In recent years, many applications have been implemented in embedded systems and mobile

Internet of Things (IoT) devices that typically have constrained resources, smaller power budget, and
exhibit "smartness" or intelligence. To implement computation-intensive and resource-hungry
Convolutional Neural Network (CNN) in this class of devices, many research groups have developed
specialized parallel accelerators using Graphical Processing Units (GPU), Field-Programmable Gate
Arrays (FPGA), or Application-Specific Integrated Circuits (ASIC). An alternative computing paradigm
called Stochastic Computing (SC) can implement CNN with low hardware footprint and power
consumption. To enable building more efficient SC CNN, this work incorporates the CNN basic functions in
SC that exploit correlation, share Random Number Generators (RNG), and is more robust to rounding
error. Experimental results show our proposed solution provides significant savings in hardware footprint
and increased accuracy for the SC CNN basic functions circuits compared to previous work.

Keywords: convolutional neural network, stochastic computing, correlation

Copyright © 2018 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

Deep learning has emerged as a new area of machine learning research, which
enables a system to automatically learn complex information and extract representations at
multiple levels of abstraction. Convolutional Neural Network (CNN) is recognized as one of the
most promising types of Artificial Neural Networks (ANN) and has become the dominant
approach for almost all recognition and detection tasks [1] such as face recognition [2],
handwritten digit recognition [3], target recognition [4], and image classification [5]. To achieve
acceptable classification results, CNN performs a massive number of convolutions and sub-
sampling operations with significant amounts of intermediate data results. Despite its high
classification accuracy, a deep CNN is highly demanding in terms of energy consumption and
computation cost [6]. To bring the success of CNNs to resource-constrained mobile and
embedded systems, designers must overcome the challenges of implementing resource-hungry
CNNs in embedded systems with limited area and power budget [7].

Stochastic Computing (SC), which represents and processes information in the form of
a probability of ones in a bit-stream, has the potential to implement CNNs with significantly
reduced hardware resources and achieve high power efficiency. In SC, arithmetic operations
like multiplication can be performed using simple AND or XNOR logic gate in Uni-Polar (UP) or
BiPolar (BP) representation, respectively, and scaled addition is done using Multiplexers (MUX).
Also, in SC, there are no positional weights among bits; therefore, SC circuits are better in
soft-error resilience and have a free dynamic trade-off between performance, accuracy, and
energy. Fortunately, neural networks have high error-tolerance at the algorithmic level, which
allows using SC for CNN implementation [8]. Opposite to what was previously believed, the
correlation among Stochastic Numbers (SN) can serve as a resource in designing stochastic
circuits. A comparative study [9] reported that the circuits exploiting correlation are generally
smaller, more accurate, and have lower latency than those with independent inputs. However,
previous SC CNN works [7, 8, 10, 11] did not explore correlation in their implementation.
Besides, these works did not consider the conversion circuits between SC and conventional
binary in their estimates as RNGs can take up to 80% of the circuit cost [12]. Also, long bit

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TELKOMNIKA (Telecommunication Computing Electronics and Control)

https://core.ac.uk/display/295537967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 6, December 2018: 2835-2843

2836

streams up to 8192 bits are used to obtain acceptable accuracy which significantly increases
the latency. This work has the following contributions:
1. SC CNN basic functions (inner product, pooling, and ReLU activation function) that exploit

correlation is proposed. The obtained functions had significant lower resource utilization,
higher accuracy, and more robust to rounding error compared to previous SC work. Also, it
shows significant area reduction compared to binary implementation [13].

2. A new method that generates uncorrelated bit streams for MUXs selectors to enhance the
accuracy of scaled addition using Toggle Flip-Flops (TFF) is presented. Also, this method
reduces the number of used RNGs.

The rest of this paper is organized as follows. Section 2 overviews CNN and explains its
basic functions. Section 3 reviews SC basics. Section 4 presents the CNN basic functions (inner
product, pooling, ReLU activation function) design method. Section 5 presents experimental
results to show the effectiveness of the proposed design with respect to compactness and
accuracy, and finally, Section 6 concludes the paper.

