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 Genomic repeats, i.e., pattern searching in the string processing process to find 

repeated base pairs in the order of deoxyribonucleic acid (DNA), requires  

a long processing time. This research builds a big-data computational  

model to look for patterns in strings by modifying and implementing  

the Boyer-Moore algorithm on Apache Spark Streaming for human DNA 

sequences from the ensemble site. Moreover, we perform some experiments 

on cloud computing by varying different specifications of computer clusters 

with involving datasets of human DNA sequences. The results obtained show 

that the proposed computational model on Apache Spark Streaming is faster 

than standalone computing and parallel computing with multicore. Therefore, 

it can be stated that the main contribution in this research, which is to develop 

a computational model for reducing the computational costs, has been 

achieved.  
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1. INTRODUCTION 

DNA repeats in the eukaryotic genome [1]. Repetition identification and classification are important 

fundamental annotation tasks for several reasons. First, repetition is believed to play an important role  

in the evolution of genomes and diseases [2]. Second, cellular elements (transposons and retrotransposons) 

may contain coding regions that are difficult to distinguish from other gene types. Finally, repetition often 

causes a lot of local alignments, complicated sequence assembly, comparison between genomes and  

large-scale duplication analysis and rearrangement [3]. In the past decade scientists have been doing laboratory 

research for 3 years to analyze DNA [4]. One of the cases of DNA analysis that requires time and energy on  

a large scale is to analyze diseases caused by repetitive genomic patterns or called genomic repeats [3] like 

three repeated base pairs that can cause diseases in the trinucleotide repeat disorders category [5]. 

A task of genomic repeats, which basically is an analysis of string matching or pattern matching,  

is carried out to look for a pattern in a large text. The basic algorithm for searching strings or patterns is by 

matching all the possibilities contained in the data from the first index in the text to the end of sequences.  

The Brute Force (Naïve) Algorithm has the worst possible complexity, which is O (mn), where it will be very 

time consuming if more and more text will be used as objects to search for strings or patterns [6].  

So, the need to reduce the computational cost while performing string matchin on large datasets makes 

scientists to develop algorithms that are more efficient than brute force algorithms, such as the algoirithms of 

Knuth Morris Pratt (KMP) [7] and Boyer Moore (BM) [8].  
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The KMP algorithm is a string matching algorithm that works by utilizing the shift pattern  

of the text from the left to the right during matching strings in the text. The KMP algorithm was firstly 

developed by Donald E. Knuth in 1967 and then continued by James H. Morris with Vaughan R. Pratt in 1966. 

Then in 1977 the KMP algorithm was published. Then, the BM Algorithm, which is one of the most efficient 

algorithms compared to other string matching algorithms, was proposed by creating two tables known as the 

BM Bad Character (bmBc) table and the BM good-suffix (bmGs) table [9]. For each character in the alphabet 

set, bad character tables store shift values based on the appearance of characters in the pattern. This algorithm 

forms the basis for several pattern matching algorithms.  

The KMP and BM algorithm can be used as tools for identical identical sequences in source sequences 

or repeated subsequence searches [10]. The BM type algorithm for matching compressed patterns in a system 

collage, and shows that an instance of algorithm search in BPE (byte per encoding) is compressed  

text 1.2∼3.0 faster than the agrep software package (fastest pattern mathing tool) in the original text [11]. 

Moreover, nowadays, scientists or biologists have begun to face issues related to large datasets. So, challenges 

on handling, processing, and transferring information are appeared. It means that biologists need to change 

from traditional data processing to more towards big data analysis to investigate all biological problems.  

For example, modifying the KMP in parallel computing with multicore by using the R package pbdMPI has 

been introduced by Riza et al. for searching genomic repeats [12]. The R package pbdMPI was also utilized 

for parallel random projection in order to handle planted motif search [13]. 

In other side, some developments in open-source software, namely the Hadoop project, made 

discoveries to provide scalable storages (e.g., in petabytes of data) in hadoop distributed file systems (HDFS) 

that combines with the programming model, called MapReduce [14]. However, because of the Hadoop-based 

I/O access pattern, the intermediate calculation results are not cached. Therefore, Hadoop is only suitable for 

batch data processing, and shows poor performance for repetitive data processing [15]. To overcome this 

problem, Apache Spark was found, which is a faster platform designed to handle large amounts of data [16]. 

