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Abstract 
Since cloud applications are usually large-scale, it is too expensive to enhance the reliability of all 

components for building highly reliable cloud applications. Therefore, we need to identify significant 
components which have great impact on the system reliability. FTCloud, an existing approach, ranks the 
components only considering the impact of component internal failures and ignoring error propagation. 
However, error propagation is also an important factor on the system reliability. To attack the problem, we 
propose an improved component ranking framework, named DCR, to identify significant components in 
cloud applications. DCR employs two individual algorithms to rank the components twice and determines a 
set of the most significant components based on the two ranking results. In addition, DCR does not require 
information of component invocation frequencies. Extensive experiments are provided to evaluate DCR 
and compare it with FTCloud. The experimental results show that DCR outperforms FTCloud in almost all 
cases. 
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1. Introduction 

Cloud computing is an Internet-based computing paradigm, which provides shared 
processing resources and data to computers and other devices on demand [1, 2]. In recent 
years, cloud computing is becoming more and more popular and many enterprises and 
individuals prefer to build their systems in the cloud environment. The software systems in the 
cloud are named as cloud applications which usually consist of various cloud components 
communicating with each other. The cloud applications are usually large-scale and very 
complex [3], which may pose a threat to the system reliability and hinder transferring critical 
systems to the cloud. Nowadays, end-users hate applications with low-reliability and the 
demand for high reliability is continually increasing. Building highly reliable cloud applications 
has become a challenging and required research problem. 

The major approach for improving the cloud application reliability is to enhance the 
reliability of each individual component. This may be accomplished either by employing 
functionally equivalent but more reliable components to reduce component failures or by adding 
fault-tolerance strategies to tolerate component failures. Unfortunately, both of them will incur 
extra cost. As cloud applications usually involve a large number of components, it is too 
expensive to provide alternative components or add fault-tolerance strategies for all the 
components. Based on the 80-20 rule [4], FTCloud-an existing approach [5] attempts to improve 
the reliability of cloud applications by ranking the components to identify a small set of 
significant components and enhancing their reliability. However, FTCloud only considers the 
impact of the component internal failures on the system and does not take into account error 
propagation which is also a serious threat to the global reliability [6]. 

To attack the problem, we propose a component ranking framework for identifying 
significant components and helping designers to build highly reliable cloud applications. This 
framework includes two component ranking algorithms, taking into account the direct impact of 
component internal failures on the system and the harm of error propagation, respectively. 
Based on the two algorithms, two ranking results are obtained and then a small set of the most 
significant components which have great impact on the system reliability are determined. By 
enhancing the reliability of these significant components, the system reliability can be greatly 
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improved. Due to the fact that the components are ranked twice, we name the framework DCR-
double component ranking. 

The main contribution of this paper is: 
1. This paper identifies the importance of error propagation in locating significant components of 

cloud applications which is not considered by FTCloud, and proposes an improved 
component ranking framework, named DCR. DCR only employs component invocation 
relationships to independently rank the components twice and selects the critical 
components which have great impact on the system reliability from the two ranking results. 

2. Extensive experiments are provided to evaluate the impact of significant components 
identified by DCR on the reliability of cloud applications and draw performance comparison 
between DCR and FTCloud. The results show that DCR is effective and outperforms 
FTCloud in almost all cases. 

The rest of this paper is organized as follows. Section 2 introduces the two descriptions 
of significant components, the system architecture of DCR and related work. Section 3 details 
the double component ranking framework. Section 4 shows the experiments to evaluate DCR. 
Section 5 draws the conclusion and future work finally. 
 
 
2. Preliminaries 
2.1. Significant Components 

A failure of a component in software systems can be attributed to two reasons [6], as 
shown in Figure 1. One is that an error caused by faults in the component (such as bugs) is 
delivered at the output interface, i.e. component internal failure. The other is that the component 
receives an incorrect input and generates an erroneous output, namely error propagation leads 
to a component failure. A system failure occurs only if an error eventually reaches the system 
interface, no matter how the error is produced and propagated. In a word, component internal 
failures and error propagation are two major threats to the system reliability. 
 
