
109

TRANSFORMATION FROM SEMANTIC

DATA MODEL TO RDF

Daniel Siahaan
Jurusan Teknik Informatika,

Fakultas Teknologi Informasi, Institut Teknologi Sepuluh Nopember

Kampus ITS, Jl. Raya ITS, Sukolilo – Surabaya 60111, Telp. + 62 31 5939214, Fax. + 62 31 5913804

Email: daniel@its-sby.edu

ABSTRAK

There have been several efforts to use relational model and database to store and manipulate Resource

Description Framework (RDF). They have one general disadvantage, i.e. one is forced to map the model of

semantics of RDF into relational model, which will end up in constraints and additional properties, such as,

validating each assertion against the RDF schema which also stored as a triplets table. In this paper, we

introduce Semantic Data Model as a proposed data model language to store and manipulate Resource

Description Framework. This study also tries to prescribe the procedure on transforming a semantic data model

into a RDF data model.

Keyworsd: Semantic Data Model, Resource Description Framework.

1. INTRODUCTION

Until recently, several efforts have been taken to

use relational model and database to store and

manipulate Resource Description Framework [6],

namely specs loyal, explicit models, hashed with

origin, and the naïve approach. The "specs loyal"

approach [2], which was proposed by Jonas

Liljegren, attempts to provide a compact way of

implementing every detail in the RDF model and

schema specifications. Its database schema is

implemented in Postgres. The "explicit models"

approach [3], which was proposed by Brian McBride,

treats models explicitly and makes use of views. Its

database schema is implemented on Oracle. The

"hashed with origin" approach [4], was proposed by

Sergey Melnik, where it make used of CRC64 hash

values to treat models explicitly. Its database schema

is implemented in MySQL. Or the "naïve" approach,

where all triplets are stored in one table that has three

fields: Property, Resource, and Value.

These approaches have one general

disadvantage, i.e. one is forced to map the model of

semantics of RDF into relational model, which will

end up in constraints and additional properties, such

as, validating each assertion against the RDF schema

which also stored as a triplets table.

The Semantic Data Modeling (SDM) [8] is built

on the concept of semantics, which is also the

concept used in RDF. This similarity enables them to

be mapped into each other. Both, SDM and RDF,

make use of semantics concept. Therefore the

mapping will be done more smooth and with less

constraints and additional properties. Another

advantage of this approach is we can use the Xplain

system [8], which built on SDM, as the storage

system for the RDF resources, since Xplain has

advantages over relational databases.

The main purpose of this paper is described how

a data model, i.e. semantic data model, can be

mapped into RDF and whether both are adequate to

represent each other. This paper is organized as

follows. Section 2 gives a brief overview of the

SDM. Section 3 describes the transformation from

SDM into RDF. Finally, the last section gives a

summary and lists several conclusions.

2. SEMANTIC DATA MODELING

The concept of semantics is the main issue in

Semantic Data Modeling (SDM) [8]. It is all about

interrelationships between formal definitions and

their relationships with the real world that being

modeled. But in SDM, only the interrelationships

between formal definitions (data), which form

information, are formalized in the conceptual model.

The following are the basic concepts behind the

SDM:

- A conceptual model consists only of positive

statements (assertions). It means that a statement

must be true since it should correspond to the

reality.

Therefore, for example, data of a person who is

not working a company will never be stored in

the table employee.

- Each type definition is unique, meaning that

there is no different type definition with the same

name of the same collection of attributes.

- An attribute is related to one and only one type,

and a type is related to at least one attribute. An

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JUTI: Jurnal Ilmiah Teknologi Informasi

https://core.ac.uk/display/295521291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Volume 3, Nomor 2, Juli 2004 : 109-115

110

attribute value is related to one and only one

instance in the related type.

- An object can be either a type or an instance of a

type, depending on the point of view.

A type is a set of objects that have definite

properties.

Attributes of a type are the properties that

aggregate that type.

An instance of a type is an object that has the

properties of that type.

For example:

type employee = name, sex, department

type department = name, location

The definition of the model has not yet contained

information about any base type, which is the type of

which the attributes are no longer relevant. The base

types appeared in the above model can be defined as

the following:

base name (A20)

base sex (A1)

base location (A40)

2.1. AGGREGATION

A type (e.g. employee) is defined as a collection

(aggregation) of characteristics (name, birth_date,

address, department, etc) called attributes. It also can

be stated that an attribute is part of a type definition.