Apache Spark is an open-source cluster computing framework for large data processing. It has 

emerged as a next-generation large data processing engine, overtaking Hadoop MapReduce which helped 

revive the Big Data revolution. It maintains linear scalability and fault tolerance of MapReduce, but extends it 

in several important ways. Unlike Apache Hadoop as disk-based computing, Apache Spark does memory 

computing by introducing a powerful concept, i.e., resilient distributed dataset (RDD). Because it is possible 

to store results in memory, it is more efficient for repetitive operations. In terms of performance, Apache Spark 

can reach 100 times faster in terms of memory access than Apache Hadoop [16]. The gap between Apache 

Spark and Apache Hadoop is more than 10 times greater, even if we compare between the two based on disk 

performance [17, 18]. In terms of flexibility, Apache Spark provides a high-level application programming 

interface (API) in Java, Scala, Python, and R. In general terms, Apache Spark provides structured data 

processing, machine learning, graph computing, and flow computing capabilities by supporting several 

sophisticated components.  

In contrast to batch-based large volume data processing, streaming processing takes a more advanced 

step towards data streaming. With exponential growth in continuous data streaming, it has gained a lot of 

popularity. Apache Spark Streaming is one of the open source frameworks for reliable streaming processing, 

high-throughput, and low latency streaming processing [19]. It is an extension of API of Apache Spark, which 

is intended to process streaming data streams. Although Apache Spark is a batch processing engine, with Spark 

Streaming it is able to process streaming data from various sources including from Twitter. Here the incoming 

data flow is divided into small groups which are then processed by the Spark engine. In Apache Spark 

Streaming, discretization flows (DStreams) which are RDD sequences, represent continuous data streams.  

The operations on DStreams are converted to basic RDD transformations which are then calculated by  

the Spark engine [20]. 

Moreover, Apache Spark Streaming, Apache Storm, and Yahoo! S4 [21] are three typical platforms 

that support the streaming calculation model for direct data processing. Apache Storm is a free and open source 

distributed real-time calculation system. Apache Storm makes it easy to process data flow without limits 

reliably. Unlike Apache Storm, Apache Spark Streaming takes a very different approach and processes events 

in batches. Most traditional flow processing systems are designed to process records one by one.  

This is known as a continuous operator model, a simple model that works very well on a small scale, but faces 

several challenges with large scale analysis and real time. To overcome these challenges, Apache Spark 

Streaming uses micro batch architecture [22-24] where the data stream is treated as a small batch of data and 

streaming computing is done through a series of continuous batch computations on this batch of data. 

Therefore, this research is aimed at building computational models and implementing the BM algorithm in 

finding string patterns in human chromosome genome data contained in ensemble pages. This study consisted 

of three stages, namely the stage of entering data into the system, the BM processing, and the stage of analyzing 

the results. 
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2. RESEARCH METHOD 

The computational model built in this research can be seen in Figure 1. There are several stages in  

the computational model of detection of genomic repeats using the BM algorithm on Apache Spark Streaming. 

It starts with the preprocessing stage, then continues with the input data stage and uploads  

the data. Then, the data is processed by moving the uploaded data into the streaming folder in hadoop 

distributed file system (HDFS) which is then captured by the system from Apache Spark Streaming and 

processed by the BM algorithm. After processing is complete, the resulting data from processing can be 

downloaded into a personal computer. 

 

 

 
 

Figure 1. Research computational model 
 

 

Based on the environment where the computational model works, we divide into four system 

environments, as follows:  

− Working in personal computers: the model starts in the environment of the personal computer where  

the data is located, then goes into the preprocessing stage that is carried out in the personal computer 
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environment. The environment changes when the process has entered the data upload stage where data is 

transferred from the environment of the personal computer into the virtual machine in the Google Cloud 

Project. 

− Working on virtual machines in Google Cloud Project: Then the data should be uploaded into the cloud 

computing, which is Google Cloud Project. In this step, we set some certain parameters such as numbers 

of cores, numbers of worker nodes.  

− Working on HDFS: The large datasets are then copied to HDFS streamingly for each block to determined 

folder in HDFS.  