2. Convolutional Neural Network

Previously, hand-engineered features development had been the primary source of
difficulty in computer vision, like sophisticated feature extractors, to identify higher-level patterns
that are optimal for machine vision tasks, such as object recognition. However, convolutional
neural networks aim to solve this problem by learning higher-level representations automatically
from data [14]. As a supervised learning algorithm, CNN employs a feedforward process for
recognition and a backward path for training. In industrial practice, many application designers
train CNN off-line and use the off-line trained CNN to perform time-sensitive jobs. Thus, the
speed, area, and energy consumption of feedforward computation are to be considered. This
work is scoped to the feedforward computation hardware implementation on FPGA.

A typical CNN, as shown in Figure 1, is composed of multiple computational layers that
can be categorized into two components: a feature extractor and a classifier. The feature
extractor is used to filter input images into "feature maps" that represent features of the image
such as corners and edges which are relatively invariant to position shifts or distortions. The
feature extractor output is a low-dimensional vector containing features. Then, the vector is fed
into the CNN second component classifier, which is usually a traditional fully connected artificial
neural network. The classifier decides the likelihood of categories that the input image might
belong to [15].

Figure 1. CNN architecture proposed in [13]

The CNN layers can be one of three types: convolutional layer, pooling layer, or fully

connected layer. The convolutional layer is the core building block of the CNN whereas the main
operation is the convolution that computes the inner-product of receptive fields, a window of the
input feature map, and a set of learnable filters. This layer is the most time and resource
consuming operation in CNN, occupying more than 90% overall computation dominating
runtime and energy consumption as shown in [16]. The convolutional layer has N feature map
batch size, M output feature maps, Ch input feature maps, H/W size of output feature map,
K weights kernel size, and S stride. To compute one element in the output feature map of the

TELKOMNIKA ISSN: 1693-6930

Stochastic Computing Correlation Utilization in Convolutional Neural... (Hamdan Abdellatef)

2837

convolutional layer (1) is evaluated. This layer is of 4-D operation and to calculate all output
values (1) is looped for N, M, H, and W . The convolutional layer contains two functions, the
convolution, and activation. The convolution is loops of multiply-accumulate (MAC) operations
(or inner product). The activation functions conduct non-linear transformations such as Rectified
Linear Unit (ReLU), Sigmoid function, and hyperbolic tangent function. This work implements
only ReLU activation function since it is the most popular one. ReLU compares the input to zero
and outputs the maximum value as shown in (2).

𝑂[𝑛][𝑚][𝑟][𝑐] = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝐵[𝑚] + ∑ ∑ ∑ 𝑥[𝑛][𝑐ℎ][𝑆𝑟 + 𝑖][𝑆𝑐 + 𝑗] ×𝐾−1
𝑗=0

𝐾−1
𝑖=0

𝐶ℎ−1
𝑐ℎ=0

𝑤[𝑚][𝑐ℎ][𝑖][𝑗]

(1)

𝑜𝑢𝑡 = 𝑚𝑎𝑥(𝑥, 0) (2)

The pooling layers perform nonlinear down-sampling for data dimension reduction.
Commonly, max pooling and average pooling are used for this purpose. The max pooling layer
is shown in (3) which output the max value in a 2D window of K size and S stride. The average
pooling is to compute the average value of the same window as shown in (4). To complete the
layer operation, this equation is repeated for all N, M, H, W. The output feature map of the
pooling layer has a 1/𝑆 dimension reduction in height and width. Finally, the high-level
reasoning is completed via the classifier which is a fully connected layer. Neurons in this layer
are connected to all activation results in the previous layer which is an inner product with a filter
size of one element.

𝑂[𝑛][𝑚][𝑟][𝑐] = 𝑚𝑎𝑥(𝑥[𝑛][𝑚][𝑆𝑟 + 𝑖][𝑆𝑐 + 𝑗]) 𝑓𝑜𝑟 (0,0) ≤ (𝑖, 𝑗) < (𝐾 − 1, 𝐾 − 1) (3)

𝑂[𝑛][𝑚][𝑟][𝑐] =
1

𝐾2
∑ ∑ 𝑥[𝑛][𝑚][𝑆𝑟 + 𝑖][𝑆𝑐 + 𝑗]𝐾−1

𝑗=0
𝐾−1
𝑖=0 (4)

The basic operations in CNN are the inner product, pooling, and activation function

operations. Any CNN neuron may consist of one or multiple basic operations. For instance,
neurons in convolutional layers implement inner product and activation operations only; those in
pooling layers implement pooling only, and those in fully connected layers implement inner
product and activation operations.

