
TELKOMNIKA, Vol. 15, No. 2, June 2017, pp. 570 ∼ 577
ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013
DOI: 10.12928/telkomnika.v15.i2.5508 � 570

A Customized Reconfiguration Controller with
Remote Direct ICAP Access for Dynamically

Reconfigurable Platform

Tze Hon Tan*1, Chia Yee Ooi2, and Muhammad Nadzir Marsono*3
1,3Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia

2Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur,
54100 Kuala Lumpur, Malaysia

*Corresponding authors, e-mail: thtan5@live.utm.my, nadzir@fke.utm.my

Abstract
As FPGA dynamic partial reconfiguration getting into mainstream, design of reconfiguration con-

troller becomes an active research. Most of the existing reconfiguration controllers support only the loading
of partial bitstream into configuration memory without allowing user to access ICAP directly, which can pro-
vide user higher controllability over the reconfigurable device. This paper presents the architecture of a cus-
tomized reconfiguration controller with remote direct ICAP access. Remote direct ICAP access allows user to
configure or readback device internal registers, which offer user higher controllability over the reconfigurable
device. Additionally, the proposed reconfiguration controller achieved at least 3.19 Gbps of reconfiguration
throughput, which reduces the platform service downtime during dynamic partial reconfiguration. In order to
reduce the latency and transmission overhead of remote functional update, partial bitstream is compressed
with run-length encoding before transmission.

Keywords: Dynamic partial reconfiguration, Self-reconfiguration, ICAP

Copyright c© 2017 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction
In reconfigurable computing, dynamic partial reconfiguration is a vital feature, which en-

ables updates in the field, improves area utilization and allows defect compensation. Dynamic
partial reconfiguration provides a solution to update accelerator sub-circuits. With dynamic recon-
figuration feature, FPGA becomes a viable solution for most existing hardware implementation
of real-world applications that demand both processing power and flexibility, as FPGA has both
performance advantages of ASIC solution and flexibility advantage of software solution. To apply
changes and updates to the accelerators in the reconfigurable hardware, a new partial bitstream
is loaded to the reconfigurable hardware at run time. This leads to the requirement of efficient
reconfiguration controller to enable dynamic partial reconfiguration feature.

The Internal Configuration Access Port (ICAP) in Xilinx FPGA device allows the recon-
figuration controller to be implemented within the chip. Hence, this provides opportunity for self-
reconfiguration and single chip implementation option for designers. Maintaining distributed sys-
tem for Internet-of-Things and cloud computing are big challenges for administrators if the remote
update feature is absent in such systems [1]. Hence, design and implementation of a customized
reconfiguration controller for remote dynamically reconfigurable platform becomes the primary
focus in this research work.

There are a number of researches [2–8] that focused on developing controller to sup-
port dynamic partial reconfiguration in FPGA through ICAP. Since these controllers were cus-
tomized and hardware based, high reconfiguration throughput was expected. However, utilization
of shared bus architecture lowers reconfiguration throughput and increases overhead in inter-
nal transmission. Nabina et al. [7] implemented reconfiguration controller with partial bitstream
compression. The compression algorithm is dictionary based with high compression ratio, where
partial bistream is highly compressed.

Received December 28, 2016; Revised April 10, 2017; Accepted April 25, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TELKOMNIKA (Telecommunication Computing Electronics and Control)

https://core.ac.uk/display/295537444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TELKOMNIKA ISSN: 1693-6930 � 571

In this work, a customized reconfiguration controller with remote direct ICAP access is
proposed to enable dynamic reconfiguration in NetFPGA for remote functional updates purposes.
The developed Reconfiguration Controller achieves at least 3.19 Gbps of reconfiguration through-
put, which reduces the platform service downtime during remote functional updates. In addition,
the proposed controller supports remote direct ICAP access, which allows user to configure or
readback device internal registers. With this feature, user has more observability and controlla-
bility on reconfigurable hardware internal operations, which include dynamic reconfiguration. In
order to reduce transmission latency, partial bitstream is compressed losslessly before transmis-
sion. Even so, this proposed work prefers the run-length encoding compression scheme proposed
by Liu et al. [6] after considering the hardware implementation efficiency in decompression. In-
stead of matching compression symbol width to ICAP bus width (32 bit) as in [6], the proposed
architecture matches the compression symbol width to packet bus width (64 bit).

