
TELKOMNIKA, Vol.14, No.4, December 2016, pp. 1565~1574
ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013
DOI: 10.12928/TELKOMNIKA.v14i4.3964 1565

Received May 10, 2016; Revised October 22, 2016; Accepted November 8, 2016

DCR: Double Component Ranking for Building Reliable
Cloud Applications

Lixing Xue, Zhan Zhang*, Decheng Zuo
School of Computer Science and Technology, Harbin Institute of Technology,

Harbin 150001, Heilongjiang Province, China
*Corresponding author, e-mail: zz@ftcl.hit.edu.cn

Abstract
Since cloud applications are usually large-scale, it is too expensive to enhance the reliability of all

components for building highly reliable cloud applications. Therefore, we need to identify significant
components which have great impact on the system reliability. FTCloud, an existing approach, ranks the
components only considering the impact of component internal failures and ignoring error propagation.
However, error propagation is also an important factor on the system reliability. To attack the problem, we
propose an improved component ranking framework, named DCR, to identify significant components in
cloud applications. DCR employs two individual algorithms to rank the components twice and determines a
set of the most significant components based on the two ranking results. In addition, DCR does not require
information of component invocation frequencies. Extensive experiments are provided to evaluate DCR
and compare it with FTCloud. The experimental results show that DCR outperforms FTCloud in almost all
cases.

Keywords: Component Ranking, Cloud Application, System Reliability, Error Propagation, Internal Failure

Copyright © 2016 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

Cloud computing is an Internet-based computing paradigm, which provides shared
processing resources and data to computers and other devices on demand [1, 2]. In recent
years, cloud computing is becoming more and more popular and many enterprises and
individuals prefer to build their systems in the cloud environment. The software systems in the
cloud are named as cloud applications which usually consist of various cloud components
communicating with each other. The cloud applications are usually large-scale and very
complex [3], which may pose a threat to the system reliability and hinder transferring critical
systems to the cloud. Nowadays, end-users hate applications with low-reliability and the
demand for high reliability is continually increasing. Building highly reliable cloud applications
has become a challenging and required research problem.

The major approach for improving the cloud application reliability is to enhance the
reliability of each individual component. This may be accomplished either by employing
functionally equivalent but more reliable components to reduce component failures or by adding
fault-tolerance strategies to tolerate component failures. Unfortunately, both of them will incur
extra cost. As cloud applications usually involve a large number of components, it is too
expensive to provide alternative components or add fault-tolerance strategies for all the
components. Based on the 80-20 rule [4], FTCloud-an existing approach [5] attempts to improve
the reliability of cloud applications by ranking the components to identify a small set of
significant components and enhancing their reliability. However, FTCloud only considers the
impact of the component internal failures on the system and does not take into account error
propagation which is also a serious threat to the global reliability [6].

To attack the problem, we propose a component ranking framework for identifying
significant components and helping designers to build highly reliable cloud applications. This
framework includes two component ranking algorithms, taking into account the direct impact of
component internal failures on the system and the harm of error propagation, respectively.
Based on the two algorithms, two ranking results are obtained and then a small set of the most
significant components which have great impact on the system reliability are determined. By
enhancing the reliability of these significant components, the system reliability can be greatly

 ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 4, December 2016 : 1565 – 1574

1566

improved. Due to the fact that the components are ranked twice, we name the framework DCR-
double component ranking.

The main contribution of this paper is:
1. This paper identifies the importance of error propagation in locating significant components of

cloud applications which is not considered by FTCloud, and proposes an improved
component ranking framework, named DCR. DCR only employs component invocation
relationships to independently rank the components twice and selects the critical
components which have great impact on the system reliability from the two ranking results.

2. Extensive experiments are provided to evaluate the impact of significant components
identified by DCR on the reliability of cloud applications and draw performance comparison
between DCR and FTCloud. The results show that DCR is effective and outperforms
FTCloud in almost all cases.

The rest of this paper is organized as follows. Section 2 introduces the two descriptions
of significant components, the system architecture of DCR and related work. Section 3 details
the double component ranking framework. Section 4 shows the experiments to evaluate DCR.
Section 5 draws the conclusion and future work finally.

2. Preliminaries
2.1. Significant Components

A failure of a component in software systems can be attributed to two reasons [6], as
shown in Figure 1. One is that an error caused by faults in the component (such as bugs) is
delivered at the output interface, i.e. component internal failure. The other is that the component
receives an incorrect input and generates an erroneous output, namely error propagation leads
to a component failure. A system failure occurs only if an error eventually reaches the system
interface, no matter how the error is produced and propagated. In a word, component internal
failures and error propagation are two major threats to the system reliability.

