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 Electricity generation at the hydropower stations in Nigeria has been below 

the expected value. While the hydro stations have a capacity to generate up 

to 2,380 MW, the daily average energy generated in 2017 was estimated at 

around 846 MW. A factor responsible for this is the lack of a proper control 

system to manage the transfer of resources between the cascaded  

Kainji-Jebba Hydropower stations operating in tandem. This paper addressed 

the optimal regulation of the operating head of the Jebba hydropower 

reservoir in the presence of system constraints, flow requirement and 

environmental factors that are weather-related. The resulting two-point 

boundary value problem was solved using the progressive expansion of 

domain technique as against the shooting or multiple shooting techniques. 

The results provide the optimal inflow required to keep the operating head of 

the Jebba reservoir at a nominal level, hence ensuring that the maximum 

number of turbo-alternator units are operated. 
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1. INTRODUCTION  

The Nigerian national power grid is powered from 29 generation stations having an installed 

capacity of 12,910.40MW but a relatively lower generation capacity of roughly 7,652.6MW. 19% of  

the installed capacity is provided by the more reliable and cheap hydropower plants. The three major 

hydropower plants in Nigeria are the Kainji hydroelectric power station (KHEPS), the Jebba hydroelectric 

power station (JHEPS) and the Shiroro hydroelectric power station [1-3]. 

The KHEPS located on 09°51′45″N, 04°36′48″E and JHEPS on 9°08′08″N, 4°47′16″E are in 

tandem and managed by the mainstream energy solution. They are built on the River Niger and operated in 

cascade. Unfortunately, the generation efficiency of JHEPS has been lower than expected, the daily average 

energy generated in 2017 was estimated at around 846 MW [4]. The two power stations operate in cascade 

but lack a control system regulating their operation. They are being managed by the experience and intuition 
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of the operators [2, 5]. From the operational report, there are occasions where some units at JHEPS are shut 

down if the release from KHEPS is low [6].  

Based on the available information gathered, the problem of real-time optimal management of 

resources between KHEPS and JHEPS has not been solved. Despite all the research efforts made so far, 

operators still rely on intuitive water release rules to maximize power generation regularly. It is obvious that 

the operational procedure based on intuition and experience can leads to poor utilization of available energy 

resources [5, 7]. There are no proper scientifically motivated techniques for the management of resources 

between the two stations. Most models and optimization techniques earlier proposed are parameter 

optimization technique which is not sufficient for managing a dynamic system nonlinear system [8-11]. 

A difficult problem encountered by the plant operators occurs in the management of water flows 

between the two reservoirs. Experience from years of operations seems to support this approach given  

the fact that a necessary and enough condition for the proper operation of the turbo-alternators is that  

the operating net head must satisfy the requirements for acceptable energy conversion by the turbine. 

Therefore, the optimal control problem solved in this work is the determination of the best control vector and 

resulting state trajectories which minimizes certain performance index, subject to system constraints. In this 

case, the optimal control problem results, whereby a control signal is desired that will force the reservoir 

head at JHEPS to move from an initial point to the desired point in a finite time and subject to constraints 

imposed by the system dynamics. 

Unfortunately, many problems that are rooted in nonlinear optimal control theory do not have 

computable solutions or they have solutions that may be obtained only with a great deal of computing  

effort [12, 13]. The solution via analytical means also seems not feasible except by numerical means. Numerical 

solutions to optimal control problems are either through direct or indirect methods. In the direct methods,  

the infinitely dimensional state and controls are discretized. The indirect method applies calculus of variation to 

set up necessary conditions that must be satisfied by the optimal control. Calculus of variation, together with 

Pontryagin’s minimum principles are used to setup optimality conditions. These conditions produce optimal 

control canonical equations such that their solution ensures that an optimum point has been reached [14, 15]. 

The indirect approach leads to a nonlinear two-point boundary-value problem. The control task then 

reduces to the solution of a boundary value problem. There are different approaches with associated advantages 

and disadvantages. In all the solution techniques, an initial guess is used to obtain a solution in which one or 

more of the necessary optimality conditions are not satisfied. The solution is then used to adjust the initial guess 

to make the next solution come closer to satisfying all the necessary conditions. If the steps are repeated and  

the iterative procedure converges, the necessary conditions will eventually be reached [16-18].  

