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Abstract 

Maximum growth was achieved in rice coleoptiles (Oryza sativa L. cv. Sasanishiki) 

grown under water; they reached maximum length of 81.2 mm on day 5. The maximum 

length of coleoptiles grown in air or under water with air bubbling was 12.4 mm 

and 23.5 mm in day 5, respectively. Differences in coleoptile growth between air 

bubbling and air conditions, namely approximately 11 mm at day 5, could be due to 

buoyancy effect under water. Promoted growth under water was due to a decrease in 

cell wall extensibility. The decrease in cell wall extensibility could be related 

to the inhibition of the formation of diferulic acid-bridges among arabinoxylans 

in cell walls under water. 

Introduction 

Water immersion method has been used to simulate microgravity conditions in medi

cal sciences. Usually, most of land plants are not able to grow under water. Rice 

is an exceptional plant. Rice coleoptiles grow faster under water than in air 

(Wada 1961). This growth promotion is due to promoted cell elongation under sub

merged condition of a limited oxygen supply (Ohwaki 1967). Air bubbling under 

water suppressed growth, but the degree of inhibition was much small as compared 

with that of coleoptiles grown in air (Zarra and Masuda 1979). The differences in 

coleoptile growth between air and air bubbling conditions could be due to 

buoyancy effect under water. 

Cell wall extensibility, a major parameter which limits the growth rate of 

plant cells, is determined by physicochemical properties of molecules construct

ing cell walls (Masuda 1978). Major constituents of growing plant cell walls are 

cellulosic polymers and matrix polymers such as pectic and hemicellulosic 

polysaccharides (McNeil et al. 1984). The formation of cross-links among cell 
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wall polymers can modify the mechanical properties of cell walls (Fry 1986). 

The primary cell wall of Poaceae contains a significant amount of monophenols 

such as ferulic acid and coumaric acid which are ester-linked to wall matrix 

polysaccharides (Harris and Hartley 1976, Smith and O'Brien 1979, Shibuya 1984). 

Ferulic acid bound to cell walls is considered to be subjected to a coupling 

reaction by peroxidase, to produce diferulic acid which cross-links matrix 

polysaccharides, resulting in a decrease in cell wall extensibility (Fry 1979). 

In fact, an increase in the amount of diferulic acid in cell walls of oat coleop

tiles correlated with a decrease in cell wall extensibility (Kamisaka et al. 

1990). 

In the present study, the possible effects of buoyancy on rice coleoptiles 

grown under water was examined, paying special attention to the physicochemical 

properties of cell walls. 

Materials and methods 

Plant material 

Seeds of rice (Oryza sativa L. cv. Sasanishiki) were sterilized in 4% sodium 

hypochlorite for 1 h, and soaked for two days in water at 30°C in the dark. Next, 

they were germinated and grown in the dark at 30°C under three different condi

tions: under sterilized water of 10 em depth in a polyvinyl cylinder 

(diameter:11.5 em, height:15 em) (water type), under sterilized water with con

stant air bubbling (bubbling type), and on gauze moistened with sterilized water 

(air type). Everyday, from the 2nd through 5th day after germinat1on, the coleop

tile length was measured, and the coleoptiles were excised. In some experiments, 

the coleoptiles were subdivided from the tip to the base uniformly for the three 

growth types, 7 mm from the tip and 10 mm subsequently. 

Fractionation of wall polysaccharides 

Coleoptiles were boiled for 5 min in methanol, washed several times with 

methanol, then stored in methanol until use. Rehydrated coleoptiles were treated 

with 5 ml of 200 mg 1-1 pronase (Type V, Sigma Chemical Co., St. Louis, MO, USA) 

dissolved in 0.05 M potassium-phosphate (pH 7.0) at 37°C for 18 h, then with 5 ml 

of 2 units ml-1 pancreatic amylase (Sigma) dissolved in 0.1 M sodium acetate (pH 

6.5) containing 3 mM CaCl 2 at 37°C for 3 h. Coleoptiles thus treated were 

homogenized with mortar and pestle, and cell wall polysaccharides were frac

tionated by partly modifying the method of Nishitani and Masuda (1979). Cell wall 
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material was extracted twice with 20 mM ammonium oxalate (pH 4.0) at 70°C for h 