The semantic model shown in Figure 2 can be

written as the following type definitions:

type employee = name, birth_date, address,

department

type department = …

2.2. SPECIALIZATION AND

GENERALIZATION

Type specialized_A is a specialization of type A,

if type specialized_A is type A with at least one

additional attribute. And the counterpart of

specialization is generalization. The semantic model

shown in Figure 3 can be written as the following

type definitions:

type A = name, starting_date

type specialized_A = [A], ending_date

Employee name Department

001 Ann 12

002 Bert 11

003 Jack 13

department name Location

11 Finance Delft

12 Personalia Eindhoven

13 Research Delft

Figure 1. Type employee and department.

Figure 2. Aggregation

Figure 3. Specialization - Generalization

type

instance

attributes

Attribute value

employee

department

specialized

_typeA

typeA

Siahaan, Transformation from Semantic Data Model to RDF

111

3. TRANSFORMATION TO RDF

The main purpose of this section is to describe

the mechanism to transform a semantic data model

into data models with the standard Semantic Web

languages, i.e. Resource Description Framework

(RDF). In this section we use the following

conventions for describing the RDF Graph:

3.1. SEMANTIC DATA MODELING TO

RESOURCE DESCRIPTION

FRAMEWORK

3.1.1. Aggregation
A type (i.e. employee) is defined as a

combination (aggregation) of a number of

characteristics (name, address, department, etc) called

attributes. It also can be stated that an attribute is a

part of a type definition.

The semantic data model shown in Figure 4.a.

can be written as the following type definition:

type employee = department,…

The above type definition can be written in RDF as

follows:

<rdf:Description

rdf:about="http://a.b.c/type#employee">

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

 <rdfs:subClassOf rdf:resource="&rdf-

schema;#Resource"/>

</rdf:Description>

<rdf:Description

rdf:about="http://a.b.c/type#department">

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

 <rdfs:subClassOf rdf:resource="&rdf-

schema;#Resource"/>

</rdf:Description>

<rdf:Description

rdf:about="http://a.b.c/type#its_department">

 <rdf:type rdf:resource="&22-rdf-syntax-

ns;#Property"/>

 <rdfs:domain

rdf:resource="http://a.b.c/type#employee"/>

 <rdfs:range

rdf:resource="http://a.b.c/type#department"/>

</rdf:Description>.

The RDF data model in Figure 4.b. cannot

represent the semantic data model in Figure 4.a

flawlessly. The property its_department cannot model

the N-to-1 relation between type employee and

department as viewed in the semantic data model

shown in Figure 4.a. This is because in RDF, any

instance of rdf:Property represents an M-to-N

relation, and RDF does not provide any mechanism

to define cardinality of a property.

Consider that the employee has a base type

name, as shown in the following semantic data model

definitions:

base name (A20)

type employee = name,…

As shown in Figure 5, it can be defined as the

following RDF data model:

<rdf:Description

rdf:about="http://a.b.c/type#employee">

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

 <rdfs:subClassOf rdf:resource="&rdf-

schema;#Resource"/>

</rdf:Description>

<rdf:Description

rdf:about="http://a.b.c/type#its_name">

 <rdf:type rdf:resource="&22-rdf-syntax-

ns;#Property"/>

 <rdfs:domain

rdf:resource="http://a.b.c/type#employee"/>

 <rdfs:range rdf:resource="http://…/22-rdf-

ns#Literal"/>

</rdf:Description>.

The above definition shows that an attribute of a

type is defined in the same manner regardless

whether it is a base attribute or not.

Consider a system where an employee works on

some projects, and a project is done by several

employees. This means that type employee and type

project have M-to-N relation. The system is defined

as the following:

type workon = employee, project

type employee = name, ..

type project = name,...

The above semantic data model can be

transformed into two different RDF data models as

shown in Figure 7 and Figure 8.

Alternative 1.

<rdf:Description

rdf:about="http://a.b.c/type#employee">

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

 <rdfs:subClassOf rdf:resource="&rdf-

schema;#Resource"/>

</rdf:Description>

<rdf:Description

rdf:about="http://a.b.c/type#project">

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

d

r

s

instance of rdfs:Literal

rdfs:subClassOf (Class)

rdfs:subPropertyOf (Property)

rdf:type

rdfs:domain

rdfs:range

t

Volume 3, Nomor 2, Juli 2004 : 109-115

112

 <rdfs:subClassOf rdf:resource="&rdf-

schema;#Resource"/>

</rdf:Description>

<rdf:Description

rdf:about="http://a.b.c/type#workon">

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

 <rdfs:subClassOf rdf:resource="&rdf-

schema;#Resource"/>

</rdf:Description>

<rdf:Description

rdf:about="http://a.b.c/type#its_employee">

 <rdf:type rdf:resource="&22-rdf-syntax-

ns;#Property"/>

 <rdfs:domain

rdf:resource="http://a.b.c/type#workon"/>

 <rdfs:range

rdf:resource="http://a.b.c/type#employee"/>

</rdf:Description>

<rdf:Description

rdf:about="http://a.b.c/type#its_project">

 <rdf:type rdf:resource="&22-rdf-syntax-

ns;#Property"/>

 <rdfs:domain

rdf:resource="http://a.b.c/type#workon"/>

 <rdfs:range

rdf:resource="http://a.b.c/type#project"/>

</rdf:Description>.