Figure 1. Two threats to reliability

It is apparent that not only the direct impact of component internal failures on the
system should be reduced, but also the harm of error propagation should also be minimized, if
we want to build highly reliable cloud applications. Therefore, the significant components in this
paper are able to be described from two perspectives.
1· The significant components are the ones whose failures have great impact on the system.
2· The significant components are also the ones which may severely affect a lot of other

components and further harm the global reliability by propagating errors out when they fail.

2.2. System Architecture

The system architecture of DCR is showed in Figure 2, which includes three parts:
structure graph building, component ranking and significant component determination. The
procedures of DCR are as follows:
1. The system designer provides the structure information of a cloud application to DCR. A

structure graph is generated based on the component invocation relationships.
2. Two series of significance values of the cloud components are calculated by employing two

different component ranking algorithms which are proposed in terms of the two descriptions
of significant components in the last subsection, respectively. According to the two series of
significance values, the components are ranked twice.

TELKOMNIKA ISSN: 1693-6930

DCR: Double Component Ranking for Building Reliable Cloud Applications (Lixing Xue)

1567

3. Based on the two ranking results, the most significant components which have strong impact
on the global reliability are determined and returned to the system designer for building a
reliable cloud application.

Figure 2. System architecture of DCR

2.3. Related Work

In traditional software reliability engineering, there are four common methods to build
reliable software systems, namely fault prevention, fault removal, fault tolerance and fault
forecasting [7]. However, fault prevention and fault removal are not able to be applied when we
build cloud applications. This is because building cloud applications usually uses existing cloud
components and we cannot participate in the development of them. But we can select
components with high reliability according to design requirements. Another method we can
employ is software fault tolerance. Software fault-tolerance techniques, such as recovery block
[8] and N-Version Programming (N-Modular Redundancy) [9], are widely used in various
systems. In the cloud environment, a great number of functionally equivalent but independently
designed components can be used for designing fault-tolerance mechanisms.

As cloud computing is becoming popular, a number of works have been carried out on
it. Service component selection and composition is one of the hotspots. Many approaches have
been proposed, such as QoS-aware web service composition [10], web service reputation
model [11], OWL-S service profile based web service selection [12] and web service selection
based on concurrent requests [13]. Component ranking is a prerequisite for applying these
research findings and some studies have been carried out. However, the approaches do not
take into account error propagation, which is also a major threat to the reliability of cloud
applications. In addition, they require the structure information as well as the information of
component invocation frequencies. Our approach which attacks the weakness requires only the
structure information and takes into account the harm of error propagation in the system,
obtaining wonderful results.

3. Double Component Ranking

As shown in Figure 2, DCR includes three parts, which will be detailed in this section,
respectively. Structure graph building is introduced within Section 3.1. Then the two component
ranking algorithms are proposed according to the two descriptions of significant components in
Section 3.2 and 3.3 respectively. In Section 3.4, determination of significant components is
discussed.

3.1. Structure Graph Building

The structure of a cloud application, that is, the component invocation relationships, can
be modeled as a directed graph ,G C E , where a node iC in the node set C denotes a

component and a directed edge ije from iC to jC in the edge set E represents that iC invokes

jC (denoted as i jC C).

 ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 4, December 2016 : 1565 – 1574

1568

A structure graph containing n nodes can be described by an n n adjacency matrix

 ij n n
A a

 . Each entry ija in the matrix is defined by:

 1

0ij
i jCf

a
s

Ci

el e

 (1)

In the matrix, 1iia represents a self-invocation of component iC . The number of edges

starting from node iC is called out-degree of iC , denoted as deg ()iC . It is able to be obtained

by:

1

deg ()
n

ik
k

iC a

 (2)

Similarly, the number of edges ending at node iC is called in-degree of iC , denoted as

deg ()iC . It can be calculated by:

1

deg ()
n

ki
k

iC a

 (3)

A component iC invokes a total of deg ()iC components and iC is invoked by a total of

deg)(iC components.

3.2. Failure-Based Component Ranking

In a cloud application, some components are frequently invoked by many other
components. It is obvious that their failures will directly affect the system reliability much more
than other components [14]. These components follow the first description of significant
components discussed in the last section. Intuitively, these significant components in a structure
graph are the ones which have many ingoing links from other important components. On the
basis of the PageRank algorithm [15], we propose an algorithm to calculate the first series of the
significance values of the cloud components, named as failure-based significance values.