Many authors had proposed methods of solving an optimal control problem, these methods can be in 

the form of nonlinear programming, shooting method, forward backward sweep, steepest descent, conjugate 

gradient, dynamic programming, the variation of externals, quasi-linearization, gradient projection, 

collocation, etc [19, 20]. There has been no perfect method as each has its own advantages and 

disadvantages. For example, the forward-backward sweep (FBS) works only if the Lipschitz constants for  

the state, costate and control variables are small enough or the time interval is very small. Likewise,  

the covergence of the shooting method depends on the numerical procedure and the initial data set, else there 

will be no solution [21]. 

The multiple shooting and parallel shooting techniques were earlier explored in [22-27] by resetting 

the problem and increasing the single initial value problem to a family of initial value problems configured so 

as to limit the effect of the growth of computational errors. The outcome resulted in a method that increased 

the number of guesses which were much fewer than the methods that depended on variational and other 

approximation methods that for the same accuracy may involve the solution of large linear or nonlinear 

equations that have dimensionality several orders of magnitude when compared with the corresponding 

shooting method. The method was applied successfully in the modeling of distributed parameter systems and 

proved to be very efficient, accurate and fast. The progressive domain expansion method (PDEM) proposed 

in this paper is another modification shooting method. It is less computational and feasible in solving  

the optimal control problem at JHEPS. 

 

 

2. RESEARCH METHOD 

The solution to an optimal control problem requires a proper model of the system dynamics in  

the form of a differential equation or difference equation. A suitable performance index with its associated 

constraints must be developed; there should also be a numerical technique for solving the model equation  

and a procedure for solving the resulting boundary value problem. The system can be described by  

the block diagram of Figure 1 and the dynamical model of (1). This model was earlier presented in [5].  

The block diagram presents the reservoir dynamics and power generation as a function of the operating  



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 4, August 2020:  2063 - 2069 

2064 

head. As presented in [5], the electrical power form JHEPS is represented in (1) and (2), showing that it is  

a function of the operating head. 

 

𝑃(𝑡) = √2 𝜂𝜌𝐴2 𝑔
3

2⁄ ℎ
3

2⁄ (𝑡)               (1) 

 

𝑃(𝑡) = Ƙ(ℎ(𝑡))           (2) 

 

where Ƙ represents a scalar valued function. 
 

 

  
 

Figure 1. Block diagram of the JHEPS reservoir dynamics 
 

 

Therefore, (3) presents the differential equation (model equation) that describes the operating  

head dynamics, 
 

𝑑ℎ(𝑡)

𝑑𝑡
= − 𝑛𝐴1

−1𝐴2√2𝑔ℎ(𝑡) + 𝐴1
−1(𝑄(𝑡) − 𝑄𝐿(𝑡) − 𝑄𝑠(𝑡))    (3) 

 

 ℎ̇(𝑡) = 𝑓(ℎ(𝑡), 𝑢(𝑡))        (4) 
 

where 𝑓 also represents a scalar valued function. 

The optimal control of the JHEPS devolves into the determination of best control vector 

𝑢(𝑡) 𝜖 𝑈(𝑡) from KHEPS, which compels the dynamical system ℎ̇(𝑡) = 𝑓(ℎ(𝑡), 𝑢(𝑡),  𝑡) at JHEPS to follow 

an optimal trajectories ℎ∗(𝑡) that minimize specified performance indices. The system is nonlinear and exists 

in the continuous-time domain. The optimal control problem is the Lagrange problem. As earlier mentioned, 

while solving the most optimal control problems, the solution can be intractable by analytical methods;  

the engineers depend on numerical procedures. The numerical solution used in determining the optimal 

solution is the progressive expansion of domain method. Consequently, the problem addressed here adopts  

a performance index that includes penalties for deviation from a specified state and for deviations from some 

predefined value of the control variable. 
 