Figure 4. An aggregation (a) describe in RDF (b).

Figure 5. A base type in RDF/RDF Schema

employee

its_name

d

r

rdf:Property

t

rdf:Resource

s

Literal

employee

department

employee

department

its_department

d

r

rdf:Property

t

rdfs:Resource

s

s

rdfs:Class

t

t

(a) (b)

Siahaan, Transformation from Semantic Data Model to RDF

113

Figure 6. Employee and Project: M-to-N relation

Figure 7. First alternative

Figure 8. Second alternative

Alternative 2.

<rdf:Description

rdf:about="http://a.b.c/type#employee">

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

 <rdfs:subClassOf rdf:resource="&rdf-

schema;#Resource"/>

</rdf:Description>

<rdf:Description

rdf:about="http://a.b.c/type#project">

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

 <rdfs:subClassOf rdf:resource="&rdf-

schema;#Resource"/>

</rdf:Description>

<rdf:Description

rdf:about="http://a.b.c/type#workon">

employee

project

its_project

rdf:Property

rdfs:Resource rdfs:Class

workon

its_employee

d

r

d

r

t

t

t

s

s

s

rdfs:Resource rdfs:Class

t

t

workon

employee project

employee

project

workon

d

r

rdf:Property

t

rdfs:Resource

s

s

rdfs:Class

t

t

Volume 3, Nomor 2, Juli 2004 : 109-115

114

 <rdf:type rdf:resource="&22-rdf-syntax-

ns;#Property"/>

 <rdfs:domain

rdf:resource="http://a.b.c/type#employee"/>

 <rdfs:range

rdf:resource="http://a.b.c/type#project"/>

</rdf:Description>.

The first RDF data model alternative has the

following characteristics:

- The N-to-1 relation between resource workon

and other resources (employee, project, and

status) can not be satisfied, since any instance of

rdf:Property represents M-to-N relation.

- It assumes that every type in the semantic data

model is transformed as an instance of

rdfs:Class.

The second RDF data model alternative has the

following characteristics:

- It really represents the M-to-N relation between

employee and project and at the same time

reducing the need to create bigger model in RDF.

- Since the model is smaller than the first

alternative, therefore the data will also be more

compact. It also means the data is easier to

manage and the query construction is simpler.

- It assumes that every type in the semantic data

model is transformed as an instance of

rdfs:Class, except those types that represent M-

to-N relations between other two types. These

types are represented as instances of

rdf:Property.

Figure 9. Recursive type

Consider a recursive type shown in Figure 9,

which defines as the following type definitions:

 type employee = [manager_employee], …

In RDF/RDF Schema, the type

manager_employee is defined in the same way as the

other attributes are, with one significant difference:

the range and the domain values of

its_manager_employee property point to the same

resource, which is the employee. Therefore the

semantic data model can be represents in the

following RDF data model:

<rdf:Description

rdf:about="http://a.b.c/type#employee">

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

 <rdfs:subClassOf rdf:resource="&rdf-

schema;#Resource"/>

</rdf:Description>

<rdf:Description

rdf:about="http://a.b.c/type#its_manager_employee"

>

 <rdf:type rdf:resource="&22-rdf-syntax-

ns;#Property"/>

 <rdfs:domain

rdf:resource="http://a.b.c/type#employee"/>

 <rdfs:range

rdf:resource="http://a.b.c/type#employee"/>

</rdf:Description>.

This solution also rises a problem of incorrect

relation cardinality with the fact that rdf:Property

represents M-to-N relation instead of N-to-1 relation.

1.1.1. Specialization and Generalization
Type specialized_A is a specialisation of type A,

if type specialized_A is a type A with one or more

additional attributes. And the counterpart of

specialization is generalization.

Figure 10. Specialization - Generalization

RDF provides rdfs:subClassOf property to model the

specialization of semantic data model as shown in the

Figure 11.

