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QUARTIC FORMULATION FOR ELASTIC BEAM-COLUMNS 

SUBJECT TO THERMAL EFFECTS 
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ABSTRACT 

This paper presents an advanced elastic formulation intended for modelling imperfect beam-

columns subject to thermal loading using only one element per member. The new formulation is 

derived in a local Eulerian (convected) system, where the effects of large displacements and 

rotations in three-dimensional space are accounted for through transformations between the local 

and global systems. In the Eulerian system, the proposed formulation utilises quartic shape 

functions for the transverse displacements and linear shape functions for the rotational twist, 

whereas no shape functions are required for the axial displacement since the constant axial force 

criterion is used. The paper proceeds with providing the formulation details, where particular 

emphasis is placed on the modelling of thermal effects. This is followed by a discussion on the 

modelling of distributed element loads which require special treatment in the context of the large 

displacement Eulerian approach. Finally, verification of the new formulation is undertaken using 

the nonlinear analysis program ADAPTIC, where several examples are presented to illustrate the 

accuracy and efficiency of the quartic formulation. 
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INTRODUCTION 

Recent years have witnessed increasing research into the behaviour of structural frames under fire 

conditions, particularly addressing issues related to the interaction between structural members 

which are affected by fire and other structural members, and the influence of this interaction on the 

fire resistance of the overall structure. Typically for steel frames, fire loading is associated with 

thermal and plastic strains as well as changes in the material properties, including reduction in both 

the elastic modulus and the yield strength of steel. 

The case for an elastic formulation capable of modelling the geometrically nonlinear response of 

imperfect beam-columns under thermal loading is made here on two grounds. Firstly, considering 

steel for example, there is a wide range of temperature variation to which correspond considerable 

thermal strains and reduction in the elastic modulus with insignificant variation in the yield strength. 

As a result, for many structural frames a moderate increase in temperatures could easily initiate 

elastic instability, particularly if the affected members are subject to significant compressive axial 

forces. Secondly, even when the structural resistance is governed by elasto-plastic behaviour, 

adaptive elasto-plastic thermal analysis (Izzuddin et al., 1995) utilises, and indeed requires the use 

of, an accurate elastic nonlinear formulation capable of representing an entire member with only one 

element. In essence, the adaptive elasto-plastic technique, developed by the author for steel frames 

(Izzuddin, 1991; Izzuddin & Elnashai, 1993-a) and extended recently to reinforced concrete frames 

(Izzuddin et al., 1994; Karayannis et al., 1994), starts the analysis using one elastic nonlinear 

element per member. During analysis, the adaptive procedure monitors the various elastic elements 

for occurrence of material plasticity, and modifies the element mesh by introducing elasto-plastic 

elements in those regions which develop material plasticity. By using the more computationally 

expensive elasto-plastic elements only when and where necessary, within the structure and during 

analysis respectively, adaptive elasto-plastic analysis achieves considerable modelling advantages and 

computational savings often in excess of 80%. 

Extensive research efforts have been devoted over the past few years to the development of 

advanced methods for the large displacement geometrically nonlinear analysis of framed structures 
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(Oran, 1973; Kondoh et al., 1986; Kassimali & Abbasnia, 1990; Izzuddin & Elnashai, 1993-b). 

These developments have been accompanied by research into formulations capable of representing a 

whole member with only one element, mainly driven by the computational savings and modelling 

advantages that could be derived. Soreide et al. (1987) presented a beam-column formulation 

employing trigonometric shape functions which are dependent on the unknown axial force, thus 

requiring an iterative procedure on the element level to establish the element deformed shape and its 

nodal forces including the axial force. Al-Bermani and Kitipornchai (1990) derived a deformation 

matrix accounting for the coupling between axial deformation on the one hand and the lateral and 

torsional deformation on the other to model the beam-column effect as well as axial-torsional 

coupling of a whole member using one element. So and Chan (1991) presented a quartic formulation 

and suggested its applicability to the modelling of beam-columns using only one element per 

member, even though their formulation overestimates the post-buckling response considerably. 

Izzuddin and Elnashai (1994) attributed this inaccuracy to the use of a linear shape function for the 

axial displacements, and the authors pointed out that a quartic formulation employing the constant 

axial force criterion (Izzuddin, 1991) predicts the post-buckling response more accurately. 