− Working with Apache Spark Streaming: After obtaining a block of data, the modification of the BM 

algorithm on the Apache Spark Streaming runs. This work is running until there is no a block in  

the HDFS folder. It should be noted that the tasks runs along with all worker nodes.  

According to Figure 2, the first step in this algorithm is to call the package needed in program code 

such as SparkContext, SparkConf, and StreamingContext and initialize the package so that it can be used in 

the program code. 
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Input: Jupyter Notebook Accessed 

Output:  Number of Genomic repeats in 1 data, Number of pattern repeats in 1 
data, Process time 

 

 

Algorithm: 

Call packages needed in the system 

Initializes spark configuration and spark context 

Initializes the spark streaming context 

Specifies the folder used as the streaming folder 

Transforming from the incoming data as a form of Dstream data into RDD 

Repartition the data entered into one partition and zipped with index 

Call the pattern from the folder in hdfs 

Take action against the pattern 

Set the time for data processing to start 

Transform the incoming data and pattern by entering it into the Boyer-Moore    

    algorithm function 

Transform the data that has been processed to be filtered if there are no results  

    in one RDD 

Transform the data that has been processed to be sorted by the number of genomic  

    repeats in an ascending RDD 

Reducing the start time of processing data with real time 

Specifying the directory contained in hdfs to be used as a destination for  

    storing results 

Perform an action to save the results of the number of genomic repeats into hdfs  

    and display the number of pattern repeats in one data and time or duration of  

    the process 

 

Figure 2. Pseudo codeo of the BM algorithm on apache spark streaming 
 

 

Then, we set the directory in HDFS which will be used as a streaming folder, so that  every block of 

data entered into the folder after the program starts will be processed immediately. To process the blocks of 

data, it is necessary to transform them as a Dstream data type in Apache Spark Streaming. It should be noted 

that Dstream data types cannot work with RDD data types so a transformation is needed, which is to change 

Dstream data types to RDD data types. The code shows the processes as illustrated in Figure 3.  
 

 

 
 

Figure 3. Code for inputting the blocks of data in apache spark streaming 
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After transforming the streaming data, the next step is to repartition the incoming data and provide an 

index into each RDD in the data. Data entered into the streaming folder will be automatically partitioned by 

the Apache Spark Streaming so that if it is not partitioned the number of partitions in one data will be 

determined automatically by Apache Spark Streaming. Repartitioning will be useful in finding genomic repeats 

so that we could obtain the right number of genomic repeats. 

In this model, a data pattern is selected which is converted into a text data type because the data pattern 

must have a data size smaller than the incoming chromosome data, so to specify the process time,  

the data pattern is selected which is converted into a data text type. When the search process for genomic 

repeats using the Boyer-Moore function has been completed, the next step is to transform the results of 

processing by removing the results from one RDD that does not find genomic repeats and sequencing  

the results of ascending genomic repeats or finding genomic repeats. numbering at least up to the most number. 

This is done to make it easier to see or record the number of genomic repeats that occur. At this stage the search 

process has ended so it is necessary to do the timing of the process by reducing the real time time with the start 

of the process that has been initialized in the previous stage. The code showing main processes and saving 

results can be seen in Figure 4. 

 

 

  
 

Figure 4. Code to perform the main processes and saving the results in apache spark streaming 

 

 

3. RESULTS AND DISCUSSION 

In this section, it is explained the results of research and at the same time is given  

the comprehensive discussion.  

 
3.1. Data collection 

The data used in this study are human DNA sequences which can be downloaded freely on page 

ftp://ftp.ensembl.org/pub/release-95/fasta/homo_sapiens/dna/. These data are examples of human DNA 

sequences in publication number 95 provided on the ensembl file transfer protocol (FTP) website. On that page 

there are 24 chromosome DNA sequence files which can be seen in Table 1. 

