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Abstract

The University Course Timetabling Problem (UCTP) is a scheduling problem of assigning teaching
event in certain time and room by considering the constraints of university stakeholders such as students,
lecturers, departments, etc. This problem becomes complicated for universities which have immense number
of students and lecturers. Therefore, a scalable and reliable timetabling solver is needed. However, current
solvers and generic solution failed to meet several specific UCTP. Moreover, some universities implement
student sectioning problem with individual student specific constraints. This research introduces the Reinforced
Asynchronous Island Model Genetic Algorithm (RIMGA) to optimize the resource usage of the computer.
RIMGA will configure the slave that has completed its process to helping other machines that have yet to
complete theirs. This research shows that RIMGA not only improves time performance in the computational
execution process, it also offers greater opportunity to escape the local optimum trap than previous model.
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1. Introduction
The University Course Timetabling Problem (UCTP) is a scheduling problem of assigning

teaching event in certain time and room by considering the constraints of university stakeholders
such as students, lecturers, departments, etc. The constraints could be hard (encouraged to be
fulfilled) or soft (better to be fulfilled) constraints. Timetabling itself is considered an NP-Hard
problem [4]. Some universities such as Telkom University [5] have a large population of students
and lecturers, and so their constraints are also great as a result. This condition could make the
problem even more complicated.

In addition, the student body in Telkom University has increased from 6,570 students in
2010 to 21,698 in 2016. The number is a result of the merging of four universities: Telkom Institute
of Technology, Telkom Polytechnic, Telkom Institute of Management and Telkom School of Arts.
The university timetabling solver must, as a result, meet a new specification: scalability.

One of the most recent researches is the application of genetic algorithms (GAs), which
is inspired by the theory of evolution. This method has been used to solve many actual UCTP
cases. There are several GA models such as informed GA [10], parallel GA [2], NSGA II [11, 9],
Adaptive Real Coded GA [13], Hybrid Fuzzy and GA [6], Quantum Evolutionary Computing [1],
and distributed model GA [14] that have been proposed. This research used the distributed model
GA, or what is known usually as Island Model GA [14], out of all these models. We have chosen
this model for its high scalability.

For the university course timetabling itself, Gozali et al. introduced Asynchronous Island
Model GA (AIMGA) [5]. This model succeeded in solving actual UCTP cases in the Telkom
University School of Engineering with a satisfying result. However, when it was run under various
computer specifications, faster computers were idle after having completed their tasks while the
slower ones were still running. This idling problem left an opportunity to be exploited for more
efficient performance.
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Therefore, we are going to introduce the Reinforced AIMGA (RIMGA) to improve time
performance in the computational execution process. At the same time, we also offer greater
opportunity to escape the local optimum trap than the conventional AIMGA. Taken together, the
contributions of this work are (1) introducing RIMGA as a brand new mechanism to complement
common AIMGA, (2) designing the Telkom University UCTP, and (3) analyzing RIMGA performance
in handling Telkom UCTP.

This paper consists of seven sections. The remainder of this paper is organized as
follows. Section 2 talks about the mechanism of proposed method, RIMGA and its parameters,
handles AIMGA’s idling problem. Section 3 introduces the research method which is split into two
subsections: designing Telkom UCTP and its RIMGA implementation. Section 4 shows how we
conducted the experiment, results, and its discussion. The last but not the least, section 5 takes
place as the conclusion of this work.

2. The Proposed Method
2.1. Reinforced State

The AIMGA could solve the synchronous model waiting problem, but in reality, it is found
that there is still an opportunity to increase the AIMGA efficiency. There is almost no problem if
the specification of the computers is not too different. If, however, they are actually under a very
different specification, there will be slaves that complete their tasks faster than other slaves. Such
a condition will make the faster slaves idle while the slower ones are still running their tasks. The
RIMGA was introduced in this paper to increase the AIMGA efficiency.

The main idea of the RIMGA is how the idle island (computer) can be utilized further to
help another running island. The idle island as an island that has reached its stop condition has
to find another island which is still running. The idle island will reinforce that island to complete
its process more quickly. Figure 1 illustrates the difference between the asynchronous and the
RIMGA.

