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Kernel Logistic Regression (KLR) is one of the statistical models that has been proposed for classification in the machine
learning and data mining communities, and also one of the effective methodologies in the kernel–machine techniques.
Basely, KLR is kernelized version of linear Logistic Regression (LR). Unlike LR, KLR has ability to classify data with non
linear boundary and also can accommodate data with very high dimensional and very few instances. In this research,
we proposed to study the use of Linear Kernel on KLR in order to increase the accuracy of Leukemia Classification.
Leukemia is one of the cancer types that causes mortality in medical diagnosis problem. Improving the accuracy of
Leukemia Classification is essential for more effective diagnosis and treatment of Leukemia disease. The Leukemia data
sets consists of 7120 (very high dimensional) DNA micro arrays data of 72 (very few instances) patient samples on the
state of Leukemia types. In Leukemia classification based upon gene expression, monitoring data using DNA micro array
offer hope to achieve an objective and highly accurate classification. It can be demonstrated that the use of Linear Kernel
on Kernel Logistic Regression (KLR–Linear) can improve the performance in classifying Leukemia patient samples and
also can be shown that KLR–Linear has better accuracy than KLR–Polynomial and Penalized Logistic Regression.
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In the last decade, it was found that the use of classi-
fier system is one of the most important factors in cancer
diagnosis and treatment, besides evaluating data that taken
from patient and decision of medical expert [1]. Classifi-
cation system can achieve an objective and highly accurate
cancer classification by minimizing errors due to fatigued
or inexperienced expert.

As many authors have pointed out, problem domain
such as medical diagnosis does require transparent reason-
ing (interpretable) as well as accurate classification method
[2]. KLR approach is particularly well suited for this type
of situation. Kernel Logistic Regression (KLR) is one of
the classification methods in the machine learning and data
mining communities that has ability to explain the reason-
ing for the classification/decision process (KLR provides
probability of classification membership).

There are some previous research in classifying Leuke–
mia that used transparent classification method. Zhu and
Hastie used Penalized Logistic Regression – RFE (classi-
fication accuracy : 95.9%) [3], while Rahayu and Embong
applied KLR (Polynomial Kernel) in classifying Leukemia
patient samples (classification accuracy : 90.3%) [2].

Trust in a system is developed by the clear description
of how they were derived (transparent/interpretable) and
also by quality of the results (accuracy). In this research,
we proposed to use Linear Kernel on Kernel Logistic Re-
gression (KLR), in order to improve the accuracy of KLR–
Polynomial in classifying Leukemia patient samples. Hsu
et all [4] suggested to use Linear Kernel when the num-
ber of features is very large. If the number of features is
large, one may not need up data to a higher dimensional
space. That is, the non linear mapping (like Polynomial
Kernel) does not improve the performance. Hence, using
the Linear Kernel is good enough.

This paper is organized as follows. In section 2, we
give a description to KLR, the theory and the design of
experiment that will be conducted. Section 3 reports the

numerical results of experiment, and finally, we conclude
in section 4.

KERNEL LOGISTIC REGRESSION
Kernel Logistic Regression (KLR), a non–linear form

of Logistic Regression (LR), can be achieved via the so–
called "kernel trick", whereby a familiar LR model is de-
veloped in a high–dimensional feature space, induced by a
Mercer kernel.

Logistic Regression
Suppose we have a classification problem with c classes

(c≥ 2), with a training set {(xi, yi)}ni−1 of n input samples
independent and identically distributed (i.i.d) x, X ∈ Rd,
and corresponding label y. The problem of classification
consists of assigning input samples vector X into one of c
classes label.
In Logistic Regression, we define a linear discriminant func-
tion or logit model for class k as [5]

gk(x) = ln
P (y = k|x)
P (y = c|x)

= βTk X, k = 1, ..., c− 1 (1)

The conditional or posterior probability that xi belongs to
class c via the linear discriminant function is written as

P (y = k|x) =
exp(βTk x)

1 +
∑e−1
i=1 exp(β

T
l x)

(2)

The class of membership of new point x can be given by
this classification rule.