 
3.2. Experimental scenario 

In this experiment, we performed an experimental scenario using several worker nodes with each node 

having 4 CPU cores. The data used in this study uses all the files mentioned in section 3.1 Data Collection 

multiplied by the number of experiments carried out with the number of 576 files and the number of siz  

75360 MB. The pattern that will be used is 'CCG', a pattern which if found repeatedly as much as  

200-900 times, it can be concluded that the human has Fagile XE Syndrome, which normally the pattern 'CGG' 

only repeats 4-39 times. Then, we also use the ‘CAG’ pattern, which is the cause of the disease including  

the polyglutamine category. The difference in the 'CCG' and 'CAG' patterns does not only lie in  

the difference of one character in the middle, but also has a difference in the prefix that is generated.  

The prefix for 'CCG' is '0 0', while the prefix for 'CAG' is '0 0 0'. We need to know the difference in speed 

caused by these prefix. Then, there is the 'TTAGGG' pattern, which is a telomere or the very tip of linear DNA. 

“The search for 'TTAGGG' is intended to see the effect of pattern length on differences in computational speed. 

In addition, the selection of 'TTAGGG' is also because it is confirmed to exist in every human DNA  

sequence [12]. Table 2 shows the experiment will use different worker nodes and cores on each of the same 

nodes on the Google Cloud Platform. In other experimental scenarios the master will not do computing. 
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Table 1. Data used in experiments 

Files Name 
File Size 

(KB) 

Homo_sapiens.GRCh38.chromosome.1.fa 253.105 

Homo_sapiens.GRCh38.chromosome.2.fa 246.230 

Homo_sapiens.GRCh38.chromosome.3.fa 201.600 
Homo_sapiens.GRCh38.chromosome.4.fa 193.384 

Homo_sapiens.GRCh38.chromosome.5.fa 184.563 

Homo_sapiens.GRCh38.chromosome.6.fa 173.652 
Homo_sapiens.GRCh38.chromosome.7.fa 162.001 

Homo_sapiens.GRCh38.chromosome.8.fa 147.557 

Homo_sapiens.GRCh38.chromosome.9.fa 140.701 
Homo_sapiens.GRCh38.chromosome.10.fa 136.027 

Homo_sapiens.GRCh38.chromosome.11.fa 137.338 

Homo_sapiens.GRCh38.chromosome.12.fa 135.496 
Homo_sapiens.GRCh38.chromosome.13.fa 116.270 

Homo_sapiens.GRCh38.chromosome.14.fa 108.827 

Homo_sapiens.GRCh38.chromosome.15.fa 103.691 
Homo_sapiens.GRCh38.chromosome.16.fa 91.884 

Homo_sapiens.GRCh38.chromosome.17.fa 84.645 

Homo_sapiens.GRCh38.chromosome.18.fa 81.712 
Homo_sapiens.GRCh38.chromosome.19.fa 59.594 

Homo_sapiens.GRCh38.chromosome.20.fa 65.518 

Homo_sapiens.GRCh38.chromosome.21.fa 47.488 
Homo_sapiens.GRCh38.chromosome.22.fa 51.665 

Homo_sapiens.GRCh38.chromosome.X.fa 158.641 

Homo_sapiens.GRCh38.chromosome.Y.fa 58.181 
Total 3.139.770 

 
 

Table 2. Experimental scenario 
No Master Nodes Worker Nodes Each Master Core Each Worker Core 

1 1 2 4 4 

2 1 4 4 4 

3 1 5 4 4 
4 1 11 4 4 

 

 

3.3. Result and analysis of experiments 

Based on the scenario designed in the previous section, Table 3 shows the results of the experiment 

with the scenario. In Table 3, there are 7 columns, namely pattern, file, number of worker nodes, total pattern, 

genomic repeats, index pattern repeats, and time cost. Pattern column is the pattern that we take a look for in 

sequences. After we conducted the experiment, we made a comparison of the output of the system that we built 

using a number of nodes which were the variables of this study in influencing the speed of processing finding 

patterns. Apart from the number of nodes that we varied, we did not make changes to other variables such as 

the number of cores on the master or worker nodes and the number of nodes from the master of this experiment. 

In Figures 5 and 6, we present the comparison of the results of the experiment using 4 cores from each master 

and the worker nodes carried out in this experiment with CCG and CAG patterns on chromosome 1. 