3. Stochastic Computing

Stochastic computing (SC) represents and processes information in the form of digitized
probabilities. In SC, numbers called stochastic numbers SNs are represented by binary bit
streams. The SN donate the probability p, the probability of 1s in the SN [17]. SN has no fixed
length nor structure. The stochastic representation can be One-line UP, One-line BP, and
Two-line. This paper uses BP representation since it allows negative values, but UP do not. The
UP and BP stochastic representations are clarified in Table 1 where N0, N1, and N represents
the number of zeros, ones, total bits in SN respectively. To convert from binary to stochastic a
stochastic number generator (SNG) is used which is a random number generator RNG and a
comparator. On the other hand, to convert from Stochastic to binary, a counter is used.
According to [18], SNs should be independent and uncorrelated bit-streams. However, recent
studies [9] showed that the correlation could serve as a resource in designing stochastic
circuits. In that study, Alaghi and Hayes introduced a parameter that determines the significance
of the correlation between two SNs called stochastic computing correlation (SCC) as
shown in (5). The major advantage of SC is that it employs very low-complexity arithmetic
units [17], as shown in Table 1. The AND or XNOR gates perform the multiplication operation in
SC using UP or BP representation. There is no direct addition in SC; instead, a scaled addition
is used. 2-to-1 MUX performs the scaled addition having 𝑝𝑠 = 0.5 or s = 0 selector bit stream
value in UP and BP representation respectively. It should be noted that the MUX selector should
be uncorrelated with the MUX inputs to prevent correlation-induced error. However, the MUX
inputs are correlation-insensitive and can have any value of correlation. To perform subtraction
NOT gate can be used to negate the subtracted value and then it will be added by 2-to-1 MUX
to the other value.

 ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 6, December 2018: 2835-2843

2838

Table 1. The SN Representations and Basic Operations
 Value Interval Relation Negation Multiplication Scaled Addition

UP
𝑝 =

𝑁1

𝑁

[0,1]
p =

1 + 𝑥

2

𝑝𝑁𝑂𝑇

= 1 − 𝑝
𝑝𝐴𝑁𝐷 = 𝑝1𝑝2 𝑝𝑀𝑈𝑋 = 𝑝𝑠𝑝1 + (1 − 𝑝𝑠)𝑝2

BP 𝑥

=
𝑁1 − 𝑁0

𝑁

[-1,1] x = 2p − 1 𝑥𝑁𝑂𝑇 = −𝑥 𝑥𝑋𝑁𝑂𝑅 = 𝑥1𝑥2
𝑥𝑀𝑈𝑋 =

1

2
[(1 + 𝑠)𝑥1 + (1

− 𝑠)𝑥2]

One source of inaccuracy in SC is rounding. If we wish to eliminate the rounding error,
the SN length L, and the binary precision, the number of bits, n should satisfy L = 2𝑛. Suppose
the precision in binary computing is n = 8 bits, so the full SN length L = 256 bits. Each bit
requires one clock cycle to be processed causing the SC latency. As precision increases, L and
latency increase exponentially which is a significant drawback in SC. To reduce the number of
clock cycles needed, the full SN length is not used producing rounding error.