This paper presents a new formulation aimed at modelling the large displacement response of 

imperfect beam-columns subject to thermal effects using only one element per member. A local 

Eulerian system is used to derive the formulation details, with transformations between the local 

Eulerian system and the global system employed to account for large global displacements and finite 

rotations (Izzuddin & Elnashai, 1993-b). The proposed formulation extends the aforementioned 

quartic beam-column element developed by the author (Izzuddin, 1991) to include thermal effects in 

the geometrically nonlinear range and the modelling of distributed loading. With regard to the former 

point, the effects of both thermal strains and the reduction in the elastic modulus at elevated 

temperatures are included. For the latter point, a special treatment of distributed loading is 

suggested, particularly in view of the complexity of modelling accurately such loads within an 

Eulerian large displacement approach. This complexity was pointed out by Oran and Kassimali 

(1976) in the context of dynamic analysis employing distributed mass representation. 
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The paper proceeds by providing the quartic formulation details, with particular emphasis placed on 

the modelling of thermal effects. Verification of the formulation is undertaken using the nonlinear 

analysis program ADAPTIC (Izzuddin, 1991; Izzuddin & Elnashai, 1992), where several examples 

are used to demonstrate the formulation accuracy and efficiency. 

FORMULATION DETAILS 

Basic Assumptions 

In the development of the quartic beam-column formulation, the following simplifying assumptions 

are made: 

1. Plane sections remain plane upon deformation. 

2. Shear strains due to flexure are negligible. 

3. Warping strains due to non-uniform torsion are negligible. 

4. The cross-sectional centroid and shear centre are coincident. 

5. The elastic modulii are uniform over the cross-section. 

With these assumptions, the strain state of a cross-section can be completely defined by means of 

four generalised strains c,y,z, , representing the centroidal axial strain, curvatures about the 

cross-sectional principal axes and specific twist, respectively, thus allowing a one-dimensional 

formulation to be adopted. The corresponding four generalised stresses f,my ,mz,mT , 
representing the axial force, biaxial bending moments and torque, respectively, can then be obtained 

as: 

f  EA c  c
t  (1.a) 

my  E Iy y  y
t  (1.b) 

mz  EIz  z   z
t  (1.c) 

mT  GJ   (1.d) 

where, 
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E: Young's elastic modulus 

G: Elastic shear modulus 

A: Cross-sectional area 

Iy, Iz: Second moments of area about principal axes 

J: St. Venant's torsion constant 

c
t
,y

t
, z

t
: Generalised thermal strains. 

Although in (1) the elastic modulii (E) and (G) are assumed uniform over the cross-section, their 

variation along the element length, which may be due to varying temperatures, will be accounted for. 

Taking steel for example, the effect of elevated temperatures on (E) becomes significant after a 

threshold temperature (ts) has been exceeded (Cooke, 1988; EC3, 1993), as illustrated in Fig. 1. 

With the assumption that (E) is uniform over the cross-section, one of the following two conditions 

must be satisfied: 

1. Temperature can vary within the cross-section but is less than (ts) 

2. Temperature is uniform over the cross-section. 

If both conditions are violated considerably, the proposed quartic formulation becomes inaccurate, in 

which case more sophisticated elements accounting for the variation of (E) over the cross-section 

would be needed. However, in the context of adaptive analysis (Izzuddin & Elnashai, 1993-a) the 

structure could still be modelled initially with quartic elements. Subsequently during analysis, mesh 

refinement into more sophisticated elements would be applied only to those quartic elements which 

become inaccurate due to violating the above conditions or due to material plasticity (Izzuddin et al., 

1995). 

Kinematic and Thermal Variables 

In the local Eulerian system, the quartic formulation employs eight degrees of freedom, as shown in 

Fig. 2, with eight corresponding element forces: 

  c
u  1y,2y,my,1z,2z,mz,T ,

T
 (2.a) 
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  c
f  M1y ,M2y ,Fmy,M1z,M2z,Fmz,MT, F

T
 (2.b) 

Transverse imperfections of the centroidal reference line are defined in terms of six variables 

associated with the first six local degrees of freedom, whereas twist and axial imperfections are 

ignored: 

  c
i
u  1y

i
,2y

i
,my

i
,1z

i
,2z

i
,mz

i
,0,0

T
 (3) 

Quartic shape functions can therefore be employed for the interpolation of transverse displacements 

and imperfections v,w,v
i
,w

i , whereas a linear shape function can be used for the interpolation of 

the twist rotation (). No shape function is required herein for the axial displacement (u), since the 

constant axial force criterion will be employed, as discussed in the following section. 

v(x)  2L 2 y  1y 16my 
x

L







4

 L 2 y  1y  
x

L







3



L

2
2 y  1y  8my







x

L







2


L

4
2y  1y 





x

L






 my

 