Figure 1. The difference of two island GA Models

The AIMGA isolates each computer to run separately so that each computer can complete
its task without waiting for other computers to complete theirs. The reinforced model tries to utilize
the idle time (gray cell) of slave 2 from the asynchronous one. After slave 2 has completed its task,
it would help slave 1 to finish its task (generation 3).

As shown in the Master Island state diagram in Figure 2-master state, the RIMGA implements
the reinforced function. It tries to find an island that has not completed its task to be helped by
the island that has. This attempt aims to maximize the productivity of the model by optimizing the
utility of the idle island that has completed its task.

Figure 2-slave state shows that the RIMGA starts when there is an island that has completed
all its process. The master will evaluate and choose which of the islands that has not completed
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Figure 2. Master-Slave Island State diagram

its task to be helped by the island that has. There are several considerations in picking the island
to be helped and how to generate its population. Such considerations are presented as reinforced
parameters.

2.2. Reinforced Parameters
Reinforced parameters are parameters that control how the reinforced state behaves. The

master island will use the reinforced parameters to control how the islands that have completed
their tasks to help those that have not. There are three reinforced parameters: the island state,
island priority, and individual picking method. The reinforced parameters are defined as follows.

The set of (slave) islands is expressed by S. The set of islands that have completed their
tasks is represented by F, those that have not by U, and those that are helped by H. Let F ⊂ S, U⊂
S, and H ⊂ S where F = U . The reinforced parameters are expressed as {p|p = {true, false}}
such that p1 is the island state, p2 the island priority, and p3 the individual picking method.

The first parameter is the island state. The island state is a condition to determine
whether an island that is being helped by another island or not. This parameter will determine
whether the reinforcement direction is divergent (balance for all islands that have not completed
their tasks) or convergent (islands that have, one by one). An island that is helped by another
island expressed as Hi. R(a, b) is a function that determines whether island a must help island b
or not. R(a, b) will return true if p1 is true and island b has not been helped by another island yet.
If R(a, b) = true, island a helps island b and the state of island b will be changed to being helped.
help(a, b) is a procedure in which island a helps island b.

R(f :∀F, u :∀U) =

{
true, if(p1 = true) ∩ (u /∈ H)

false, otherwise

if(R(f, u) = true)⇒ help(f, u), u← h (1)

The second parameter is island priority. It has two choices: those could be based on the
least number of iterations or on the poorest (largest) fitness. These choices refer to the factors are
the most important, the number of iterations or fitness value. If the least number of iterations were
activated (p2 = true), the island that has completed its task will find and help another island which
has the least number of iterations. Otherwise, if the poorest fitness were activated (p2 = false),
the island that has completed its task will find and help another island that has the lowest fitness
value. Let iteration(s) return the current iteration of island s and fitness return the best current
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fitness of island s.

s =

{
argmin(iteration(u : ∀U)), if(p1 = true)

argmin(fitness(u : ∀U)), otherwise
(2)

The third parameter is individual picking method. This parameter determines the way
of picking individuals from an island that going to be helped (reinforced). There are two ways of
picking individuals. The first (p3 = true) is by picking the best individual from helped island and
duplicating it into as many as the individual numbers of a population. The second (p3 = false) is
by picking the best population from helped island or usually the last population from it. The second
way has the consequence of the best individual bucket in the master having to be changed into
the best population bucket. In other words, the master island must keep the best population from
every island rather than the best individual.

3. Research Method
3.1. UCTP in Telkom University

The UCTP in Telkom University is a student-level timetabling (student sectioning) problem.
As referenced from Tomas Muller et al., Student sectioning is the problem of assigning students to
classes of a subject while respecting individual student requests along with additional constraints.
For example, a student cannot attend two classes which overlap in time[7]. Therefore, the
fulfillment of each of the students’ preference is encouraged as well. This approach has been
implemented in previous researches [10, 5] in Telkom University and other universities such as
Purdue [8] and Waterloo University [3].

Like any other UCTP, Telkom University is a minimum optimization problem. The objective
is to minimize all the predefined constraint violation for each of the teaching events. Such that a
teaching event is an event of a lecturer l in a room r at time t class c for a set of students S. Which
is defined by following notation:

e = (l, r, t, c, S) (3)

With reference from previous researchers [10, 5, 2], this research used two types of
constraints, the hard and the soft constraints. Hard constraint (HC) is a constraint that must be
satisfied. Soft constraint (SC) ought more to be satisfied to improve the quality of the timetabling.
As the constraints are working in the same UCTP cases, the types of HCs and SCs used for this
research are exactly the same as the previous research conducted by Suyanto [10] and Gozali
[5].