Considering a binary or two class problem with labels
yi ∈ {0, 1}. The success probability of the sample xi be-
longing to class 1 (yi = 1) is given by P (y = 1|x), since
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P (y = 0|x) = 1 − P (y = 1|x) that it belong to class 0
(yi = 0). Then, we define a linear discriminant function
(logit model) for two class problem based on equation (1)
as

g(x) = ln
P (y = 1|x)
P (y = 0|x)

= ln
π(x)

1− π(x)

= βTX (3)

where β denotes the weight vector with size (d + 1) ×
1 including the intercept, while the first element of X is
1. Via the logit model in equation (3), we can write the
posterior probability of the class membership as

π(x) =
exp(βTX)

1 + exp(βTX)

=
1

1 + exp(−βTX)
(4)

and

1− π(x) =
1

1 + exp(βTX)
(5)

The logit link function constraint the output of the model
to lie in the range {0,1}.

Assuming the label, yi, represent an i.i.d sample drawn
from a Bernoulli distribution conditioned on the input vec-
tor X,

ξ(xi) = π(xi)yi [1− π(xi)]1−yi , (6)

yi = 0, 1; i = 1, 2, 3, ..., n

The likelihood of the data is given by

l(β) =
n∏
i=1

(π(xi))yi(1− π(xi))1−yi , (7)

The optimal model parameter β, are then determined by
maximizing the conditional log likelihood,

L(β) = log l(β)

=
n∑
i=1

{yi log[π(xi)] +

(1− yi)log[1− π(xi)]} (8)

or equivalently, by minimizing the negative logarithm of
the likelihood

L(β) = − log l(β)

= −
ni∑
i=1

{yi log[π(xi)] +

(1− yi)log[1− π(xi)]}

=
n∑
i=1

−yiβTX + log(1 + exp(βTX)) (9)

we wish to solve the equation system ∂L(β)
∂L(βj)

= 0, in or-
der to find the optimizing weight vector β. Since the π(xi)
depend nonlinearly on β, this system cannot be solved an-
alytically and an iterative technique must be applied. The
optimal model parameters can be found using Newton’s
method or equivalently an iteratively re–weighted least squ–
ares procedure [6]. The Newton Raphson’s Method

β(t+1) = β(t) − (H(t))−1q(t) (10)

Where the Hessian

H(t) =
∂2L(β)

∂(βi)∂(βu)

=
n∑
i=1

xijxiu[π
(t)
i ](1− [π(t)

i ])

= −XTW (t)X

The gradient of L,

q(t) =
∂L(β)
∂(βi)

=
n∑
i=1

xij(yi − [π(t)
i ])

= XTW [W−1(y − p)]
= XT (y − p)

The Newton’s method can be restated as an Iteratively Re–
weighted Least Squares (IRLS) problem [7] .

Iteratively Re–weighted Least Squares Procedure Form-
ing a variable that states a generalized linear model, [8]

Z(t) = Xβ(t) + ε (11)

the normal form equations of least squares problem with
input matrix (W (t))

1
2X and dependent variables (W (t))

1
2Z(t)

can be written as,

(XTW (t)X)β(t+1) = X(t)W (r)Z(r) (12)

At each iteration, the model parameters are given by the
solution of a weighted least–squares problem, such that

B(t+1) = (X(T )W (t)X)−1XTW (t)Z(t) (13)

wi = πi(1− πi), (14)

and

Z(t) = Xβ(t) + (W (t))−1(y − p) (15)

The algorithm proceeds iteratively, updating the weights
according to (13) and then updating W and Z according to
(14) and (15) until convergence is achieved.
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Kernelized Logistic Regression
Consider Kernel Logistic Regression, a non–linear form

of Logistic Regression. Logistic Regression is a linear
classifier and well known classification method in the field
of statistical learning and also is the model of choice in
many problem domains. However, this method has lim-
itation to classify the data with nonlinear boundaries [8].
Kernel Logistic Regression, may overcome this limitation
via the so–called "kernel trick". The "kernel trick" [9, 10,
11] provides a general mechanism for constructing nonlin-
ear generalizations of familiar linear Logistic Regression
by mapping of original data X into a high–dimensional
Hilbert space F, usually called feature space, and then by
using linear pattern analysis to detect relations in the fea-
ture space. Mapping is performed by specifying the inner
product between each pair of data. The inner product in the
feature space is often much more easily computed than the
coordinates of the points (notably when the dimensionality
of the feature space is high). The linear nature of the under-
lying model means that the parameters of a kernel model
typically given by the solution of a convex optimization
problem [12], with a single global optimum, for which ef-
ficient algorithm exist. Given an input space X and a fea-
ture space F, we consider a function φ : X→ F. The Ker-
nel Logistic Regression model implements a well known
linear Logistic Regression model in the feature space (ap-
pears as nonlinear model in the input space). According
to logit model in equation (3), after mapping into feature
space the logit model can be written as

g(x) = βTφ(x) (16)

where φ(.) represent a nonlinear mapping of the original
data X into feature space.