For a cloud application which contains n components, the failure-based significance
value ()iVF C of a component iC is defined as:

(1

() (1)
deg (

)

)
j i

j
i

C C j

C
C

C

VF
VF

n

 (4)

Where
1

n
 is the basic significance value of iC itself while

(

deg (

)

)
j i

j

C C jC

VF C

 is the significance

value derived from other components that invoke iC . The parameter (0 1) in (4) is

utilized to adjust the proportion of the two values, which is usually set to be 0.85. By (4), a
component iC has a large failure-based significance value if the sum of failure-based

significance values of the components that invoke iC is large, indicating that iC is invoked by

many other significant components.
Equation (4) can be written in matrix form:

1 1() () 1 /

(1)

() () 1 /n n

C C

C C

VF VF n

W

VF VF n

 (5)

Where the matrix ()ij n nW w is defined by:

TELKOMNIKA ISSN: 1693-6930

DCR: Double Component Ranking for Building Reliable Cloud Applications (Lixing Xue)

1569

1

deg ()

0
ij

j i
j

Cif
w

else

C
C

 (6)

The procedures of calculating the failure-based significance values are simple. First,

randomly assign initial values between 0 and 1 to the failure-based significance values ()iVF C

(1, 2i n). Then, solve (5) by repeating the computation until all significance values become
stable.

Using the above approach, the failure-based significance values of the cloud
components can be obtained. According to these values, the components are ranked. A
component with a larger value is considered to be more significant. The failures of the
significant components selected from this ranking result will have great impact on the system
reliability.

3.3. Propagation-Based Component Ranking

In a cloud application, there must be some components that frequently invoke a lot of
other components. Their failures may affect a lot of subsequent components by error
propagation and further harm the system reliability. So these components are considered to be
important and they accord with the second description of significant components in Section 2.1.
Intuitively, these significant components in a structure graph are the ones which have many
outgoing links to other important components. Illuminated by the TrustRank algorithm [16], we
propose another algorithm to calculate the second series of significance values of the cloud
components, named as propagation-based significance values.

Assuming that a cloud application contains n components, the propagation-based
significance value ()iVP C of a component iC is defined as:

(1

() (1)
deg (

)

)
i j

j
i

C C j

C
C

C

VP
VP

n

 (7)

Where
1

n
 is the basic significance value of iC itself while

(

deg (

)

)
i j

j

C C jC

VP C

 is the significance

value derived from other components which are invoked by iC . Similarly, the parameter

(0 1) in (7) is employed to adjust the proportion of the two values, which is usually set as
0.85. By (7), a component iC has a large propagation-based significance value if the sum of

propagation-based significance values of the components which are invoked by iC is large,

showing that iC invokes a large quantity of other significant components.

The equivalent matrix equation of (7) is:

1 1() () 1 /

(1)

() () 1 /n n

VP VP n

W

VP VP n

C C

C C

 (8)

Where the matrix ()ij n nW w is defined by:

1

deg ()

0
i

j

j

i
j

if
w

el

C

s

C
C

e

 (9)

The procedures of calculating the propagation-based significance values are identical

with those of calculating the failure-based significance values. First, randomly assign initial

 ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 4, December 2016 : 1565 – 1574

1570

values between 0 and 1 to the propagation-based significance values ()iVP C (1,2i n).

Then, solve (8) by repeating the computation until all significance values become stable.
With the above approach, the propagation-based significance values of the cloud

components can be obtained. On the basis of the values, the components are ranked. A
component is considered to be more significant if it has a larger value. The failures of these
significant components selected from this ranking result will severely affect other components in
the cloud application and further affect the system reliability.

3.4. Significant Component Determination

Based on the two series of significance values, the components in the cloud application
can be ranked respectively. The failure-based significance values enable us to identify the
significant components which have great direct impact on the system reliability while the
propagation-based significance values help us locate the significant components which severely
affect other components and further harm the system reliability. Which ranking result is more
important? We believed that there is no accurate answer.

To reduce both of the direct and indirect threats and better improve the system

reliability, Top-
2

k
 (2 k n and k is even) components are respectively selected from the two

ranking results and hence a total of k components are determined as the most significant
components. In this way, the designer of the cloud application can improve the system reliability
efficiently by enhancing the reliability of these components.