Let i = 1..5 be hard constraints and i = 6..12 be soft constraints. As hard constraints
must be far bigger rather than soft constraints, the objective function becomes:

Minimize V =

5∑
i=1

MVi +

12∑
i=6

Vi (4)

where V is a violation value for each i constraint. The symbol M means a very big number so
that MVi is much larger than Vi.

With regard to the Telkom University UCTP in this research, the HC values are set much
higher than SC so that the GA will prioritize poor fitness more because of HC. By treating the
SCs this, they became the focus after all HCs have been satisfied. The penalty value of SCs is
designed to be proportional to its influence. For example, as a lecturing event has a lecturer and
around 50 students, the ratio of lecturer SC to student SC should be 1:50.

3.2. RIMGA for UCTP
Directed chromosome will be used for the chromosome representation. Directed chromosome

mimics the real-world representation which, in this case, is the university timetabling representation.
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Thus, the chromosome, as shown in Figure 3, is the representation (mapping) from the real-world
timetable.

Figure 3. Directed chromosome

Furthermore, since the AIMGA model was derived from the single model, the AIMGA core
(individual reproduction and evaluation of fitness) was the same as the single model. The AIMGA
implemented Informed GA core, which applied local search and only used directed mutation over
crossover [10].

Derived from previous researchers [5, 10], this research also uses two stages of the
informed GA, class-level timetabling (stage 1) and student-level timetabling (stage 2). The significant
difference between these two stages lies in stage 1 which excludes student constraints. That is
because the student evaluation time process took much longer time due to a large number of
students. The next stage will include student constraints. Directed mutation which is an additional
way to improve the process efficiency of the GA was also used.

4. Result and Discussion
This research experiment has three goals: to implement the AIMGA concept into the

Telkom University UCTP, analyze RIMGA parameters, and compare the RIMGA with the ordinary
AIMGA. We conduct the first three experiments with the regard of implementing and analyzing
RIMGA parameters, while the last experiment is for comparing with conventional AIMGA. Dataset
used in this research was Telkom University Engineering School, a faculty in Telkom University,
at odd semester for enrollment years 2011/2012. This faculty had characteristics as explained in
Table 1.

Table 1. Informed GA Scheme

No Attributes Value
1 Classes 813
2 Rooms 80
3 Students 6570
4 Average number of classes per students 6.481
5 Average number of meetings per class 2.752
6 Lecturers 316
7 Average classes per lecturers 2.582

4.1. Result and Discussion
This section explains the test scenario which aims to test three reinforced state parameters:

the island state, island priority and individual picking method. Each test will be run thrice with 5
islands [5] in sequence. This number is considered sufficient because there are already statistically
significant differences by using the 3 test results. The specifications of the computer used for this
test are two computers with Core i5 and 4GB memory, one computer with Core2Duo (2.8 GHz)
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and 2 GB memory, and two computers with Core2Duo (2.6 GHz) and 1 GB memory but from
different manufacturers. We use fitness and execution time as the evaluation parameters.

4.1.1. Island State Test

Table 2 shows the results for the island state test. From this table, ignoring the island state
is better than considering the island state. By ignoring the island state, more than one faster slave
can help the slowest slave so that the slowest slave can reach its stopping criteria sooner. The
result is in line with the computer specifications of the islands that are very different. Therefore,
balancing the process by considering the island state is not as effective as ignoring it. Thus, the
next test scenario used the ignoring of the island state configuration.

Table 2. Island State Test Result

Test Number
Ignoring island state Considering island state

Best Duration Best Duration
Fitness (hh:mm:ss) Fitness (hh:mm:ss)

1 11520 16:55:59 11900 18:48:36
2 11950 16:52:33 11480 18:53:38
3 11840 16:30:32 11940 18:48:41

Average 11770 16:46:21 11773 18:50:18

4.1.2. Island Priority Test

Table 3 shows the test result for this scenario. It indicates that for the duration of execution
and best fitness, and the least number of iterations gave better result rather than the poorest
fitness . The duration interval between them is just around 9 minutes. The slower slave with
the least number of iterations is requires more help so far. This condition shows that the GA
performance depends more on the current generation than fitness. Thus, keeping the slower
island with fewer generations would be better than poor fitness.