(4.a)

 

w(x)  2L 2z  1z  16mz 
x

L







4

 L 2z  1z  
x

L







3



L

2
2z  1z  8mz







x

L







2


L

4
2z  1z 





x

L






 mz

 

(4.b)

 

v i (x)  2L 2y
i  1y

i 16my
i 

x

L







4

 L 2y
i  1y

i  
x

L







3



L

2
2 y

i
 1y

i  8my
i





x

L







2


L

4
2y

i
 1y

i 





x

L






 my

i

 

(4.c)

 

wi (x)  2L 2z
i  1z

i 16mz
i 

x

L







4

 L 2z
i  1z

i  
x

L







3



L

2
2z

i
 1z

i  8mz
i





x

L







2


L

4
2z

i
 1z

i 





x

L






 mz

i

 

(4.d)

 

(x) 
T

2
 T

x

L







 (4.e) 

With the assumption of small local displacements, the generalised strains can be obtained from the 

following expressions: 
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c 
du

dx


1

2

dv

dx


dvi

dx









2


dvi

dx









2


dw

dx


dwi

dx









2


dw i

dx









2








 (5.a) 

y 
d2v

dx2
 (5.b) 

 z 
d2w

dx2
 (5.c) 

 
d

dx
 (5.d) 

Note that the expression for the centroidal axial strain (c) accounts for stretching due to bending, 

which is responsible for the ability of the quartic formulation to represent the beam-column effect. 

The variation of temperature over the cross-section is represented by three variables tc , t y, t z , 

corresponding to a centroidal value and rates of change in the local y and z directions, respectively. 

In the context of elastic analysis, these variables would be sufficient to represent any distribution of 

temperatures over the cross-section, including linear variation, as shown in Appendix A.1. The 

quartic element employs discrete temperature variables   ct  at the two end nodes and at mid-length, 

allowing parabolic functions to be used for the interpolation of these variables along the element 

length, as given below: 

  c
t  t1c, t2c,tmc, t 1y , t 2y , t my , t 1z, t 2z, t mz

T
 (6) 

t c(x)  tmc  t2c  t1c 
x

L






 2 t1c  t2c  2tmc  

x

L







2

 (7.a) 

t y(x)  t my  t 2y  t 1y  x

L






 2 t 1y  t 2y  2 t my   x

L







2

 (7.b) 

t z(x) t mz  t 2z  t 1z 
x

L






 2 t 1z  t 2z  2 t mz  

x

L







2

 (7.c) 

The thermal generalised strains c
t
,y

t
,z

t , required in (1) for the determination of the cross-

sectional generalised stresses, are related to the temperature variables by the coefficient of thermal 

expansion (), which is assumed herein to be constant: 
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c
t
  tc  (8.a) 

y
t
  t y  (8.b) 

 z
t
  t z  (8.c) 

Given a set of local element displacements   cu  and temperature values   ct , kinematic and thermal 

generalised strains at any longitudinal position (x) can be established from (4)-(5) and (7)-(8), 

respectively, and the cross-sectional generalised stresses can thereafter be determined from (1). 

Local Forces 

In the determination of the local element forces   cf , the variation of the elastic modulii (E) and (G) 

along the element length is accounted for by using quadratic expressions which interpolate discrete 

values at the two end nodes and at mid-length: 

E(x)  Em  E2 E1 
x

L






 2 E1  E2  2Em  

x

L







2

 (9.a) 

G(x)  Gm  G2 G1 
x

L






 2 G1 G2  2Gm  

x

L







2

 (9.b) 

The element axial force is obtained through the combination of (1.a) and (5.a) into the following 

expression: 

f  EA
du

dx


1

2

dv

dx


dv
i

dx









2


dv

i

dx









2


dw

dx


dw
i

dx









2


dw

i

dx









2







 c

t










 (10) 

With a linear shape function for the axial displacement (u), the axial force (f) would not be constant 

along the element, and thus axial equilibrium would be violated. The approach followed herein is to 

use the constant axial force criterion, which imposes axial equilibrium instead of a shape function for 

the axial displacement (u): 

f  F  constant =>  
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F

E A
dx

L /2

L /2




 

du

dx


1

2

dv

dx


dv
i

dx









2


dv

i

dx









2


dw

dx


dw
i

dx









2


dw

i

dx









2







 c

t










dx

L /2

L /2





 =>  

F
1

E A
dx

L/2

L/ 2




   