 𝐽 = 𝑚𝑖𝑛 ∫ (𝐾ℎ(ℎ(𝑡) − ℎ(𝑇))
2

 + 𝐾𝑢(𝑢(𝑡) − 𝑢(𝑇))
2

)
𝑡𝑓

𝑡0
𝑑𝑡     (5) 

 

 𝐽 = 𝑚𝑖𝑛 ∫ 𝜑(ℎ(𝑡), 𝑢(𝑡), 𝑡)
𝑡𝑓

𝑡0
𝑑𝑡;       (6) 

 

Subject to: 
 

ℎ̇(𝑡) = 𝒇(ℎ(𝑡), 𝑢(𝑡),  𝑡)    
ℎ(𝑡0) =  ℎ0           (7) 
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ℎ(𝑡𝑓) = ℎ(𝑇)             (8) 
 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 

 

where 𝜑 is a function, 𝐾ℎ and 𝐾𝑢 are non-zero positive constants.  

The (5) can be written as an augmented optimization problem by introducing a Lagrange multiplier 

𝜆(𝑡) as follows: 
 

𝐽 = ∫ (𝜑(ℎ(𝑡), 𝑢(𝑡), 𝑡) + 𝜆(𝑡) (𝑓(ℎ(𝑡), 𝑢(𝑡), 𝑡) − ℎ̇(𝑡)))
𝑡𝑓

𝑡0
𝑑   (9) 

 

applying the method of Pontryagin, a Hamiltonian function 𝐻(ℎ(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡) is defined as: 
 

𝐻 = 𝜑(ℎ(𝑡), 𝑢(𝑡), 𝑡) + 𝜆(𝑡)𝑓(ℎ(𝑡), 𝑢(𝑡), 𝑡)        (10) 
 

𝐽 = ∫ (𝐻 − 𝜆(𝑡)ℎ̇(𝑡))
𝑡𝑓

𝑡0
𝑑𝑡       (11) 

 

applying the Euler-Lagrange equation to the Hamiltonian gives: 
 

𝜕𝐻

𝜕ℎ(𝑡)
−  

𝑑

𝑑𝑡
[𝜆(𝑡)] = 0 

�̇�(𝑡) = −
𝜕𝐻

𝜕ℎ(𝑡) 
            (12) 

 
𝜕𝐻

𝜕𝜆(𝑡)
= 𝑓(ℎ(𝑡), 𝑢(𝑡), 𝑡) − ℎ̇(𝑡) = 0      (13) 

 

ℎ̇(𝑡) = 𝑓(ℎ(𝑡), 𝑢(𝑡), 𝑡)        (14) 
 

𝜕𝐻

𝜕𝑢(𝑡) 
= 0         (15) 

 

therefore, 
 

𝐻 =  𝐾ℎ(ℎ(𝑡) − ℎ(𝑇))
2

 + 𝐾𝑢(𝑢(𝑡) − 𝑢(𝑇))
2

+ 𝜆(𝑡) (−𝑛𝑗𝛼ℎ(1
2⁄ )(𝑡) + 𝜇 𝑢(𝑡)) 

ℎ̇(𝑡) = −𝑛𝑗𝛼ℎ(1
2⁄ )(𝑡) + 𝜇 𝑢(𝑡)       (16) 

 

�̇�(𝑡) = −[2𝐾ℎ(ℎ(𝑡) − ℎ(𝑇)) −
1

2
𝜆(𝑡) (𝑛𝑗𝛼ℎ(−1

2⁄ )(𝑡))]    (17) 

 

0 =  2𝐾𝑢(𝑢(𝑡) − 𝑢(𝑇)) + 𝜇𝜆(𝑡)       (18) 
 

and the boundary condition, 
 

ℎ(𝑡0) = ℎ0          

𝜆(𝑡𝑓) = 1          (19) 
 

From the result above, the determination of the optimal control requires the solution of a two-point 

boundary value problem (TPBVP) since the initial conditions of the system are specified at the initial time  

and the value of the Lagrange multiplier or co-state is specified the terminal point. Meanwhile, the unknown 

control is related to the state and co-state through the optimality condition. From (18), 𝑢(𝑡) can be expressed as: 
 

 𝑢(𝑡) =  −
𝜇𝜆(𝑡)

2𝑲𝒖
+ 𝑢(𝑇)        (20) 

 

substituting (20) into (16) leads to two sets of first-order differential equations with split boundary conditions.  
 