Kernel Function
Rather than defining the feature space explicitly, it is

instead defined by a kernel function that evaluates the inner
product between the images of input vectors in the feature
space,

K(xi, xj) = φ(xi)Tφ(xj) (17)

For the interpretation of the kernel function as an inner
product in a fixed feature space to be valid, the kernel
must obey Mercer’s condition [13], that is the kernel must
be positive (semi) definite. There are usually the follow-
ing choices for kernel function: K(xi, xj) = xTi xj (lin-
ear kernel), K(xi, xj) = (xTi xj + h)b (polynomial of
degree b, with h ≥ 0 a tuning parameter, K(xi, xj) =
exp(−‖xi−xj‖2

2σ2 ) (radial basis function, RBF, where σ is
a tuning parameter. In this work, we use Linear Kernel as
suggested by Hsu et al [4].

Globally, there are two reason when we use Linear Ker-
nel. The first reason is about number of features that are
much larger than number of instances. The second one is
because both number of features and instances are large.

Generally, in other situation, Hsu et al [4] suggest that
RBF Kernel is reasonable first choice. The RBF Kernel has
less numerical difficulties and can handle the case when re-
lation between class labels and attributes is nonlinear (un-
like Linear Kernel).

Kernel Logistic Regression Modelling
When constructing a statistical model in a high dimen-

sional space, it is necessary to take steps to avoid over fit-
ting the training data, that is to impose a penalty on large
fluctuations of the estimated parameters β. The most pop-
ular method is ridge penalty λ

2 ‖β‖
2 that was introduced by

[14]. As a result, the Kernel Logistic Regression model is
trained by adding a quadratic regularized to negative log
likelihood,

L(β)ridge = L(β) +
λ

2
‖β‖2

=
n∑
i=1

−yiβTX +

log(1 + exp(βTX)) +
λ

2
‖β‖2 (18)

where λ is regularization parameter that must be set in or-
der to obtain a good bias– variance trade off and avoid
over fitting [6, 15]. Furthermore, L(β)ridge represents a
convex optimization problem. The representer theorem
[10, 16] states that the solution of an optimization of the
equation (19) can be written in the form of an expansion
over training pattern, (xi is replaced by φ(xi)) where W
= diag({wi, w2, ..., wn}) is a diagonal weight matrix with
non–zero elements given by

β =
n∑
i=1

αiφ(xi) (19)

and so from (17) we have the so–called kernel machine,

g(x) =
n∑
i=1

αiφ(xi)Tφ(xj)

=
n∑
i=1

αiK(xi, xj) (20)

With the usual kernel trick, the inner product can be sub-
stituted by kernel functions satisfying Mercers condition.
Substituting the expansion of β in (19) into (12), this lead
us to nonlinear generalization of Logistic Regression in
kernel feature spaces which we call Kernel Logistic Re-
gression [8]. We can write,

(KW (t)K + λK)α(t+1) = KW (t)(S(t))T (21)

α(t+1) = (K + λ(W (t))−1)−1(S(t))T (22)

with (S(t))T = Kα(t) +W−1(y − p)

Like LR, KLR also produce posterior probability of the
class membership. Bartlett and Tewari (2004) [17] proved
that KLR can be used to estimate all conditional probabil-
ities.

Experiment
Data Description

The Leukemia data set used in this study come from
http://www.genome.wi.mit.edu/cancer. This
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Table 1: Representation of Confusion Matrix

Actual/Observed Prediction
Negative Positive

Negative TN FP
Positive FN TP

Table 2: Confusion matrix

Actual/Observed Prediction
ALL AML

KLR-Polynomial ALL 47 0
AML 7 18

KLR-Linear ALL 47 0
AML 2 23

data set consists of 72 samples of two types of acute leuke–
mias, Acute Myeloid Leukemia (AML) and Acute Lym-
phoblastic Leukemia (ALL) [16]. Each sample is a vec-
tor corresponding to 7129 genes. The Leukemia patient
(1=AML, 2=ALL) will be classified according to those
genes. There are 25 samples of data set fit in to AML,
and remaining 47 data is ALL.

Methodology
The goal of this experiment is to study the classification

performance of applying KLR to classify Leukemia patient
samples. In order to achieve this goal, the data set was
conducted with k-fold cross validation (cv) method [1]. k–
Fold cross validation (cv) is one way to improve over the
holdout method. The data set is divided into k subsets, and
the holdout method is repeated k times. Each time, one
of the k subsets is used as the test set and the other k − 1
subsets are put together to form a training set. Then the
average error across all k trials is computed. In this work,
we are using 10–fold cross validation.