𝑆𝐶𝐶(𝑋, 𝑌) = {

𝑝𝑋∩𝑌−𝑝𝑋𝑝𝑌

𝑚𝑖𝑛(𝑝𝑋,𝑝𝑌)−𝑝𝑋𝑝𝑌
 𝑝𝑋∩𝑌 − 𝑝𝑋𝑝𝑌 > 0

0 𝑝𝑋∩𝑌 − 𝑝𝑋𝑝𝑌 = 0
𝑝𝑋∩𝑌−𝑝𝑋𝑝𝑌

𝑝𝑋𝑝𝑌−𝑚𝑎𝑥(𝑝𝑋+𝑝𝑌−1,0)
 𝑝𝑋∩𝑌 − 𝑝𝑋𝑝𝑌 < 0

 (5)

For SC addition operation, it is required to produce a 0.5 bit-stream that has 𝑆𝐶𝐶 ≈ 0
with respect to the inputs. Theoretically, the independent RNGs generates uncorrelated
bitstreams, but the growing circuit size will require many independent RNGs affecting the area
cost. In this study, we propose using flip-flops (FF)s to obtain uncorrelated bit-streams for SC
scaled addition. T-FF is a JK-FF where T is connected to both inputs of the JK-FF. Based on
Gaudet and Rapley [19] the JK-FF output follow (6). In the case of T-FF 𝑝𝑇 = 𝑝𝐽 = 𝑝𝐾, then

always 𝑝𝑄 = 0.5 for any value of T and always SCC(T, Q) ≈ 0. Using T-FF will allow using one

RNG for all SNGs to generate the MUX inputs and the uncorrelated selector as shown in
Figure 2a. Similarly, SC addition accuracy will be increased as shown in Figure 2b.

𝑝𝑄 =
𝑝𝐽

𝑝𝐽+𝑝𝑄
 (6)

(a) SC scaled addition using T-FF for MUX
selector generation

(b) Accuracy comparison between T-FF and
independent RNG for selector generation

Figure 2. More accurate SC scaled addition by using T-FF

4. Design of Stochastic Computing Based Convolutional Neural Network Basic
 Functions
4.1. Inner Product

The inner product is a MAC operation which is the basic function of convolution in CNN.
The number of elements in the inner product is determined from the "for loop" unroll factor. To
perform inner product in SC, the standard blocks are XNOR to perform multiplication and MUX
or Approximate Parallel Counter (APC) [20] to perform addition as proposed in previous SC

TELKOMNIKA ISSN: 1693-6930

Stochastic Computing Correlation Utilization in Convolutional Neural... (Hamdan Abdellatef)

2839

CNN works [7, 8, 10]. However, XNOR gate requires long uncorrelated bit-streams which will
affect latency and area cost by using one RNG per SNG. On the other hand, MUX tree
approach proposed in [21] to perform inner product in digital filter case study can be adapted to
this application. MUX tree allows sharing RNG among all inputs and is more accurate compared
to previous XNOR-MUX and XNOR-APC approaches as to be shown in Section 5.

One MUX can be used for inner product of 2-elements vectors x and h as shown in
Figure 3 and following (7), where the real operation does not involve multiplication or

𝑧 =
1

∑|ℎ|
(ℎ ∙ 𝑥) =

1

|ℎ1|+|ℎ2|
(ℎ1𝑥1 + ℎ2𝑥2) (7)

addition. The selector bit-stream of probability
|ℎ1|

|ℎ1|+|ℎ2|
 which follows (8) and

𝑠𝑙𝑀 =
∑(ℎ1𝑀)

∑(ℎ1𝑀∪ℎ0𝑀)
 (8)

sign(ℎ𝑖) will be denoted by 𝑠𝑖. The same equation shows the MUX tree output for inner

product of two vectors x and h with any length, but scaling seems to be a problem. Taking
advantage of learning, the backward phase of the network is modified to adapt the scaling.

Figure 3. SC inner product circuit [21]

To create a mathematical model for SC inner product using the MUX tree and adapt it
to CNN, the MUX tree will be changed to the sum of products. For 𝑁𝑖𝑛 inputs, the MUX tree has

𝑁𝑖𝑛 − 1 MUXs. We define the SM array which is a multi-dimensional array created from the

selector probabilities. This array will be of dimensions 𝑁𝑖𝑛. Each element is a binary ANDing of
selector bits related to the specific input until the output (9) shows the general SM array and an

example of OL-MUX tree if 𝑁𝑖𝑛 = 5 where 𝑠𝑙𝑖 is a bit of the selector bit-stream of the 𝑖𝑡ℎ MUX.
For more information about constructing optimum OL-MUX trees we refer to [21].