2. Architecture Overview
The system in FPGA consists of both Static Region and Partial Reconfigurable Region.

Figure 1 illustrates the overview of the proposed high-level architecture. In the Static Region, there
are Communication Manager to handle Ethernet packet transmission and Reconfiguration Con-
troller to handle the loading of partial bitstream. Specifically, Communication Manager is respon-
sible to perform lower layer tasks in the OSI model while Reconfiguration Controller is responsible
to retrieve bitstream from Communication Manager and loading the bitstream to Reconfiguration
Port. In Xilinx FPGA, the Reconfiguration Port is instantiated with the ICAP primitive, while the
Reconfiguration Logic and Configuration Memory are not visible to the designer. The static region
only undergoes the configuration process on the startup, while the partial reconfiguration region
may undergo multiple reconfigurations during run-time. In the Partial Reconfigurable Region, the
Partial Reconfigurable Module is linked to the Communication Manager for internal communica-
tion. Obviously, the performance achievement of the overall system relies on the design and
implementation of Reconfiguration Controller and Communication Manager.

�������	
������

���������

�������	
���������

�������	
��������	��

����
��������

����	��

������������

�������	
������������

��������������	
������

���
��������

�������	��� ��������������	
��������	���������

�����	
������

������

Figure 1. Proposed architecture for dynamically reconfigurable platform

3. Dynamic Partial Reconfiguration
There are several flows provided by Xilinx to support partial reconfiguration feature. Pro-

vided flows are modular method, difference-based method, small bit manipulation method, early

A Customized Reconfiguration Controller with Remote Direct ICAP ... (Tze Hon Tan)



572 � ISSN: 1693-6930

access method and partition-based method. This work uses partition-based method as it is the
most recent consolidated flow which only available in new version of Xilinx ISE Design Suite or
Xilinx Vivado Design Suite.

The major design flow includes design and synthesis on all functional modules, defin-
ing Partial Reconfigurable Module, defining design constraints and generating both bitstream and
partial bitstream. The region of Partial Reconfigurable Region (PRR) is defined in a design con-
straint file and is used mainly during the Place and Route (PAR) process. In order to simplify the
overall process, this work uses Xilinx PlanAhead to implement designs with partial reconfiguration
as it provides user-friendly graphical user interface.

3.1. Reconfiguration Controller
The role of the Reconfiguration Controller is to retrieve partial bitstream from Commu-

nication Manager, which consists of Control Plane Packet Handler, Packet Type Classifiers, and
Platform Manager. Figure 2 shows the implementation of customized Reconfiguration Controller.
In the Reconfiguration Controller, the Bitstream Packet Handler extracts partial bitstream con-
tent in bitstream packet, acknowledges Terminal Client on the transmission and stores partial
bitstream into SRAM through SRAM Interface. When the size of partial bitstreams are large,
storing partial bistream in internal BRAM becomes impractical and may unnecessarily used up
too much internal logic resources. Additionally, platform with on-the-fly remote dynamic partial
reconfiguration poses higher risk on system failure especially when partial bistream transmission
is interrupted. Moreover, such failure is not recoverable and the platform services become un-
available when the first segment of partial bitstream is loaded into the configuration memory while
the other segments are in transmission. Therefore, this proposed architecture separates partial
bitstream transmission from dynamic partial reconfiguration process.

Upon arrival of the last segment of partial bitstream, the Bitstream Packet Handler will no-
tify Bitstream Loader on the status and the DPR Flow Controller will issue control signal to switch
both Platform Manager and Packet Type Classifier into DPR mode. In the DPR mode, the DPR
Flow Controller asserts the reset signal in Partial Reconfigurable Module to stop its operation. In
this moment, the Bitstream Loader retrieves partial bistream from SRAM to load it into the config-
uration memory through both ICAP Interface and ICAP. Since the partial bistream is compressed
using Run-Length Encoding (RLE) algorithm, the ICAP Interface inline decompresses the partial
bitstream before loading it into ICAP. In order to verify the outcome of dynamic partial reconfigura-
tion, the ICAP Interface proceeds with a readback sequence to retrieve the value of internal Status
Register (STAT) after the last word of partial bitstream is loaded to the configuration memory.

The DPR Flow Controller will initialize the Partial Reconfigurable Module after ICAP Inter-
face flags a reconfiguration success status. The initialization may take several cycles depending
on application components initialization requirements. Once initialization is completed, the DPR
Flow Controller will switch both Platform Manager and Packet Type Classifier back to normal mode
and the Partial Reconfigurable Module is activated again. In case dynamic reconfiguration is un-
successful, the DPR Flow Controller will feedback the outcome to Terminal Client and wait for
another retry.