 

 
 

Figure 1. Two threats to reliability 
 
 

It is apparent that not only the direct impact of component internal failures on the 
system should be reduced, but also the harm of error propagation should also be minimized, if 
we want to build highly reliable cloud applications. Therefore, the significant components in this 
paper are able to be described from two perspectives. 
1·  The significant components are the ones whose failures have great impact on the system. 
2· The significant components are also the ones which may severely affect a lot of other 

components and further harm the global reliability by propagating errors out when they fail.  
 
2.2. System Architecture 

The system architecture of DCR is showed in Figure 2, which includes three parts: 
structure graph building, component ranking and significant component determination. The 
procedures of DCR are as follows: 
1. The system designer provides the structure information of a cloud application to DCR. A 

structure graph is generated based on the component invocation relationships. 
2. Two series of significance values of the cloud components are calculated by employing two 

different component ranking algorithms which are proposed in terms of the two descriptions 
of significant components in the last subsection, respectively. According to the two series of 
significance values, the components are ranked twice. 
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3. Based on the two ranking results, the most significant components which have strong impact 
on the global reliability are determined and returned to the system designer for building a 
reliable cloud application. 

 
 

 
 

Figure 2. System architecture of DCR 
 
 
2.3. Related Work 

In traditional software reliability engineering, there are four common methods to build 
reliable software systems, namely fault prevention, fault removal, fault tolerance and fault 
forecasting [7]. However, fault prevention and fault removal are not able to be applied when we 
build cloud applications. This is because building cloud applications usually uses existing cloud 
components and we cannot participate in the development of them. But we can select 
components with high reliability according to design requirements. Another method we can 
employ is software fault tolerance. Software fault-tolerance techniques, such as recovery block 
[8] and N-Version Programming (N-Modular Redundancy) [9], are widely used in various 
systems. In the cloud environment, a great number of functionally equivalent but independently 
designed components can be used for designing fault-tolerance mechanisms. 

As cloud computing is becoming popular, a number of works have been carried out on 
it. Service component selection and composition is one of the hotspots. Many approaches have 
been proposed, such as QoS-aware web service composition [10], web service reputation 
model [11], OWL-S service profile based web service selection [12] and web service selection 
based on concurrent requests [13]. Component ranking is a prerequisite for applying these 
research findings and some studies have been carried out. However, the approaches do not 
take into account error propagation, which is also a major threat to the reliability of cloud 
applications. In addition, they require the structure information as well as the information of 
component invocation frequencies. Our approach which attacks the weakness requires only the 
structure information and takes into account the harm of error propagation in the system, 
obtaining wonderful results. 
 
 
3. Double Component Ranking 

As shown in Figure 2, DCR includes three parts, which will be detailed in this section, 
respectively. Structure graph building is introduced within Section 3.1. Then the two component 
ranking algorithms are proposed according to the two descriptions of significant components in 
Section 3.2 and 3.3 respectively. In Section 3.4, determination of significant components is 
discussed. 
 
3.1. Structure Graph Building 

The structure of a cloud application, that is, the component invocation relationships, can 
be modeled as a directed graph ,G C E  , where a node iC  in the node set C  denotes a 

component and a directed edge ije  from iC  to jC  in the edge set E  represents that iC  invokes 

jC  (denoted as i jC C ).  
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A structure graph containing n  nodes can be described by an n n  adjacency matrix 

 ij n n
A a


 . Each entry ija  in the matrix is defined by: 

 
 1
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        (1) 

 
In the matrix, 1iia   represents a self-invocation of component iC . The number of edges 

starting from node iC  is called out-degree of iC , denoted as deg ( )iC . It is able to be obtained 

by: 
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Similarly, the number of edges ending at node iC  is called in-degree of iC , denoted as 

deg ( )iC . It can be calculated by: 
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           (3) 

 
A component iC  invokes a total of deg ( )iC  components and iC  is invoked by a total of 

deg )( iC  components. 