Although the number of worker nodes influences the speed of the computational process, this does 

not have a significant effect. Can be seen from the computational speed of 2, 4, and 5 Nodes where  

the difference in speed of data processing only experiences differences per few seconds. The most significant 

computational differences occur when the number of worker nodes is added by 11 Nodes. In Figure 6 it is 

increasingly evident that not only is the speed difference inconsistent, even with the increasing number of 

worker nodes making computing in the search for CAG patterns on chromosome 1 slow. This is because  

the CAG pattern is the most found pattern among the patterns carried out in the experiment so that the time 

cost obtained will be longer or higher when compared to other patterns. With the number of patterns obtained 

in the computational process, the effectiveness of the number of worker nodes is needed. It is evident from  

the histogram on the number of 4 worker nodes with the number of 5 worker nodes actually increasing that 4 

worker nodes are more effective in performing search computing the CAG pattern is compared to 5 worker 

nodes. However, if the number of worker nodes is too far away, such as using 4 worker nodes with the use  

of 11 worker nodes, the time cost obtained decreases significantly.  
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Table 3. Experimental result 
Pattern File Number of 

Worker Nodes 

Total Pattern Genomic 

repeats 

Index Pattern 

Repeats 

Time Cost 

(Seconds) 

CCG Chromosome 1 2 647.388 12 (127633684, 
127633687, 

127633690, 

127633693, 
127633696, 

127633699, 

127633702, 
127633705, 

127633708, 

127633711, 
127633714, 

127633717) 

79,50 

CCG Chromosome 2 2 571.882 13 (210171362, 

210171365, 

210171368, 

210171371, 
210171374, 

210171377, 

210171380, 
210171383, 

210171386, 

210171389, 
210171392, 

210171395, 

210171398) 

72,24 

CCG Chromosome 3 2 423.073 9 (129605344, 

129605347, 

129605350, 
129605353, 

129605356, 

129605359, 
129605362, 

129605365, 

129605368) 

59,87 

CCG Chromosome 4 2 374.004 7 (3075005, 

3075008, 

3075011, 
3075014, 

3075017, 

3075020, 
3075023) 

 

(2059458, 
2059461, 

2059464, 
2059467, 

2059470, 

2059473, 

2059476) 

 

(576301, 
576304, 

576307, 

576310, 
576313, 

576316, 

576319) 

56,62 

... ... ... ... ... ... ... 

TTAGGG Chromosome Y 11 4.518 3 (24009196, 
24009202, 

24009208) 

9,54 

 

 

Moreover, we also made a comparison with the previous research [12] as illustrated in Figure 7.  

It can be seen the proposed model involving data streaming on Apache Spark Streaming is faster than  

the computational model on parallel computing with multicore conducted in the previous research [12]. Even 

though we have been faster than the previous research [12], the proposed computational model has a drawback, 
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i.e., the number of genomic repeats could not be accurate. It happens when the match patterns found are on  

the spliting locations. In term of the comparison in methods utilized via parallel computing, the previous 

research also conducted data streaming by using R package and Sequential K-Means for determining trending 

topics in Twitter [25]. Other following methods in machine learning can also be used in data streaming  

for genomic repeats are Naive Bayes [26], various intelligent classifiers [27], and bootstrap method [28]. 

 

 

  
 

Figure 5. Speed comparison with the variation of 

worker nodes on chromosome 1 in the CCG pattern 

 

Figure 6. Speed comparison with the variation of 

worker nodes on chromosome 1 in the CAG pattern 

 

 

  
 

Figure 7. Speed comparison with the previous research [12] 

 

 

4. CONCLUSION 

The main contribution of this research is (i) to provide computational models for big data in detecting 

genomic repeats using the Boyer-Moore algorithm with Apache Spark Streaming. This model contains several 

stages, such as preprocess models, input data, Boyer-Moore algorithm systems, and download outputs; (ii) to 

conduct several experiments by varying the number of worker nodes used. Based on the results obtained, we 

can state that the proposed model can be used to obtain data in the form of the number of patterns found on 

one chromosome, the number of genomic repeats found on one chromosome and the location of genomic 

repeats. Moreover, the comparisons that have been done show that the proposed model is faster than  

the computing on standalone and parallel computing with multicore. In the future, we have plans to improve 

the development and use of knowledge in this model so that it can be developed into various science sectors or 

in various case studies that can utilize Big Data technology with streaming processing using Apache Spark 

Streaming. 
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