4. Experiments and Evaluation

In this section, extensive experiments are provided to validate DCR, evaluate the
impact of different parameter settings on DCR and compare DCR with FTCloud.

4.1. Experimental Setup

In this section we compare the following approaches:
1. DCR: The components are ranked by DCR and the Top-K percent components are selected

as the significant components for enhancing the reliability.
2. RandCR: K percent components are randomly selected as the significant components for

enhancing the reliability.
3. FTCloud: The components are ranked by FTCloud and the Top-K percent components are

selected as the significant components for enhancing the reliability.
The system reliability is considered to be the probability of generating correct output

with correct input [17]. For a fair comparison, we assume that the internal failure probability
(intf) of the selected components can be reduced to 80% after enhancing the reliability no

matter which approach is employed. In addition, in DCR and FTCloud, the parameter is used
to balance the significance values derived from other components and the basic values of the
components themselves. In previous studies [18, 19], it has been proved that 0.85 is a good
choice. Thus, in our experiments, is also set to be 0.85.

A scale-free graph is a graph whose degree distribution follows a power law, at least
asymptotically. Previous studies have demonstrated that not only the Internet [20] but also the
internal structures of common software such as Linux Kernel, Mozilla, Xfree86 and MySQL [21,
22] appear to be scale-free. Therefore, the network analysis software Pajek [23] is utilized to
generate scale-free directed graphs as structure graphs of cloud applications in the
experiments.

Three scale-free directed graphs with different settings of node numbers (i.e. 500, 1000
and 2000) are generated by Pajek in our experiments. Then the component invocation
frequencies of each graph are randomly generated to simulate the statistical data during a
period of running online. These component invocation frequencies are used in FTCloud and
calculating the system reliability.

4.2. Validation and Performance Comparison

In order to validate DCR and compare DCR with FTCloud, the approaches are applied
to the three graphs respectively and the experimental results of application reliability are

TELKOMNIKA ISSN: 1693-6930

DCR: Double Component Ranking for Building Reliable Cloud Applications (Lixing Xue)

1571

reported in Table 1. intf represents the internal failure probability of the cloud components,

including two value settings (i.e. 0.05 and 0.1). Top-K (K=2%, 6%, 10% and 20%) indicates that
K percent most significant components in DCR and FTCloud, and K percent randomly
selected components in RandCR are selected for enhancing the reliability. ep which is not listed

in the table represents the error propagation probability of the cloud components. It is usually
close to 1 [24] and thus we set it to be 0.99.

Compared with RandCR, DCR obtains better reliability performance in all the
experimental settings. This observation shows that enhancing the reliability of the significant
components identified by DCR can obtain better system reliability than enhancing the reliability
of randomly selected components. In other words, DCR is able to effectively identify significant
components which have great impact on the system reliability.

Table 1. Performance Comparison of Application Reliability
Node

Numbers
Methods

Component intf=0.05 Component intf=0.1
Top2% Top6% Top10% Top20% Top2% Top6% Top10% Top20%

500
RandCR 0.7381 0.7403 0.7410 0.7418 0.5416 0.5481 0.5499 0.5512
FTCloud 0.7453 0.7597 0.7641 0.7714 0.5572 0.5750 0.5818 0.5930

DCR 0.7478 0.7681 0.7725 0.7818 0.5568 0.5883 0.5952 0.6096

1000
RandCR 0.7247 0.7298 0.7312 0.7391 0.5201 0.5263 0.5234 0.5365
FTCloud 0.7322 0.7460 0.7510 0.7590 0.5398 0.5552 0.5626 0.5746

DCR 0.7354 0.7522 0.7581 0.7680 0.5396 0.5650 0.5739 0.5889

2000
RandCR 0.6974 0.7015 0.7098 0.7156 0.4881 0.4901 0.4928 0.5006
FTCloud 0.7147 0.7251 0.7307 0.7383 0.5098 0.5248 0.5329 0.5440

DCR 0.7206 0.7322 0.7390 0.7494 0.5185 0.5355 0.5455 0.5610

Compared with FTCloud, DCR provides better reliability performance in all the settings
except for the case that Top-K equals to 2% while intf is set as 0.1. In this case, the

performance of DCR may be slightly worse than that of FTCloud when the node number is 500
or 1000 and the difference is not more than 0.0004. In order to further study the performance of
DCR and draw performance comparison, more investigations into the impact of internal failure
probability, error propagation probability and Top-K will be followed.