 
3.2. Failure-Based Component Ranking 

In a cloud application, some components are frequently invoked by many other 
components. It is obvious that their failures will directly affect the system reliability much more 
than other components [14]. These components follow the first description of significant 
components discussed in the last section. Intuitively, these significant components in a structure 
graph are the ones which have many ingoing links from other important components. On the 
basis of the PageRank algorithm [15], we propose an algorithm to calculate the first series of the 
significance values of the cloud components, named as failure-based significance values.  

For a cloud application which contains n  components, the failure-based significance 
value ( )iVF C  of a component iC  is defined as: 

 
( 1

( ) (1 )
deg (

)

)
j i

j
i

C C j

C
C

C

VF
VF

n
 



          (4) 

 

Where 
1

n
 is the basic significance value of iC  itself while 
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  is the significance 

value derived from other components that invoke iC . The parameter   ( 0 1  ) in (4) is 

utilized to adjust the proportion of the two values, which is usually set to be 0.85. By (4),  a 
component iC  has a large failure-based significance value if the sum of failure-based 

significance values of the components that invoke iC  is large, indicating that iC  is invoked by 

many other significant components. 
Equation (4) can be written in matrix form: 
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Where the matrix ( )ij n nW w   is defined by: 
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The procedures of calculating the failure-based significance values are simple. First, 

randomly assign initial values between 0 and 1 to the failure-based significance values ( )iVF C  

( 1, 2i n  ). Then, solve (5) by repeating the computation until all significance values become 
stable.  

Using the above approach, the failure-based significance values of the cloud 
components can be obtained. According to these values, the components are ranked. A 
component with a larger value is considered to be more significant. The failures of the 
significant components selected from this ranking result will have great impact on the system 
reliability. 
 
3.3. Propagation-Based Component Ranking 

In a cloud application, there must be some components that frequently invoke a lot of 
other components. Their failures may affect a lot of subsequent components by error 
propagation and further harm the system reliability. So these components are considered to be 
important and they accord with the second description of significant components in Section 2.1. 
Intuitively, these significant components in a structure graph are the ones which have many 
outgoing links to other important components. Illuminated by the TrustRank algorithm [16], we 
propose another algorithm to calculate the second series of significance values of the cloud 
components, named as propagation-based significance values. 

Assuming that a cloud application contains n  components, the propagation-based 
significance value ( )iVP C  of a component iC  is defined as: 
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Where 
1

n
 is the basic significance value of iC  itself while 
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  is the significance 

value derived from other components which are invoked by iC . Similarly, the parameter   

( 0 1  ) in (7) is employed to adjust the proportion of the two values, which is usually set as 
0.85. By (7),  a component iC  has a large propagation-based significance value if the sum of 

propagation-based significance values of the components which are invoked by iC  is large, 

showing that iC  invokes a large quantity of other significant components. 

The equivalent matrix equation of (7) is: 
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Where the matrix ( )ij n nW w    is defined by: 
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The procedures of calculating the propagation-based significance values are identical 

with those of calculating the failure-based significance values. First, randomly assign initial 
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values between 0 and 1 to the propagation-based significance values ( )iVP C  ( 1,2i n  ). 

Then, solve (8) by repeating the computation until all significance values become stable.  
With the above approach, the propagation-based significance values of the cloud 

components can be obtained. On the basis of the values, the components are ranked. A 
component is considered to be more significant if it has a larger value. The failures of these 
significant components selected from this ranking result will severely affect other components in 
the cloud application and further affect the system reliability. 
 
3.4. Significant Component Determination 

Based on the two series of significance values, the components in the cloud application 
can be ranked respectively. The failure-based significance values enable us to identify the 
significant components which have great direct impact on the system reliability while the 
propagation-based significance values help us locate the significant components which severely 
affect other components and further harm the system reliability. Which ranking result is more 
important? We believed that there is no accurate answer. 

To reduce both of the direct and indirect threats and better improve the system 

reliability, Top-
2

k
 ( 2 k n   and k  is even) components are respectively selected from the two 

ranking results and hence a total of k  components are determined as the most significant 
components. In this way, the designer of the cloud application can improve the system reliability 
efficiently by enhancing the reliability of these components. 
 