𝑆𝑀 =

[

𝑠𝑙𝑁𝑖𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅ ∩ ⋯ ∩ 𝑠𝑙1̅̅ ̅̅

𝑠𝑙𝑁𝑖𝑛−1
̅̅ ̅̅ ̅̅ ̅̅ ̅ ∩ ⋯ ∩ 𝑠𝑙1

⋮ ⋱ ⋮
𝑠𝑙𝑁𝑖𝑛−1 ∩ ⋯]

=

[

𝑠𝑙4̅̅ ̅̅ ∩ 𝑠𝑙2̅̅ ̅̅ ∩ 𝑠𝑙1̅̅ ̅̅

𝑠𝑙4̅̅ ̅̅ ∩ 𝑠𝑙2̅̅ ̅̅ ∩ 𝑠𝑙1
𝑠𝑙4̅̅ ̅̅ ∩ 𝑠𝑙2
𝑠𝑙4 ∩ 𝑠𝑙3̅̅ ̅̅

𝑠𝑙4 ∩ 𝑠𝑙3]

 (9)

Thus, the general equation of the MUX tree will become like that of (10) for evaluating

one bit of the output bit-stream.

𝑍 = ⋃ (𝑠𝑖 ⊕ 𝑥𝑖) ∩ 𝑆𝑀𝑖
𝑁𝑖𝑛−1
𝑖=0 (10)

Suppose we want to use the SC inner product MUX tree to compute all elements (e.g.

𝑁𝑖𝑛 = 𝐶ℎ × 𝐾 × 𝐾). The inner product in (1) can be changed to (11) by taking advantage of SC
(7) and (10) and adding a new loop representing the SN bits. It should be noted that all the

 ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 6, December 2018: 2835-2843

2840

variables are bits. The new index [b] is to evaluate the bit operation through the SNs from 0 to
L − 1. It is apparent the amount of resource utilization reduced.

𝑂[𝑛][𝑚][𝑟][𝑐][𝑏] = ⋃ ⋃ ⋃ ((𝑠𝑤[𝑚][𝑐ℎ][𝑖][𝑗] ⊕ 𝑥[𝑛][𝑐ℎ][𝑆𝑟 + 𝑖][𝑆𝑐 + 𝑗][𝑏]) ∩𝐾−1
𝑗=0

𝐾−1
𝑖=0

𝐶ℎ−1
𝑐ℎ=0

𝑆𝑀[𝑚][𝑐ℎ][𝑖][𝑗][𝑏] (11)

Instead of using a multiplier and an adder, by SC we use only some simple gates at the

expense of latency. The resources used in a MUX tree inner product of 𝑁𝑖𝑛 number of parallel

inputs are 𝑁𝑖𝑛 XOR gates and 𝑁𝑖𝑛 − 1 MUXs. In practical implementations, to highly reduce
latency, some loops should be unrolled entirely.

The inputs of CNN are of single size. To use the full SN length, L should be
L = 232 = 4294967296 which is too long and will produce high latency. One approach to reduce
L is to reduce n, binary precision that will cause the binary quantization. The other approach is
to reduce L without changing n which will cause the SC rounding error. The accuracy of MUX
tree inner product circuit is evaluated with respect to precision and number of inputs with
rounding error as shown in Table 2. It can be concluded that the MUX tree has high accuracy
and robust to rounding error.

Table 2. MUX Tree Absolute Error × 10−2 with Respect to SN Length 𝐿 and Number of Inputs,
𝑁𝑖𝑛, using Binary Precision 𝑛 = 64

𝑁𝑖𝑛 , 𝐿 64 128 256 512 1024 2048 4096 8192

2 3.3 2.2 1.49 1.02 0.73 0.51 0.36 0.25
4 4.48 3.07 2.13 1.48 1.05 0.74 0.53 0.37
8 5.03 3.6 2.47 1.74 1.22 0.86 0.62 0.42
16 5.45 3.81 2.66 1.85 1.32 0.94 0.66 0.47