1

2

dv

dx


dv
i

dx









2


dv

i

dx









2


dw

dx


dw
i

dx









2


dw

i

dx









2







 c

t










dx

L/ 2

L /2





  (11) 

Accounting for the variation of the transverse displacements and imperfections in (4), the thermal 

centroidal strain given by (7.a) and (8.a), and the elastic modulus in (9.a), the integration of (11) 

leads to the following expression for the element axial force: 

F = Ef A


L


1

210
8 1y

a 2
 2y

a 2
 1z

a 2
 2z

a 2  512
my

a

L











2


mz

a

L









2


























 5 1y
a 2y

a  1z
a 2z

a 16 2y
a 1y

a 
my

a

L









 2z

a  1z
a 

mz
a

L



















 8 1y
i 2

 2y
i 2

 1z
i 2

 2z
i 2  512

my
i

L











2


mz

i

L











2










5 1y
i 2y

i  1z
i 2 z

i 16 2y
i  1y

i 
my

i

L









 2z

i  1z
i 

mz
i

L






























6
t1c  4tmc  t2c 









 

(12)

 

in which, 

  c
a
u  1y

a
,2y

a
,my

a
,1z

a
,2z

a
,mz

a
,T

a
,

a T
 cu  c

i
u  (13) 

and, 

Ef 
L

1

E
dx

L/ 2

L/ 2




 (14) 
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The above expression for (F) includes the effects of stretching due to bending, imperfections and 

temperature variation along the element length. Explicit expressions for Ef , which is an equivalent 

elastic modulus accounting for the variation of (E) along the length due to temperature variation, are 

given in Appendix A.2 in terms of the three discrete values E1, E2,Em . 

The remaining components of the local force vector   cf  are obtained using the virtual work method: 

  

cf i  f
c

cu i

my

y

cu i

mz

z

cu i

mT



cu i




 





L

2

L

2




 dx for i  1,7  (15) 

Noting that (f) is constant along the element length, and accounting for the generalised stresses and 

strains derived previously in terms of the element local displacements and temperature variables, the 

integration of (15) leads to the following explicit expression for the local element forces: 

  cf  uk cu  fk c
a
u  tk ct  ff  (16) 

 in which, 

  

uk 

u
yk 330 310 310

330 u
zk 310 310

130 130 u
Tk 110

130 130 110 110





















 (17.a) 

  

u
y
k  Iy

7.2

L
E1,1

1.2

L
E1,2

25.6

L2 E1,3

1.2

L
E2,1

7.2

L
E2,2

25.6

L2 E2,3

25.6

L2 E3,1

25.6

L2 E3,2

204.8

L3 E3,3





























 (17.b) 
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u
z
k  Iz

7.2

L
E1,1

1.2

L
E1,2

25.6

L2 E1,3

1.2

L
E2,1

7.2

L
E2,2

25.6

L2 E2,3

25.6

L2 E3,1

25.6

L2 E3,2

204.8

L3 E3,3





























 (17.c) 

  
u
T

k 
Ge J

L








 (17.d) 

  

fk 

f
y
k 330 320

330 f
z
k 320

230 230 220
















 (18.a) 

  

f
y
k  f

z
k 

8FL

105

FL

42

8F

105

FL

42

8FL

105

8F

105

8F

105

8F

105

512F

105L





























 (18.b) 

  

tk 

330 t
y
k 330

330 330 t
z
k

230 230 230
















 (19.a) 

  

t
y
k   Iy

14

15
tE1,1

1

15
tE1,2

2

15
tE1,3

1

15
tE2,1

14

15
tE2,2

2

15
tE2,3

32

15L
tE3,1

32

15L
tE3,2

64

15L
tE3,2





























 (19.b) 

  

t
z
k   Iz

14

15
tE1,1

1

15
tE1,2

2

15
tE1,3

1

15
tE2,1

14

15
tE2,2

2

15
tE2,3

32

15L
tE3,1

32

15L
tE3,2

64

15L
tE3,2





























 (19.c) 

  ff  0,0,0,0,0,0,0,F
T

 (20) 
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where, 

  mn0 : (mn) zero matrix 

  E& tE: (33) matrices of equivalent elastic modulii 

Ge: Equivalent shear modulus 

F: Element axial force given by (12). 