 
4. Experiments and Evaluation 

In this section, extensive experiments are provided to validate DCR, evaluate the 
impact of different parameter settings on DCR and compare DCR with FTCloud. 
 
4.1. Experimental Setup 

In this section we compare the following approaches: 
1. DCR: The components are ranked by DCR and the Top-K percent components are selected 

as the significant components for enhancing the reliability. 
2. RandCR: K  percent components are randomly selected as the significant components for 

enhancing the reliability. 
3. FTCloud: The components are ranked by FTCloud and the Top-K percent components are 

selected as the significant components for enhancing the reliability. 
The system reliability is considered to be the probability of generating correct output 

with correct input [17]. For a fair comparison, we assume that the internal failure probability 
( intf ) of the selected components can be reduced to 80% after enhancing the reliability no 

matter which approach is employed. In addition, in DCR and FTCloud, the parameter   is used 
to balance the significance values derived from other components and the basic values of the 
components themselves. In previous studies [18, 19], it has been proved that 0.85 is a good 
choice. Thus, in our experiments,   is also set to be 0.85. 

A scale-free graph is a graph whose degree distribution follows a power law, at least 
asymptotically. Previous studies have demonstrated that not only the Internet [20] but also the 
internal structures of common software such as Linux Kernel, Mozilla, Xfree86 and MySQL [21, 
22] appear to be scale-free. Therefore, the network analysis software Pajek [23] is utilized to 
generate scale-free directed graphs as structure graphs of cloud applications in the 
experiments.   

Three scale-free directed graphs with different settings of node numbers (i.e. 500, 1000 
and 2000) are generated by Pajek in our experiments. Then the component invocation 
frequencies of each graph are randomly generated to simulate the statistical data during a 
period of running online. These component invocation frequencies are used in FTCloud and 
calculating the system reliability. 
 
4.2. Validation and Performance Comparison 

In order to validate DCR and compare DCR with FTCloud, the approaches are applied 
to the three graphs respectively and the experimental results of application reliability are 
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reported in Table 1. intf  represents the internal failure probability of the cloud components, 

including two value settings (i.e. 0.05 and 0.1). Top-K (K=2%, 6%, 10% and 20%) indicates that 
K  percent most significant components in DCR and FTCloud, and K  percent randomly 
selected components in RandCR are selected for enhancing the reliability. ep  which is not listed 

in the table represents the error propagation probability of the cloud components. It is usually 
close to 1 [24] and thus we set it to be 0.99. 

Compared with RandCR, DCR obtains better reliability performance in all the 
experimental settings. This observation shows that enhancing the reliability of the significant 
components identified by DCR can obtain better system reliability than enhancing the reliability 
of randomly selected components. In other words, DCR is able to effectively identify significant 
components which have great impact on the system reliability. 
 
 

Table 1. Performance Comparison of Application Reliability 
Node 

Numbers 
Methods 

Component intf=0.05 Component intf=0.1 
Top2% Top6% Top10% Top20% Top2% Top6% Top10% Top20% 

500 
RandCR 0.7381 0.7403 0.7410 0.7418 0.5416 0.5481 0.5499 0.5512 
FTCloud 0.7453 0.7597 0.7641 0.7714 0.5572 0.5750 0.5818 0.5930 

DCR 0.7478 0.7681 0.7725 0.7818 0.5568 0.5883 0.5952 0.6096 

1000 
RandCR 0.7247 0.7298 0.7312 0.7391 0.5201 0.5263 0.5234 0.5365 
FTCloud 0.7322 0.7460 0.7510 0.7590 0.5398 0.5552 0.5626 0.5746 

DCR 0.7354 0.7522 0.7581 0.7680 0.5396 0.5650 0.5739 0.5889 

2000 
RandCR 0.6974 0.7015 0.7098 0.7156 0.4881 0.4901 0.4928 0.5006 
FTCloud 0.7147 0.7251 0.7307 0.7383 0.5098 0.5248 0.5329 0.5440 

DCR 0.7206 0.7322 0.7390 0.7494 0.5185 0.5355 0.5455 0.5610 

 
 

Compared with FTCloud, DCR provides better reliability performance in all the settings 
except for the case that Top-K equals to 2% while intf  is set as 0.1. In this case, the 

performance of DCR may be slightly worse than that of FTCloud when the node number is 500 
or 1000 and the difference is not more than 0.0004. In order to further study the performance of 
DCR and draw performance comparison, more investigations into the impact of internal failure 
probability, error propagation probability and Top-K will be followed. 
 