ℎ̇(𝑡) = −𝑛𝑗𝛼ℎ(1
2⁄ )(𝑡) − 𝜇(

𝜇𝜆(𝑡)

2𝑲𝒖
+ 𝑢(𝑇))      (21) 

�̇�(𝑡) = −2𝑲𝒉(ℎ(𝑡) − ℎ(𝑇)) +
1

2
𝜆(𝑡) (𝑛𝑗𝛼ℎ(−1

2⁄ )(𝑡))     

ℎ(𝑡0) = ℎ0    and    ℎ(𝑡𝑓) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 
 

𝜆(𝑡0) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛     and  𝜆(𝑡𝑓) = 1       (22) 
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2.1.  Computation of the optimal control by a progressive domain expansion method (PDEM) 

In (21) and (22) provide the basis for the computation of optimal control that consists of two 

nonlinear differential equations with split boundary conditions. The state equation is specified at the initial 

time while the co-state equation has its condition specified at the final time. The two-point boundary value 

problem (TPBVP) has attracted considerable attention in the past century. While many methods are found  

in the literature, one method that was often proposed but seldom used because of computational difficulties is 

the shooting technique. It is attractive because it involves guessing values for the missing initial conditions 

which in principle ought to be determined by one of several possibilities, the nature of the co-state equations 

lead to a rapid growth of the initial value problem that the computed values soon lose relationship with  

the problem since errors in computation are exponentially amplified by the system.  

The PDEM is another modification proposed and pre-tested by [26], whereby instead of partitioning 

the domain [0, T], the final domain boundary is adjusted in such a manner that the initial guess results still 

retain a semblance with the original problem and the growing equations are bound so that the correct initial 

value problem is solved assuming the pseudo-domain [0, 𝑇𝑘] where 𝑇𝑘 is determined on the fly. In the next 

iteration, the initial guess for the missing boundary condition assumes the value that would have solved  

the problem for the pseudo-domain. Meanwhile, the problem is solved beyond 𝑇𝑘 again until the growth 

begins to cause concern. The new 𝑇𝑘+1 is thus defined and a new correction made so that the corresponding 

problem is solved. This process is repeated until 𝑇𝑘  = 𝑇𝑓  in which case the value of the initial guess 

converges to the correct initial guess for the problem. The procedure is presented in the flowchart of Figure 2. 
 

 

 
 

Figure 2. Flow chart for the solution of optimal control canonical equations by a PDEM 
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3. RESULTS AND ANALYSIS 

It is better to define a presentation format that reflects important features of the trajectory, many of 

which are deduced but not definitive by themselves in assessing a given trajectory. This leads to a very 

important matter of how to use optimal control for operational purposes. The notations for specifying 

operating conditions were formulated as follows: (number of operating machines, starting head (m), duration 

(hr), constraints on maximum inflow). This notation would be used in the presentation of results. 

 

3.1.  Case 1: (5,25.8,24,u(T) unconstrained) 

Figure 3 presents the result for an indirect optimal control with the operational conditions of  

the machines and the initial value of the head at JHEPS specified as (5,25.8,24, 𝑢(𝑇)  𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑).  

The operating condition implies that given that 5 turbo-alternators are running, while the operating head is 

25.8 m. It is desired that the operating head increases to the nominal value 26.1𝑚 in 24 ℎ𝑟 (86400𝑠).  

The control problem is the determination of the inflow required to achieve this stated objective. The optimal 

control system generated a control law of (23); 
 

  𝑢(𝑡)  =  −1 × 10−11𝑡3 +  2 × 10−6𝑡2 −  0.1182𝑡 +  4715.9    (23) 
 

The control started from a value around 4605 m3/s at 𝑡0 and decreases gradually to zero at  𝑡𝑓. Because  

the maximum control is not constrained, the trajectory of the operating head could not reach the terminal 

value ℎ(𝑇) = 26.1, as ℎ(𝑡𝑓) = 25.94m. The operating head also rose to a peak value and decreases later. 

Hence this result is not satisfactory, the algorithm has to be modified.  

 

3.2.  Case 2: (3,25.8,24,u(T) unconstrained) 

Case 2 considered a situation where the number of units in operation reduces to 3 machines and  

the operating head 25.8 m. A similar result to that of Figure 3 was observed and presented in Figure 4. It can 

be concluded that to use PDEM, a constraint in the form of penalty on the terminal control 𝑢(𝑡𝑓) can be 

incorporated into the algorithm.  
 