In this experiment, we pre processed the data set so
that the mean is 0 and standard deviation is 1 and used
linear kernel with λ = 0.06 [3] to perform classification
task. Then, in order to know the performance of KLR–
Linear, we also compared the result of KLR–Linear with
KLR–Polynomial [2] and Penalized Logistic Regression
RFE, PLR–RFE [3].

Performance Evaluation Method
We have used four indicators to evaluate the classifica-

tion performance of leukemia diagnosis. These indicators
(accuracy, sensitivity and specificity analysis) are based
on confusion matrix and Receiver Operating Characteristic
(ROC) curve (area under the curve).

Confusion Matrix
A confusion matrix [1] contains information about ac-

tual and predicted classifications done by a classification
system. Table 1 shows the confusion matrix for a two class

Table 3: The result of performance evaluation

Indicator KLR-Polynomial KLR-Linear

Accuracy 90.3% 97.2%
Sensitivity 72% 92%
Specificity 100% 100%

AUROC curve 97.4% 99.4%

classifier. The entries in the confusion matrix have the fol-
lowing meaning in the context of our study:
(a) The number of correct predictions that a patient is
ALL (True Negatives, TN)
(b) The number of incorrect predictions that a patient is
AML (False Positives, FP)
(c) The number of incorrect predictions that a patient is
ALL (False Negatives, FN)
(d) The number of correct predictions that a patient is
AML (True Positives, TP)

Three standard terms have been defined for the two
class matrix [1]:
i) The accuracy is the proportion of the total number of
predictions that were correct. It is determined using the
equation:

accuracy =
(TN + TP )

TN + FP + FN + TP
(%)

ii) The sensitivity is the proportion of AML cases that were
correctly identified, is calculated using the equation:

sensitivity =
(TP )

TP + FN
(%)

iii) The specificity is the proportion of ALL cases that were
correctly classified as ALL, is calculated using the equa-
tion:

specificity =
(TN)

FP + TN
(%)

Receiver Operating Characteristics Curve
A Receiver Operating Characteristic (ROC) curve [18]

shows the relationship between False Positives (FP) and
True Positives (TP). In the ROC curve the horizontal axis
has the percentage of FP and vertical axis has the percent-
age of TP for a database sample. The final performance of
this work is assessed using the Area Under the ROC (AU-
ROC) curve.

RESULT
In this experiment, we create confusion matrix based

on classification prediction result of applying KLR–Linear
in classifying Leukemia patient samples, calculate the to-
tal accuracy, sensitivity, and specificity classification pre-
diction. Then, we draw the ROC curve and calculate the
AUROC curve of classification prediction. The Confusion
matrix is shown in Table 2. At the same time, we compare
the results of KLR-Linear with previous research that used
KLR-Polynomial [2]

146



Rahayu, Kernel Logistic Regression-Linear for Leukemia Classification using High Dimensional Data

(a) (b)

Figure 1: KLR-Polynomial

Table 4: Comparison of leukemia classification method

Method Accuracy (%)

PLR-RFE [3] 95.9
KLR-Polynomial [2] 90.3

KLR-Linear 97.2

According to Table 2, we see that the ALL cases were
perfectly identified (47;100%) (by using KLR–Linear and
KLR–Polynomial) while the AML cases were 92% (23/25)
correctly classified by using KLR–Linear.
The results of ROC curve is drawn, as shown in Figure 1.

Table 3 summaries the classification performance indi-
cators of applying KLR (Polynomial and Linear) to clas-
sify Leukemia patient samples, according to confusion ma-
trix and ROC curve above.

All indicators (accuracy, sensitivity, specificity, AU-
ROC curve) of KLR–Linear display high values. It shows
that the classification performance of KLR–Linear is better
than KLR-Polynomial.

In addition, we compared the accuracy result of KLR
(Linear and Polynomial) in classifying leukemia patient
with PLR–RFE. The result shows that the accuracy of KLR–
Linear is higher than KLR–Polynomial and PLR RFE.

CONCLUSION
We have proposed Kernel Logistic Regression with Lin-

ear Kernel (KLR–Linear) for high dimensional data prob-
lem to classify Leukemia patient samples. It can be shown
that Kernel Logistic Regression with Linear Kernel (KLR–
Linear) has better classification performance as compared
with KLR–Polynomial and PLR–RFE.
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