4.3. Impact of Relevant Parameters 

To study the impact of the component internal failure probability ( intf ) on the system 

reliability, we compare the approaches in intf  settings of 0.01 to 1 with a step value of 0.01. In 

this experiment, the node number is 1000 and ep  is set as 0.99. The experimental results of 

cloud application reliability in Figure 3 show that: 
1·  DCR consistently provides better reliability performance than FTCloud in all cases when 

Top-K=20%, Top-K=10% or Top-K=6%, and in almost all cases when Top-K=2%. 
2· Only if Top-K=2% and intf  is not less than 0.09, the reliability performance of FTCloud 

approaches or slightly exceeds that of DCR. It exceeds a maximum of 0.0004. 
To study the impact of the component error propagation probability ( ep ) on the system 

reliability, we compare the approaches in ep  settings of 0.9 to 0.99 with a step value of 0.01. In 

this experiment, the node number is also 1000 and intf  is set as 0.1. The experimental results 

of cloud application reliability in Figure 4 show that: 
1·  DCR consistently provides better reliability performance than FTCloud in all cases when 

Top-K=20%, Top-K=10% or Top-K=6%, and in almost all cases when Top-K=2%. 
2·  Only if Top-K=2% and 0.9ep  , the reliability provided by FTCloud is 0.001 more than that 

provided by DCR. 
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Figure 3. Impact of component internal failure probability 
 
 

 
 

 

 

Figure 4. Impact of component error propagation probability 
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Figure 5. Impact of Top-K 
 

 
To study the impact of Top-K on the system reliability, we compare the approaches in 

different Top-K settings. In this experiment, the node number is still 1000 and ep  is set as 0.99, 

too. The experimental results of cloud application reliability in Figure 5 show that: 
1. DCR consistently provides better reliability performance than FTCloud in all cases when 

0.05intf   and almost all cases when 0.1intf  . 

2. Only if 0.1intf   and Top-K is set as 2%, the reliability provide by FTCloud is 0.0002 more 

than that provide by DCR. 
To sum up, DCR outperforms FTCloud in almost all cases. Only if Top-K=2% as well as 

ep  is small or intf  is large, the performance of FTCloud may approach or slightly exceed that of 

DCR. This observation is due to the significant components determination of DCR and the 
inequality between impact of component internal failures on the reliability and impact of error 
propagation in cloud applications. DCR treats impact of component internal failures and error 

propagation equally, and selects Top-
2

k
 components from the two ranking results respectively. 

In these extreme cases, the impact of the first Top-
2

k
 components of the propagation-based 

ranking result on the reliability may be a little weaker than the impact of the second Top-
2

k
 

components of the failure-based ranking result, causing the performance of DCR to be slightly 
worse than that of FTCloud in this case. The observation can only be found when node number 
is not big. When the scale of the cloud application reaches 2000 nodes, DCR outperforms 
FTCloud without any exception. Anyway, the negligible performance difference in a few extreme 
cases does not cover the effectiveness and advantages of DCR. 
 
 
5. Conclusion 

This paper proposes a component ranking framework for identifying significant 
components which have great impact on the cloud application reliability to help designers build 
reliable cloud applications. This framework takes into account the impact of component internal 
failures as well as the harm of error propagation to rank the components twice only employing 
the system structure information. The significant components are determined based on the two 
ranking results. The reliability of cloud applications can be greatly improved by enhancing the 
reliability of these significant components. Compared with FTCloud, the proposed framework 
considers more but requires less. Plenty of experiments are conducted to draw performance 
comparison and the results show that our framework is effective and outperforms FTCloud in 
almost all cases. 

The future work includes: a) improving the determination of significant components, b) 
more experimental analysis of actual cloud applications, and c) considering more factors to 
identify significant components. 
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