The partial bistream compression is implemented to reduce partial bitstream transmis-
sion overhead and temporary storage usage. This is because the area of Partial Reconfigurable
Region is defined as large as possible so that complex application can fit into it. However, the par-
tial bistream file size depends on the area definition of Partial Reconfigurable Region regardless
of its logic utilization. Based on observation in partial bitstreams content, Partial Reconfigurable
Region with low logic utilization has higher count of repetitive content, which can be compressed
losslessly to reduce its original file size. In order to reduce logic resources needed for the im-
plementation of decompression, Run-Length Encoding is used instead of Huffman encoding. In
addition, the run value size is configured to match the bus size (64bit) so that the design complex-
ity is minimized and the architecture becomes more efficient. The counter value (7 bit) of each
run is stored at parity field (8 bit) along with respective run value (64 bit) at data field (64 bit), in
both SRAM and Xilinx FIFO36_72 primitive. The remaining 1bit in parity field is used to indicate

TELKOMNIKA Vol. 15, No. 2, June 2017 : 570 ∼ 577



TELKOMNIKA ISSN: 1693-6930 � 573

the last word of a partial bitstream content.

Other than handling dynamic partial reconfiguration, the Reconfiguration Controller pro-
vides a way for user to access the ICAP directly. This feature aims to allow user to remotely
configure or readback device internal registers through direct ICAP access. However, any packet
used to access ICAP directly must follow a strict format because the packet contains the internal
signal assertion of ICAP Interface. These signals are chip enable (CE) and read or write request
(RW) from ICAP as well as last command (L). The assertion of CE and RW are similar to ICAP,
where CE is in active low while logic ’1’ in RW indicates a read request. Table 1 provides snippet
of a sample packet to readback Status Register (STAT). In the middle part of Table 1, the control
signal is toggled from write request to read request and back to write request again, which results
in the sequence of “000”, “011”, “010”, “001” and “000”.

There are 3 FIFOs used in the implementation of Reconfiguration Controller. These FI-
FOs act as the intermediate buffer and provide clock domain crossing between functional blocks.
By splitting clock domain of ICAP from the platform, the ICAP can be clocked up to 100MHz,
which is the maximum frequency provided by Xilinx [9]. The FIFOs with label “A” and “B” are
implemented with Xilinx FIFO18_36 primitive and are used for direct user access to ICAP while
FIFO with label “C” is implemented with Xilinx FIFO36_72 primitive and is used for dynamic partial
reconfiguration.

3.2. Terminal Client

The Terminal Client reads and compressed the partial bitstream generated from Bitgen
before transmits it to proposed platform through UDP/IP. The partial bistream is transmitted to the
platform in multiple segments depending on user-specified packet size and the Terminal Client
proceeds with packet retransmission whenever acknowledgment is not received within a specified
timeframe. The bitstream packets are transmitted in bulk excluding the last segment, which is
only transmitted to the platform after the acknowledgements of all other segments have been
received. Figure 3 shows the bitstream packet format for dynamic partial reconfiguration. The
Compression Header consists of pairs of run location (location of repeated content) and run length
(repeated count) of the partial bitstream. For instance, the pair {0x02,0x0A} in Compression
Header indicates that the third word of the Bitstream Content is a 11 times repeated word, where
this word will be loaded 11 times into configuration memory. By default, each partial bitstream
word without repetition (run length with value 0) will be loaded once into configuration memory,
where this type of word is not compressed and tracked in Compression Header. Based on the
packet definition, each word of Compression Header can store up to 4 pairs of run location and
run length. For optimal performance, the value of segment size is configured to either 64 or 128,
which are the values from power of two and are smaller than maximum transmission unit (MTU).
Figure 4 illustrates the flow chart of implemented Terminal Client.

4. Platform Evaluation

Table 2 summarizes the logic resources required to implement proposed platform in NetF-
PGA 10G board that comes with Xilinx Virtex 5 (XC5VTX240T) FPGA, which provides 37440
slices and 324 BRAM. The proposed platform utilized 7297 slices (as reported by Xilinx ISE DS)
out of 37440 available slices (less than 20% logic utilization), which left more than 80% of slices
for Partial Reconfigurable Module implementation. However, the BRAM utilization of Static Region
Module is almost 33.6% due to extensive use of FIFO in the design to hold packets and to buffer
partial bitstream.

In order to verify the implemented platform experimentally, the partial reconfigurable mod-
ule is dynamically reconfigured with various types of packet forwarding designs while network
packets are injected to the platform. These network packets are captured and analyzed using
Wireshark packet analyzer to verify the behavior of implemented platform.