4.2. Pooling and Activation Function

 In SC, if the correlation is exploited, the OR gates act as the max function for SCC=1.
Therefore, (3) can be modified to become as stated in (12). In SC, instead of using a compactor,
the OR gate will perform the max operation leading to a significant reduction in hardware
footprint. Usually, the max pooling stride S is 2 and kernel K is 2, so max pooling can be
realized using only 3 OR gates using the proposed approach after unrolling i and j loops of (12)
as shown in Figure 4a. Similar to max pooling, the ReLU activation function performs the max
operation but compared to zero. Thus, the input is “ORed” with a correlated SN of x=0 in the BP
domain. Figure 4b shows the ReLU circuit.

𝑂[𝑛][𝑚][𝑟][𝑐][𝑏] = ⋃ ⋃ (𝑋[𝑛][𝑚][𝑆𝑟 + 𝑖][𝑆𝑐 + 𝑗][𝑏]𝐾−1
𝑗=0

𝐾−1
𝑖=0 (12)

(a) Proposed max pooling

(b) Proposed SC ReLU circuit

Figure 4. Proposed SC CNN pooling and activation function circuits

The general scaled addition (using MUX) in SC for 𝑁𝑖𝑛 inputs follow (13) which is easily

realized using 𝑁𝑖𝑛 − 1 2-to-1 MUXs tree with uncorrelated selector bit-streams of probability 0.5
for each of the MUXs. Thus, average Pooling is straightforward in SC. For example, if we want
to implement in SC average pooling with stride size 2 and kernel size 2, 3 scaled addition units

TELKOMNIKA ISSN: 1693-6930

Stochastic Computing Correlation Utilization in Convolutional Neural... (Hamdan Abdellatef)

2841

(2-to-1 MUXs) tree with selector probability p = 0.5 will be used. To increase the accuracy, TFF
will be utilized for selector bit-stream generation. The average pooling block can be used with
any SCC among inputs. Two versions of average pooling will be experimented, the average
pooling using independent RNGs for MUX selectors (SC AP RNG) and the average pooling
using T-FF to create the uncorrelated selector bit-stream (SC AP FF).

𝑧 =
1

𝑁𝑖𝑛
∑ 𝑥𝑖

𝑁𝑖𝑛−1
𝑖=0 (13)

5. Experimental Results and Discussion

To clarify the effectiveness of the proposed SC CNN basic functions, they were
compared with previous SC work and the respective binary computation. The accuracy and the
resource utilization are the measured metrics. To evaluate the accuracy, the absolute error is
computed for 10000 attempts of randomly generated inputs where the conventional binary result
is the golden reference. From these attempts, we obtained the average output absolute errors.
Then different SN lengths L were used to observe the error behavior and the robustness to
rounding error as the input binary precision n = 32 bits. On the other hand, to evaluate the area
of the basic functions designs, we synthesize the circuits using Vivado Design Suite targeting
Xilinx ZYNQ Z706 FPGA.

Previous SC CNN used XNOR-MUX or XNOR-APC for the inner product operation in
convolutional layers of CNN [7, 8, 10]. This work proposed MUX tree for the inner product
shown in Figure 5, and the selector probability values follow (8) [21]. The number of inputs 𝑁𝑖𝑛
used in this experiment is 16 since it is more optimum for XNOR-APC SC inner product. The SN
length is varied through 64, 128, 256, 512, 1024, 2048, 4096, and 8192 bits since 8192 bits is
used in [10] and 1024 bits in [8]. Figure 6(a) shows the mean absolute error of MUX tree,
XNOR-MUX, and XNOR-APC approaches for inner product. To make a fair comparison, the
results of each SC circuit is multiplied by its scaling factor. For example, the MUX tree output is
multiplied by ∑|ℎ|. The MUX tree obtained the least error. Therefore, the MUX tree SC inner
product is more accurate than previous works approaches with respect to different SN lengths.