The result, which places the current generation above fitness, means that population in
each island is able to keep their diversity. It is easier for the island to avoid the local optimum trap
due to its diversity. For this case, therefore, adding generations is better than increasing fitness.
Finally, according to the result, the next test will use the least number of iterations.

Table 3. Island Priority Test Result

Test Number
The least iteration numbers The worst fitness

Best Duration Best Duration
Fitness (hh:mm:ss) Fitness (hh:mm:ss)

1 11520 16:55:59 13310 17:20:29
2 11950 16:52:33 12410 16:51:01
3 11840 16:30:32 12130 16:34:14

Average 11770 16:46:21 12616 16:55:15
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4.1.3. Individual Picking Method Test

The test result for individual picking method test is shown in Table 4. It is shown in this
table that the best population copy is superior to the best individual duplication in fitness value. By
consuming about 21 more minutes in execution time, the best population copy produced a fitness
value 11,650. This was better than the 12,430 from the best individual duplication.

Table 4. Individual Picking Method Test Result

Test Number
The best population copy The best individual duplication

Best Duration Best Duration
Fitness (hh:mm:ss) Fitness (hh:mm:ss)

1 11520 16:55:59 12750 16:32:50
2 11950 16:52:33 12440 16:15:05
3 11840 16:30:32 12100 16:28:54

Average 11770 16:46:21 12430 16:25:36

Picking the best population is better rather than copying the best individual into a population
mean for this case, the generation trend still tends to trap in a local optimum. Thus, picking a whole
best population and continuing the process with it will help the island that did not complete its task
to increase its diversity. This parameter, which is similar to the Island Priority Test explanation,
is also experimental. The Temporal-Salient Scheme [12] could be implemented to direct the
solutions this problem. However, like the previous example, the research uses island order instead
of the Temporal-Salient Scheme for the sake of time efficiency.

4.1.4. Comparison Test of RIMGA

The last experiment is to compare the performance of the AIMGA and the RIMGA. The
goal of this process is to analyze how far the RIMGA could beat the AIMGA in performance. The
test was run in two phase: maximum fitness and time constraint. Maximum fitness constraint
test was done to compare their time performance to reach same fitness and vice versa. Done
in the same way as the previous test, this test was done in three consecutive times to obtain the
average.

Table 5-Duration shows the test result with same maximum fitness. The terminate condition
of this trial is fitness=10000. Table 5 indicates that AIMGA execution time was almost twice of the
RIMGA.

Table 5. Maximum Fitness Limitation Test Result

Model Duration (hh:mm:ss) Fitness
RIMGA 16:55:59 9980
AIMGA 24:00:00 9980

Table 5-Fitness shows the result of the 24-hour test. When both ran for 24 hours, there
was no significant difference between the RIMGA and the AIMGA in general. We can therefore
conclude that, overall, the implementation of the Reinforced function improves the AIMGA performance
in obtaining a good result. In addition, the result will be the same if they still have the same GA
core.
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5. Conclusions
This research has shown that the AIMGA can solve the Telkom University UCTP with

acceptable accuracy represented by the GA fitness value. Furthermore, by implementing the
RIMGA, the timetabling result accuracy increases in performance to next level. This new approach
can obtain the same result as the AIMGA in a faster (about twice) execution time with a somewhat
similar effect when they run under the same time constraint. Thus, the reinforced state is an
excellent choice if we want to obtain good results more quickly.

The optimum configuration parameters of the RIMGA for Telkom UCTP are Island State:
ignored, Island Priority: the least iteration numbers, and Individual Picking: the best population
copy. Although this study focuses on the Telkom University UCTP, the findings may well have a
bearing on other UCTPs with similar characteristics as the Telkom University UCTP.

Taken together, this research confirms that the RIMGA can solve the UCTP with scalability
issues. This study also contributes additional evidences that encourage the use of the reinforced
function in the AIMGA. The results of the experiment could serve as the basis for future researchers
in setting its parameters. In addition, further studies still need to be conducted for the RIMGA
for better real-world implementation. Further studies on its network cost is also necessary to
investigate its real computational time and cost. The RIMGA also still needs to be implemented
in a simpler problem to study the correct considerations in the parameter adjustment.
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