Figure 11. RDF diagram of Specialization-

Generalization

Consider that type hotel is a specialization of

type publichouse. This statement can be modeled as

the following type definitions:

type publichouse = name…

type hotel = [publichouse], stars

And the above type definitions can be described as

the following RDF data model:

<rdf:Description

rdf:about="http://a.b.c/type#publichouse">

typeA specialized_As

rdfs:Class

rdfs:Resource

s

t

employee

specialized_A

A

Siahaan, Transformation from Semantic Data Model to RDF

115

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

 <rdfs:subClassOf rdf:resource="&rdf-

schema;#Resource"/>

</rdf:Description>

<rdf:Description

rdf:about="http://a.b.c/type#its_name">

 <rdf:type rdf:resource="&22-rdf-syntax-

ns;#Property"/>

 <rdfs:domain

rdf:resource="http://a.b.c/type#publichouse"/>

 <rdfs:range rdf:resource="http://a.b.c/type#Name"/>

</rdf:Description>

<rdf:Description rdf:about="http://a.b.c/type#hotel">

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

 <rdfs:subClassOf

rdf:resource="a.b.c/type#publichouse"/>

</rdf:Description>

<rdf:Description

rdf:about="http://a.b.c/type#its_stars">

 <rdf:type rdf:resource="&22-rdf-syntax-

ns;#Property"/>

 <rdfs:domain

rdf:resource="http://a.b.c/type#hotel"/>

 <rdfs:range rdf:resource="http://…/22-rdf-syntax-

ns#Literal"/>

</rdf:Description>.

Consider the following type definitions:

type human = …

type male = [human], …

type female = [human]…

By nature, a human can only be a male or a

female. In semantic data modeling, the above

definitions clearly restrict the possibility that an

instance of type male is also an instance of type

female. In RDF/RDF Schema, it is possible that a

resource is instances of more than one class. But

there has not yet a property that can define that a

class, e.g. class male, is a disjoint of another class,

e.g. class female. Therefore the previous model

cannot be described in RDF flawlessly. In RDF, that

model can be described as the following RDF data

model:

<rdf:Description

rdf:about="http://a.b.c/type#human">

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

 <rdfs:subClassOf rdf:resource="&rdf-

schema;#Resource"/>

</rdf:Description>

<rdf:Description rdf:about="http://a.b.c/type#male">

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

 <rdfs:subClassOf

rdf:resource="a.b.c/type#human"/>

</rdf:Description>

<rdf:Description

rdf:about="http://a.b.c/type#female">

 <rdf:type rdf:resource="&rdf-schema;#Class"/>

 <rdfs:subClassOf

rdf:resource="a.b.c/type#human"/>

</rdf:Description>.

4. CONCLUSION

As can be seen already, RDF data models cannot

flawlessly represent Semantic Data Model. There are

three reasons why this is the case. First, the properties

in RDF can only represent M-to-N relations. Second

and third, a resource can be instances of more than

one class, and there is no mechanism available to

constraint it.

The solution would be to have a mechanism to

define cardinality of the property in RDF, and to have

richer (algebra) primitives that allow more expressive

class expressions, such as disjoint, union, and

complement. And these are what DAML+OIL [1]

and OWL [5] are doing. The future work will study

whether DAML+OIL indeed provide enough data

modeling primitives to express the semantic data

model and how scalable is the DAML+OIL data

model.

5. REFERENCE

1. DAML+OIL, “http://www.daml.org/2001/03/

daml+oil-index.html”, March 2001.

2. Jonas Liljegren, “Description of the Database

Implementation”, http://www-db.stanford.edu

/~melnik/rdf/db-jonas.html, 2000.

3. Brian McBride, “RDF Database Tables”,

http://lists.w3.org/Archives/Public/www-rdf-int

erest/2000May/0094.html, 2000.

3. Sergey Melnik, “RDF Resource”, http://www-

db.stanford.edu/~melnik/rdf/index.html, 2001.

4. “Requirements for a Web Ontology Language”,

W3C WebOnt Working Group. http://www.w3.

org/TR/webont-req, 2002.

5. “Resource Description Framework”, W3C,

http://www.w3.org/RDF, 2002.

6. “Resource Description Framework Vocabulary

Description Language version 1.0: RDF

Schema”, W3C, http://www.w3.org/TR/rdf-

schema, 2002.

http://www.daml.org/2001/03/%20daml+oil-index.html
http://www.daml.org/2001/03/%20daml+oil-index.html
http://www.daml.org/2001/03/%20daml+oil-index.html
http://lists.w3.org/Archives/Public/www-rdf-int%20erest/2000May/0094.html
http://lists.w3.org/Archives/Public/www-rdf-int%20erest/2000May/0094.html
http://www-db.stanford.edu/~melnik/rdf/index.html
http://www-db.stanford.edu/~melnik/rdf/index.html
http://www.w3.org/RDF
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/rdf-schema