to obtain the ammonium oxalate fraction. Methanol was added to the ammonium 

oxalate-soluble fraction in order to fractionate 35% methanol-insoluble and 

-soluble material. Cell wall material was further extracted with 0.1 M NaOH at 

room temperature under nitrogen atmosphere for 24 h. Residual cell wall material 

was extracted with 17.5% (w/v) NaOH solution at 24 h under nitrogen atmosphere to 

obtain the alkaline fraction. The alkaline insoluble fraction was washed with 

water, 1 mM acetic acid and ethanol, and dried at 37°C (alpha-cellulose). The 

amount of total sugars in each fraction was determined by the phenol-sulphuric 

acid method (Dubois et al. 1956). The amount of sugars was expressed as the mean 

of triplicate samples in each experiment. 

Determination of diferulic acids 

Phenolic acids liberated from cell wall material by 0.1 M NaOH treatment were ex

tracted with ethyl acetate after acidifying the fraction to ca. pH 3 with HCl. 

The ethyl acetate fraction was air-dried, then stored in the dark. Diferulic acid 

was analyzed according to the method of Shibuya (1984) as previously reported by 

Kamisaka et al. (1990). The amount of phenolic acids was determined with a digi

tal integrator using trans-ferulic and trans, trans-diferulic acids as standards. 

Trans, trans-diferulic acid was synthesized by the method of Richtzenhain (1949). 

The amount of diferulic acids was expressed as the mean of triplicate samples in 

each experiment. 

Determination of cell wall mechanical properties 

The mechanical properties of coleoptile cell walls were determined with a tensile 

tester (RTM-25, Toyo Baldwin Co., Tokyo, Japan) connected to a-computer (PC-9801, 

NEC, Tokyo, Japan). Methanol-killed coleoptiles were rehydrated, then fixed be

tween the upper and lower movable clamps (the distance between clamps was 3 mm) 

of the tensile tester, and stretched by lowering the clamp at 20 mm min-l to 

produce a stress of 10 g (for the air and bubbling type coleoptiles), or of 2 g 

(water type coleoptiles). Cell wall extensibility (mm g-l) was determined andre

corded by the computer. 

Results 

Growth 

As shown in Fig. 1, maximum growth was achieved by the coleoptiles growing under 
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Fig. 1. 
Days 

Kinetic changes in rice coleoptile lengthb Seeds were germinated for 2 days, then 
the seedlings were sown in the dark at 30 C. Bars represent SE (n = 30). 
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Fig. 2. 
Extensibility of cell walls of rice coleoptiles that had been subdivided into 
shorter sections, 7 mm at the tip and 10 mm for the subsequent zones. Cell walls 
of 3-, 4- and 5-day-old coleoptiles were used. Bars represent SE (n = 30). 

water which reached a maximum length of 81.2 mm on day 5. Growth of the bubbling 
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and air type coleoptiles was lesser, the maximum length being 23.5 mm in the 

former and 12.4 mm in the latter at days 4 and 5, respectively. Growth of the 

water and bubbling type coleoptiles was rapid between days 2 and 4, but the 

growth rate decreased after day 4. The growth rate of the air type coleoptiles 

was relatively steady and slow. 

Mechanical properties of cell walls 

Rice coleoptiles were subdivided from the tip to the base, and the cell wall ex

tensibility of different coleoptile zones were determined (Fig. 2). In general, 

the extensibility of the air and bubbling type coleoptiles was lower than that of 

the water type. In air and bubbling type coleoptiles, the extensibility decreased 

towards the base at days 4 and 5. In water type coleoptiles, on the other hand, 

the extensibility was consistently lowest at the middle zones but was highest at 

the tip. The differences in cell wall extensibility between air and bubbling type 

coleoptiles existed, as is the case for coleoptile growth. 