Figure 5. MUX tree used for 4 × 4 inner product

The resource utilizations of the three SC inner product approaches MUX tree, XNOR-
MUX, and XNOR-APC are compared along with conventional binary (bin) inner product (serial
design) as shown in Table 3. The MUX tree shows lower resource utilization of 1.6 × and 2 ×
compared to XNOR-MUX and XNOR-APC. Also, significant savings compared to the binary
inner product. Besides, MUX tree has more area savings since the MUX tree circuit requires
one RNG for any number of inputs. However, XNOR-MUX and XNOR-APC SC inner product
need 𝑁𝑖𝑛 RNGs. Therefore, the MUX tree obtains × 𝑁𝑖𝑛 RNG circuit savings. The RNG used is
linear feedback shift register LFSR.

 ISSN: 1693-6930

TELKOMNIKA Vol. 16, No. 6, December 2018: 2835-2843

2842

Table 3. Resource Utilization of Proposed Functions, Previous Work, and Conventional Binary
Inner Product DSP FF LUT

MUX tree 0 0 35
XNOR-MUX 0 0 55
XNOR-APC 0 0 71

Bin 8-bit fixed point 1 26 18
Bin 32-bit float 5 540 740

Max Pooling (MP) DSP FF LUT

Proposed SC MP 0 0 1
Approximate SC MP [10] 0 32 65

Bin MP 32-bit 0 0 134

Activation function DSP FF LUT

Proposed SC ReLU 0 0 1
Bin ReLU 32-bit 0 0 16

Average Pooling (AP) DSP FF LUT

Proposed SC AP FF 0 3 4
SC AP RNGs 0 0 2
Bin AP 32-bit 0 0 95

Using the proposed MUX tree for SC inner product operation of the CNN convolutional

layer is more efficient compared to previous SC inner product circuits or the conventional binary.
MUX tree is more accurate than other SC inner product and has less hardware footprint. Also,
compared to conventional binary, using the MUX tree SC inner product will provide significant
resource utilization savings. Without exploiting correlation, the max pooling operation in SC is
hard to be designed. Ren et al. [10] proposed an approximate SC max pooling circuit. However,
the proposed SC max pooling in this study outperforms the previous work in terms of accuracy
and resource utilization. Figure 6 (b) shows that the proposed max pooling is more accurate for
any SN length L. Also Figure 6 (c) shows the absolute error of proposed average pooling
operation using independent RNG for each MUX selector and T-FF for selector bitstream
generation. The average pooling using independent RNGs requires 𝑙𝑜𝑔2(𝑁𝑖𝑛) + 1 different
RNGs, while the average pooling using T-FF and MUXs require 1 RNG for any number of
inputs. This result a (𝑙𝑜𝑔2(𝑁𝑖𝑛) + 1) times savings in RNGs. The resource utilization of the
proposed SC average and max-pooling functions and their binary counterparts are shown in
Table 3 where all are of parallel architecture. The proposed SC ReLU circuit absolute error is
shown in Figure 6(d). A very minimal accuracy loss in the proposed SC ReLU is obtained with a
high resource utilization savings of 16 times.

(a) SC inner product circuits absolute error

(b) SC max pooling absolute error

(c) SC average pooling absolute error

(d) SC ReLU absolute error

Figure 6. The absolute error of the proposed basic functions compared to previous works

TELKOMNIKA ISSN: 1693-6930

Stochastic Computing Correlation Utilization in Convolutional Neural... (Hamdan Abdellatef)

2843

6. Conclusion
In this paper, the SC CNN basic functions exploiting correlation was proposed with

reduced hardware footprint to be efficient in the resource-constrained mobile and embedded
systems. These functions are inner product, max pooling, average pooling, and ReLU activation
function. A combination of these basic functions when looped create a specific CNN layer.
Experimental results demonstrate that the proposed SC functions achieved significant hardware
footprint savings compared to equivalent binary functions. Also, the proposed functions
outperformed previous works of SC CNN in terms of accuracy and resource utilization. Our
future work will investigate the performance of a complete SC CNN which is composed of the
proposed basic functions.

References
[1] Y LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature. 2015; 521(7553)436–444.
[2] B Cheung. Convolutional Neural Networks Applied to Human Face Classification. 2012 11th Int.