A Customized Reconfiguration Controller with Remote Direct ICAP ... (Tze Hon Tan)



574 � ISSN: 1693-6930

��������	�
���

	
�����
�����

���	

�	������������������

���	�������
��

� � �

�����

������
��
�������
� 	
����

�
�����

�������
�

��
���

	�
������

�
�
���

	
����� !��

��
��������"�

Figure 2. Implementation of the Reconfiguration Controller.

Table 1. Snippet of a sample packet to readback Status Register.

Packet content Control signal
{L,RW,CE}

FFFFFFFF_00000000 000
000000BB_00000000 000
11220044_00000000 000
FFFFFFFF_00000000 000
AA995566_00000000 000
20000000_00000000 000
2800E001_00000000 000
20000000_00000000 000

Packet content Control signal
{L,RW,CE}

20000000_00000000 000
00000000_03000000 011
00000000_02000000 010
00000000_01000000 001
30008001_00000000 000
0000000D_00000000 000
20000000_00000000 000
20000000_04000000 100

������ ������ �����	 �����
 ������ ������ ����� ������

������

�����

������ ���������������

������ ���������

�����
 ����������

�����	 �������� ����� �!"���������

������ �#�$����%� �!"���������

������ ��% ��$$#���������

�����& �#�$����%�!������

�����'

������

�����

������

Figure 3. Bitstream packet format.

TELKOMNIKA Vol. 15, No. 2, June 2017 : 570 ∼ 577



TELKOMNIKA ISSN: 1693-6930 � 575

�������	
��
	��������
��

�������	����������	
�

���	�

���	
�����	����������	
�

�	��������	����������	
�

�
��
���������
�
���

������������������
�����

 �!��"�
��
�

#���
	
�	$

�	������������
�
��

�	����������

����
�

���

 �!��"�
��
�

#���
	
�	$

�	����������

����
�

���

%
����&�
������

%
����&�����
�

%
����&�����

�

���

���

�

'

�

�

�

�

'

'

'

'

Figure 4. Flow chart of Terminal Client.

Table 2. Logic utilization of proposed architecture.

Resources type Partial Reconfigurable
Module

Static Regions
Module

Total
utilization Available

Slice registers 4818 15150 19968 149760
Slice LUTs 3962 16185 20147 149760

Occupied slices 1830 7297 9127 37440
BRAM 32 109 141 324

Based on experimental evaluation, the Reconfiguration Controller achieves at least 3.19
Gbps of reconfiguration throughput. The partial bitstreams used have the same file size, which
are 1,524,139 Bytes (~1.489 MB). In order to capture the time taken in dynamic partial reconfig-
uration, a timer is implemented and used in the Reconfiguration Controller. The loading of each
partial bistream to configuration memory through Reconfiguration Controller takes 381,052 clock
cycles with ICAP clocked at 100MHz, which result in 3.199855 Gbps of reconfiguration through-
put. Ideally, the maximum achievable reconfiguration throughput is 3.2 Gbps, where the ICAP is
used with 32 bit bus wide and is clocked at 100MHz. However, due to minor overhead results from
the internal state machine design and the SRAM storage handling, the Reconfiguration Controller
managed to achieve reconfiguration throughput that close to the ideal maximum performance.
Since partial bitstream transmission is independent from the dynamic partial reconfiguration pro-
cess, the platform service only becomes unavailable for 3.81052 millisecond.

Although partial bitstream transmission does not impact the platform service availability,
the partial bitstream transmission can still impact the latency performance for remote update. One
of the approaches to improve this is through partial bitstream compression. Figure 5 shows the
compression ratio of partial bitstream in various logic utilization. The compressed partial bitstream
is always smaller than the uncompressed partial bitstream. As the logic utilization increases, the
compression performance becomes lower. This mainly due to partial bitstream with low logic
utilization has significant amount of repetitive content, where unused logic is filled with zero. This

A Customized Reconfiguration Controller with Remote Direct ICAP ... (Tze Hon Tan)



576 � ISSN: 1693-6930

���

���

���

���

���

���

���

���

���

	��

	� �� 
� �� �� �� �� ���

�
�
�
�
��
��
	�


��
�
	
�

���	���	�	��	�
����

Figure 5. Compression ratio of partial bitstream with various logic utilization.

Table 3. Comparison with previous work.