Fig. 3. 
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alpha-Cellulose content per unit length of rice coleoptiles that had been sub
divided into shorter sections. Cell walls of 3-, 4- and 5-day-old seedlings were 
analyzed. Bars represent SE (n = 30). 



146 

Wall polysaccharides 

The amounts of both alpha-cellulose (Fig. 3) and hemicellulose (Fig. 4) per unit 

length were much smaller in water type coleoptiles than in air or bubbling type 

ones, and both of the polysaccharides increased towards the base of the coleop

tile. Aging increased these wall polysaccharide contents in all coleoptile 

regions. The differences in the content of cellulosic and hemicellulosic polysac

charides between air and bubbling type coleoptiles existed, as is the case for 

coleoptile growth. 

Fig. 4. 
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Hemicellulose content per unit length in cell walls of rice coleoptiles that had 
been subdivided into shorter sections. Cell walls of 3-, 4- and 5-day-old coleop
tiles were analyzed. Bars represent SE (n = 30). 

Diferulic acids 

The amounts of diferulic acids per unit length were much smaller in water type 

coleoptiles than in air or bubbling type ones (Fig. 5). Diferulic acid content 

increased towards the coleoptile base in air and bubbling type coleoptiles at 

days 4 and 5, but not in water type coleoptiles; being consistently higher at the 

middle zones compared to the base and tip. In general, aging increased the 

diferulic acid content. The differences in diferulic acid content between air and 

bubbling type coleoptiles existed. 
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Fig. 5. 
The content of diferulic acid per unit length in cell walls of rice coleoptiles 
that had been subdivided into shorter sections. Cell walls of 3-, 4-, and 5-day
old seedlings were used. Bars represent SE (n = 30). 

Discussion 

Maximum growth was achieved by rice coleoptiles grown under water, whereas the 

air and bubbling types were lesser (Fig. 1), as reported by Zarra and Masuda 

(1979). The extensibility of cell walls in water type coleoptiles was much larger 

than that in either air or bubbling type ones (Fig. 2). These facts indicate that 

the growth rate of rice coleoptiles in the present experimental conditions was 

determined mainly by the extensibility of cell walls. 

Tab. 1. Correlation coefficients between the rigidity of rice coleoptile cell 
walls and the content of hemicellulose and cellulose in cell walls. Coefficients 
were obtained using data from Figs. 2, 3 and 4. a, Statistically significant at 
the 0.1% level. 

Rigidity of 
ce 11 wa 11 s 

ExtensiQility 
mm g 

Hemicell.!:!~ose 
ug mm 

Ce 11 u lo~~ 
ug mm 
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Tab. 2. Correlation coefficients between the rigidity of rice coleoptile cell 
walls and the content of diferulic acid in cell walls. Coefficients were obtained 
using data from Figs. 2 and 5. a, Statistically significant at the 0.1% level. 

Rigidity of 
ce 11 wa 11 s 

Extensi~ility 
mm g 

Q1ferulic acid _1 ng mm ng (ug hemicellulose) 

The extensibility of rice coleoptile cell walls correlated with the amount of 

either alpha-cellulose or hemicellulose (Tab. 1). In addition, a decrease in cell 

wall extensibility correlated with an increase in the amount of diferulic acid 

per unit length or- per hemicellulose correlated with a decrease in the exten

sibility of cell walls (Tab. 2). Diferulic acid has been considered to be a com

ponent which makes cell walls mechanically rigid (Fry 1979). In rice endosperm 

cell walls, ferulic and diferulic acids were reported to be ester-linked to the 

arabinose moiety of arabinoxylans (Shibuya 1984). These facts suggest that 

changes in cell wall properties mentioned above cause a rapid coleoptile growth 

under water. 

The differences in coleoptile growth and physicochemical properties of cell 

walls existed between air and air bubbling type coleoptiles (Figs. 1 - 5). These 

differences could be due to buoyancy effect under water. However, further studies 

are needed under microgravity conditions in space, because the growth of rice 

coleoptiles is affected by the concentration of oxygen (Wada 1961, Ohwaki 1967) 

and ethylene (Raskin and Kende 1983, Ishizawa and Esashi 1984) dissolved in 

water. 
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