4.3. Impact of Relevant Parameters

To study the impact of the component internal failure probability (intf) on the system

reliability, we compare the approaches in intf settings of 0.01 to 1 with a step value of 0.01. In

this experiment, the node number is 1000 and ep is set as 0.99. The experimental results of

cloud application reliability in Figure 3 show that:
1· DCR consistently provides better reliability performance than FTCloud in all cases when

Top-K=20%, Top-K=10% or Top-K=6%, and in almost all cases when Top-K=2%.
2· Only if Top-K=2% and intf is not less than 0.09, the reliability performance of FTCloud

approaches or slightly exceeds that of DCR. It exceeds a maximum of 0.0004.
To study the impact of the component error propagation probability (ep) on the system

reliability, we compare the approaches in ep settings of 0.9 to 0.99 with a step value of 0.01. In

this experiment, the node number is also 1000 and intf is set as 0.1. The experimental results

of cloud application reliability in Figure 4 show that:
1· DCR consistently provides better reliability performance than FTCloud in all cases when

Top-K=20%, Top-K=10% or Top-K=6%, and in almost all cases when Top-K=2%.
2· Only if Top-K=2% and 0.9ep , the reliability provided by FTCloud is 0.001 more than that

provided by DCR.

 ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 4, December 2016 : 1565 – 1574

1572

Figure 3. Impact of component internal failure probability

Figure 4. Impact of component error propagation probability

TELKOMNIKA ISSN: 1693-6930

DCR: Double Component Ranking for Building Reliable Cloud Applications (Lixing Xue)

1573

Figure 5. Impact of Top-K

To study the impact of Top-K on the system reliability, we compare the approaches in

different Top-K settings. In this experiment, the node number is still 1000 and ep is set as 0.99,

too. The experimental results of cloud application reliability in Figure 5 show that:
1. DCR consistently provides better reliability performance than FTCloud in all cases when

0.05intf and almost all cases when 0.1intf .

2. Only if 0.1intf and Top-K is set as 2%, the reliability provide by FTCloud is 0.0002 more

than that provide by DCR.
To sum up, DCR outperforms FTCloud in almost all cases. Only if Top-K=2% as well as

ep is small or intf is large, the performance of FTCloud may approach or slightly exceed that of

DCR. This observation is due to the significant components determination of DCR and the
inequality between impact of component internal failures on the reliability and impact of error
propagation in cloud applications. DCR treats impact of component internal failures and error

propagation equally, and selects Top-
2

k
 components from the two ranking results respectively.

In these extreme cases, the impact of the first Top-
2

k
 components of the propagation-based

ranking result on the reliability may be a little weaker than the impact of the second Top-
2

k

components of the failure-based ranking result, causing the performance of DCR to be slightly
worse than that of FTCloud in this case. The observation can only be found when node number
is not big. When the scale of the cloud application reaches 2000 nodes, DCR outperforms
FTCloud without any exception. Anyway, the negligible performance difference in a few extreme
cases does not cover the effectiveness and advantages of DCR.

5. Conclusion

This paper proposes a component ranking framework for identifying significant
components which have great impact on the cloud application reliability to help designers build
reliable cloud applications. This framework takes into account the impact of component internal
failures as well as the harm of error propagation to rank the components twice only employing
the system structure information. The significant components are determined based on the two
ranking results. The reliability of cloud applications can be greatly improved by enhancing the
reliability of these significant components. Compared with FTCloud, the proposed framework
considers more but requires less. Plenty of experiments are conducted to draw performance
comparison and the results show that our framework is effective and outperforms FTCloud in
almost all cases.

The future work includes: a) improving the determination of significant components, b)
more experimental analysis of actual cloud applications, and c) considering more factors to
identify significant components.

 ISSN: 1693-6930

TELKOMNIKA Vol. 14, No. 4, December 2016 : 1565 – 1574

1574

Acknowledgements
The work described in this paper was supported by the National Natural Science

Foundation of China (No. 61173020) and Chinese National Programs for High Technology
Research and Development (No. 2013AA01A215).