Publication
Reconf.

throughput
(Gbps)

Storage Additional detail

AC_ICAP [2] 3.04824 BRAM -
DPR Manager [3] 3.07432 SD Flash -
MST_HWICAP [4] 1.88160 DDR SDRAM -

BRAM_HWICAP [4] 2.97120 BRAM -
ICAP Controller [5] 3.19840 DDR SDRAM UART transmission

Intelligent ICAP Controller [6] 3.19832 SRAM 32bit RLE compression
FlashCAP [7] 3.08000 BRAM X-MatchPRO compression

ZyCAP [8] 3.05600 DRAM Xilinx Zynq FPGA

Proposed 3.19985 SRAM 64bit RLE compression,
Gigabit Ethernet transmission

repetitive content can be effectively compressed using run-length encoding, where compression
of a partial bitstream with 37% logic utilization results roughly in 2.6 compression ratio. Once the
logic resources are utilized, the content no longer filled with zero, which increases the entropy in
partial bitstream. Even so, part of the partial bitstream can still be compressed, where this part
consist of a series of No Operation (NOOP) commands. Additionally, utilized BRAM resources
without initialization are filled with zero as well, which can be effectively compressed.

Table 3 summarizes the comparison of implemented Reconfiguration Controller with sev-
eral related works. The proposed Reconfiguration Controller has slightly higher reconfiguration
throughput compared to [5] and [6] mainly due to the use of dedicated bus and SRAM interface for
dynamic partial reconfiguration, which result in lower overhead. Dedicated bus used in the pro-
posed architecture offers advantages such as lower processing overhead, higher reliability (due to
being independent from other components) and higher consistency in reconfiguration throughput.
Additionally, the partial bitstream used in evaluation of proposed work is considerable large in file
size, which is 1,524,139 Bytes (~1.489 MB).

5. Conclusion
In this paper, a customized Reconfiguration Controller with remote access to ICAP is

proposed. The customized Reconfiguration Controller can achieve at least 3.19 Gbps of recon-

TELKOMNIKA Vol. 15, No. 2, June 2017 : 570 ∼ 577



TELKOMNIKA ISSN: 1693-6930 � 577

figuration throughput, which significantly reduces the platform service downtime during dynamic
partial reconfiguration. Besides that, the latency of partial bitstream transmission is reduced with
partial bitstream compression. In addition, the customized Reconfiguration Controller allows user
to remotely access to the ICAP for device internal registers readback and configuration. With
remote dynamic partial reconfiguration, the accelerator sub-circuits can be updated remotely at
run-time after deployment. In general, functional update is important to patch existing design flaws
and bugs, to optimize design performance and to cope with the changing of execution unit’s func-
tional requirement. Future work will focus on augmenting platform security through end-to-end
packet encryption so that the platform can be deployed on non-secured network.

Acknowledgment
This work is supported in part by the CREST grant (UTM Vote No. 4B176) and Universiti

Teknologi Malaysia matching grant (UTM Vote No. 00M75).

References
[1] A. Schallenberg, Dynamic partial self-reconfiguration: Quick modeling, simulation, and syn-

thesis. Germany: Suedwestdeutscher Verlag fuer Hochschulschriften, 2010.
[2] L. A. Cardona and C. Ferrer, “AC_ICAP: A flexible high speed ICAP controller,” International

Journal of Reconfigurable Computing, vol. 2015, 2015.
[3] J. Tarrillo, F. A. Escobar, F. L. Kastensmidt, and C. Valderrama, “Dynamic partial reconfig-

uration manager,” in 2014 IEEE 5th Latin American Symposium on Circuits and Systems
(LASCAS), Santiago, Chile, Feb 2014, pp. 1–4.

[4] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time partial reconfiguration speed investiga-
tion and architectural design space exploration,” in 2009 International Conference on Field
Programmable Logic and Applications, Prague, Czech Republic, Sep 2009, pp. 498–502.

[5] K. Vipin and S. A. Fahmy, “A high speed open source controller for FPGA partial reconfig-
uration,” in 2012 International Conference on Field-Programmable Technology (FPT), Seoul,
Korea, Dec 2012, pp. 61–66.

[6] S. Liu, R. N. Pittman, A. Forin, and J.-L. Gaudiot, “Minimizing the runtime partial reconfigura-
tion overheads in reconfigurable systems,” The Journal of Supercomputing, vol. 61, no. 3, pp.
894–911, Sep 2012.

[7] A. Nabina and J. L. Nunez-Yanez, “Dynamic reconfiguration optimisation with streaming data
decompression,” in 2010 International Conference on Field Programmable Logic and Applica-
tions, Milan, Italy, Sep 2010, pp. 602–607.

[8] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial reconfiguration management on the Xilinx
Zynq,” IEEE Embedded Systems Letters, vol. 6, no. 3, pp. 41–44, Sep 2014.

[9] Xilinx, “UG702 (v13.4) partial reconfiguration user guide,” 2012.

A Customized Reconfiguration Controller with Remote Direct ICAP ... (Tze Hon Tan)