Conf. Mach. Learn. Appl. 2012: 580–583.
[3] C Wu, W Fan, Y He, J Sun, S Naoi. Cascaded Heterogeneous Convolutional Neural Networks for

Handwritten Digit Recognition. Int. Conf. Pattern Recognit. 2012: 657–660.
[4] J S Ashwin, N Manoharan. Convolutional Neural Network Based Target Recognition for Marine

Search. Indones. J. Electr. Eng. Comput. Sci. 2017; 8(2): 561–563.
[5] R Wang, J Zhang, W Dong, J Yu, C J. Xie, R Li, T Chen, H Chen. A Crop Pests Image

Classification Algorithm Based on Deep Convolutional Neural Network. Telkomnika
Telecommunication Computing Electronics and Control. 2017; 15(3): 1239–1246.

[6] M Alawad, M. Lin. Stochastic-Based Deep Convolutional Networks with Reconfigurable Logic
Fabric. IEEE Trans. Multi-Scale Comput. Syst. 2016; 99: 1.

[7] J Li, A Ren, Z Li, C Ding, B Yuan, Q Qiu, Y Wang. Towards acceleration of deep convolutional
neural networks using stochastic computing. Proc. Asia South Pacific Des. Autom. Conf.
ASP-DAC. 2017: 115–120.

[8] H Sim, D Nguyen, J Lee, K. Choi. Scalable stochastic-computing accelerator for convolutional
neural networks. Proc. Asia South Pacific Des. Autom. Conf. ASP-DAC. 2017: 696–701.

[9] A Alaghi, J P Hayes. Exploiting correlation in stochastic circuit design. 2013 IEEE 31st Int. Conf.
Comput. Des. ICCD. 2013: 39–46.

[10] A Ren, J Li, Z Li, C Ding, X Qian, Q Qiu, B Yuan, Y Wang. SC-DCNN: Highly-Scalable Deep
Convolutional Neural Network using Stochastic Computing. in Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages and Operating
Systems. 2017: 405–418.

[11] J Li, Z Yuan, Z Li, C Ding, A Ren, Q Qiu, J Draper, Y Wang. Hardware-Driven Nonlinear Activation
for Stochastic Computing Based Deep Convolutional Neural Networks. in International Joint

Conference on Neural Networks (IJCNN). 2017: 1230–1236.
[12] W Qian, X Li, M D Riedel, K Bazargan, D J Lilja. An architecture for fault-tolerant computation with

stochastic logic. IEEE Trans. Comput. 2011; 60(1): 93–105.
[13] A Krizhevsky, I Sutskever, G E Hinton. ImageNet Classification with Deep Convolutional Neural

Networks. Adv. Neural Inf. Process. Syst. 2012: 1–9.
[14] S-M Khaligh-Razavi. What you need to know about the state-of-the-art computational models of

object-vision: A tour through the models. arXiv Prepr. arXiv1407.2776. 2014: 36.
[15] C Zhang, P Li, G Sun, Y Guan, B Xiao, . Cong. Optimizing FPGA-based Accelerator Design for

Deep Convolutional Neural Networks. Proc. 2015 ACM/SIGDA Int. Symp. Field-Programmable
Gate Arrays - FPGA. 2015; 15: 161–170.

[16] C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, V Vanhoucke, A Rabinovich.
Going Deeper with Convolutions. in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2015: 1–9.
[17] A Alaghi and J P Hayes. Survey of Stochastic Computing. ACM Trans. Embed. Comput. Syst.

2013; 12(2s): 1–19.
[18] B. Gaines. Stochastic computing systems. Adv. Inf. Syst. Sci. 1969: 37–172.
[19] V C Gaudet, A C Rapley. Iterative decoding using stochastic computation. Electron. Lett. 2003;

39(3): 299–301.
[20] K Kim, J Lee, K Choi. Approximate de-randomizer for stochastic circuits. ISOCC 2015 - Int. SoC

Des. Conf. SoC Internet Everything. 2016: 123–124.
[21] H Ichihara, T Sugino, S Ishii, T Iwagaki, T Inoue. Compact and Accurate Digital Filters Based on

Stochastic Computing. Trans. Emerg. Top. Comput. 2016; 99: 1–12