References
[1] Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson D, Rabkin A,

Stoica I, Zaharia M. A View of Cloud Computing. Communications of the ACM. 2010; 53(4): 50-58.
[2] Prasad MP, Naik PR, Bapuji V. Cloud Computing: Research Issues and Implications. International

Journal of Cloud Computing and Services Science (IJ-CLOSER). 2013; 2(2): 134-140.
[3] Zheng Z, Zhang Y, Lyu MR. CloudRank: A QoS-Driven Component Ranking Framework for Cloud

Computing. 2010 29th IEEE Symposium on Reliable Distributed Systems. New Delhi. 2010: 184-193.
[4] Rooney P. Microsoft's CEO: 80-20 Rule Applies to Bugs, Not Just Features. ChannelWeb. 2002.
[5] Zheng Z, Zhou TC, Lyu MR, King I. FTCloud: A Component Ranking Framework for Fault-Tolerant

Cloud Applications. 2010 IEEE 21st International Symposium on Software Reliability Engineering.
San Jose. 2010: 398-407.

[6] Avizienis A, Laprie JC, Randell B, Landwehr C. Basic Concepts and Txonomy of Dependable and
Secure Computing. IEEE Transactions on Dependable and Secure Computing. 2004; 1(1): 11-33.

[7] Lyu MR. Handbook of Software Reliability Engineering. New York: McGraw-Hill. 1996.
[8] Randell B, Jie X. The Evolution of the Recovery Block Concept. In: Lyu MR. Editor. Software Fault

Tolerance. New York: Wiley. 1995: 1-21.
[9] Avizienis A. The Methodology of N-Version Programming. In: Lyu MR. Editor. Software Fault

Tolerance. New York: Wiley. 1995: 23-46.
[10] Zeng L, Benatallah B, Ngu AHH, Kalagnanam J, Chang H. QoS-aware Middleware for Web Services

Composition. IEEE Transactions on Software Engineering. 2004; 30(5): 311-27.
[11] Maximilien EM, Singh MP. Conceptual Model of Web Service Reputation. SIGMOD Record. 2002;

31(4): 36-41.
[12] Naji-Hasan AH, Shu G. OWLS-CSM: A Service Profile Based Similarity Framework for Web Service

Discovery. TELKOMNIKA Telecommunication Computing Electronics and Control. 2014; 12(4): 1079-
1087.

[13] Lu G, Hai Y, Sun Y. A Reliable Web Services Selection Method for Concurrent Requests.
TELKOMNIKA Telecommunication Computing Electronics and Control. 2014; 12(4): 1053-1063.

[14] Cheung RC. A User-Oriented Software Reliability Model. IEEE Transactions on Software
Engineering. 1980; SE-6(2): 118-125.

[15] Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking: Bringing Order to the Web.
Standford InfoLab. Report number: 1999-66. 1999.

[16] Gyongyi Z, Garcia-Molina H, Pedersen J. Combating Web Spam with Trustrank. Proceedings of the
Thirtieth International Conference on Very Large Databases (VLDB). Toronto. 2004; 30: 576-587.

[17] Cortellessa V, Grassi V. A Modeling Approach to Analyze the Impact of Error Propagation on
Reliability of Component-Based Systems. In: Schmidt HW, Crnkovic I, Heineman GT, Stafford JA.
Editors. Component-Based Software Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg.
2007: 140-156.

[18] Brin S, Page L. Reprint of: The anatomy of a Large-scale Hypertextual Web Search Engine.
Computer Networks. 2012; 56(18): 3825-3833.

[19] Inoue K, Yokomori R, Yamamoto T, Matsushita M, Kusumoto S. Ranking Significance of Software
Components Based on Use Relations. IEEE Transactions on Software Engineering. 2005; 31(3):
213-25.

[20] Faloutsos M, Faloutsos P, Faloutsos C. On Power-Law Relationships of the Internet Topology.
SIGCOMM Computer Communication Review. 1999; 29(4): 251-262.

[21] D Hyland-Wood, D Carrington, Y Kaplan. Scale-Free Nature of Java Software Package, Class and
Method Collaboration Graphs. The 5th International Symposium on Empirical Software Engineering.
Rio de Janeiro. 2005: 439-446.

[22] Myers CR. Software Systems as Complex Networks: Structure, Function and Evolvability of Software
Collaboration Graphs. Physical Review E. 2003; 68(4): 46-116.

[23] De Nooy W, Mrvar A, Batagelj V. Exploratory Social Network Analysis with Pajek. Revised and
Expanded Second Edition. New York: Cambridge University Press. 2011.

[24] Pham TT, Xefago D. Reliability Prediction for Component-Based Systems: Incorporating Error
Propagation Analysis and Different Execution Models. 2012 12th International Conference on Quality
Software (QSIC). Xi’an. 2012: 106-115.