𝑢(𝑡)  =  −9 × 10−12𝑡3 +  2 × 10−6𝑡2 −  0.1165𝑡 +  4143.5    (24) 

 

 

  
 

Figure 3. Optimum response 

(5, 25.8, 1, 𝑢(𝑇) 𝑈𝑛𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑) 

 

Figure 4. Optimum response 

(3, 25.8, 1, u(T) Unpenalized) 

 

 

3.3.  Case 3: (5,25.8,1,u(T) = 1800  m3⁄s) 

Case 3 presents a similar condition to that of case 1 but with a constraint on the final control. This 

implies that the final control cannot decrease to zero, but a finite value specified as  𝑢(𝑇). The procedure for 

the selection of suitable value for 𝑢(𝑇) can be found in [5]. Figure 5 shows a better result of which the head 

moves from an initial value ℎ(0) = 25.8 𝑚, to a final value ℎ(𝑇) = 26.1 𝑚 without an overshoot, as 

experienced in the direct optimal control. The optimal control defined as (25) starts around 4327.4 𝑚3/𝑠 and 

ends at 1800 𝑚3/𝑠. 
 

 𝑢(𝑡) =  5 × 10−07𝑡2  −  0.0702 𝑡 +  4327.4      (25) 
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 3.4.  Case 4: (5,25.8,2,u(T) = 1800  m3⁄s) 

A situation can be considered where the time limit for which optimal control is required increases to 

two days (48 hr.). It can be observed from Figure 6 that the PDEM could determine the solution as well 

except. In case 3, 𝑢(0) started with 4327.4 𝑚3/𝑠 but reduces slightly to 4270.1 𝑚3/𝑠 in case 4, this implies 

that the time does not have significant effect on the starting control 𝑢(0). The control law, in this case, is 

expressed as (26). 

 

 𝑢(𝑡)  =  −2 × 10−12𝑡 3 +  6 × 10−07𝑡 2 −  0.0689𝑡 +  4270.1    (26) 

 

 

  
 

Figure 5. Optimum response  

(5, 25.8, 1, 𝑢(𝑇)  =  1800 𝑚3 𝑠⁄ ) 

 

Figure 6. Optimum response  

(5, 25.8, 2, 𝑢(𝑇) = 1800 𝑚3 𝑠⁄ ) 
 

 

3.5.  Approximate optimal control: (𝟓, 𝟐𝟓. 𝟖, 𝟏, 𝒖(𝑻) = 𝟏𝟖𝟎𝟎 𝒎𝟑 𝒔⁄ ) 

Consider the realization of the physical controller or the release of inflow from KHEPS, the infinite 

dimensional optimal control generated in case 1 to case 4 may not be easy to implement. An approximate 

optimal control may be necessary such that the inflow is released systematically withing every 6 hrs.  

This was considered for case 1, such that the average control with every 6 hrs was determined, the control  

is presented in Figure 7, where 𝑢1 = 3648.20 𝑚3 𝑠⁄ , 𝑢2 = 2544.90 𝑚3 𝑠⁄ , 𝑢3 = 2040.46 𝑚3 𝑠⁄ , 
𝑢4 = 1837.07 𝑚3 𝑠⁄ . To show the performance of this approximation, the operating head trajectory 

generated is presented in Figure 8 to be satisfactory. 

 

 

  
 

Figure 7. Approximate optimal control 

(5, 25.8, 1, 𝑢(𝑇) = 1800 𝑚3 𝑠⁄ ) 

 

Figure 8. Head trajectory with approximate optimal 

control (5, 25.8, 1, 𝑢(𝑇)  = 1800 𝑚3 𝑠⁄ ) 
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4. CONCLUSION 

This paper proposed a progressive expansion of domain technique as a numerical approximation to 

the solution of an optimal control problem involving the regulation of the operating head of JHEPS.  

The solution was necessary knowing that the resulting two-point boundary value problem imposes  

a limitation in the use of indirect optimal control. From the result, the technique does not require  

a sophisticated initial guess like the normal shooting techniques and it converges faster than results expected 

from the nonlinear programming approach. The algorithm is therefore recommended for use in system 

studies, management and complete design of an electronic controller for the station. 
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