The first term in (16)   uk cu  represents the linear bending and torsional response of the quartic 

element, whereas the second term   fk c
a
u  models the influence of the axial force on the bending 

moments, that is the beam-column effect. The temperature effects on the bending moments are 

modelled by the term   tk ct , whereas   f f  is merely a vector storing the value of (F) as obtained from 

(12). The equivalent elastic modulii,   E and   tE, account for the variation of (E) along the length due 

to temperature variation and are given explicitly in Appendix A.3 along with the expression for Ge. 

In the context of the adopted Eulerian approach (Izzuddin & Elnashai, 1993-b), only the terms of   cu  

associated with the end freedoms are related to the global nodal displacements, and hence the 

internal element displacements my,mz  should be determined through a process of static 

condensation. If the equivalent element loads corresponding to the midside freedoms are 

Pmy, Pmz , then the internal element displacements can be found through an iterative procedure as 

follows: 

1. Initialise my,mz  to values obtained in the last equilibrium step 

2. Obtain the corresponding local forces Fmy, Fmz  from the appropriate terms of   cf  in 

(16) 

3. Determine the iterative increment of my,mz : 

 

  

my

mz



















c
bk 3,3 c

bk 3,6

c
bk 6,3 c

bk 6,6

















1
Pmy  Fmy

Pmz  Fmz

















 (20) 

4. Update the values of my,mz  by adding my,mz  

5. Repeat from (2) until my,mz  becomes within a specified tolerance. 
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The   c
b
k  matrix used in (20) is an (88) local tangent stiffness matrix derived in the following section. 

The equivalent midside loads Pmy, Pmz  would be zero if no internal element loads are applied, but 

otherwise should be determined as discussed in a later section. 

Local Tangent Stiffness 

The solution of the nonlinear system of equilibrium equations requires a global tangent stiffness 

matrix to guide the iterative procedure. A local tangent stiffness matrix   ck  is derived herein, which 

can be transformed into a global tangent stiffness matrix in accordance with the Eulerian approach. 

Before static condensation of the midside freedoms, an (88) local tangent stiffness matrix   c
b
k  is 

obtained: 

  
c
b
k i, j 

cf i

cu j

for i  1,8 & j  1,8  (21) 

Considering (16) and that (F) depends on the local displacements   cu  as given in (12), the following 

expression can be derived for   c
b
k : 

  c
b
k  uk  fk  Ef A LVV

T
 (22) 

where, 

  uk : (88) matrix given by (17) 

  fk : (88) matrix given by (18) 

Ef : Equivalent elastic modulus given by (14) 

and, 
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V

81y
a

105

2y

a

42


8my
a

105L

1y
a

42


82y
a

105


8my
a

105L


81y

a

105L


82y
a

105L


512my
a

105L2

81z
a

105

2z

a

42


8mz
a

105L

1z
a

42


82z
a

105


8mz
a

105L


81z

a

105L


82z
a

105L


512mz
a

105L2

0

1

L











































































 (23) 

The adopted Eulerian approach (Izzuddin & Elnashai, 1993-b) requires a (66) local tangent 

stiffness matrix   ck  which does not include the two midside freedoms. Since the two midside forces 

are assumed constant within an incremental step, as discussed in the following section,   ck  can be 

determined from   c
b
k  through a process of static condensation operating on the two midside 

freedoms, as given by the following expression: 

  
ck i, j c

b
kq i

,q j


Bi, j

D
 (24.a) 

where, 

  
Bi,j c

b
kq i ,3 c

b
k 6,6 c

b
k 3,q j

 c
b
k 6,3 c

b
k 6,q j  c

b
k q i ,6 c

b
k 3,3 c

b
k 6,q j

 c
b
k 3,6 c

b
k 3,q j  (24.b) 

  
Dc

b
k 3,3 c

b
k 6,6c

b
k 3,6 c

b
k 6,3  (24.c) 

  q  1,2, 4,5,7,8
T

 (24.d) 

Note that vector q is used to store the numbers of only those local freedoms appearing in   cu  which 

are associated with the element ends. 
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GLOBAL ANALYSIS 

Modelling of Distributed Loads 

Considering a vector W which represents distributed element loads in the three global directions, the 

equivalent nodal loads in the local system   cp  can be determined from W as follows: 

  W  WX ,WY, WZ
T

 (25) 

  

cp i  W X

UX

cu i

WY

UY

cu i

WZ

UZ

cu i




 


dx


L

2

L

2




  (26) 

where, UX,UY and UZ are global displacements along the element length. 

In the context of an Eulerian approach, the derivatives of global element displacements, 

UX,UY and UZ, with respect to local freedoms   cu  depend on the current orientation of the 

element. Therefore, the equivalent local nodal loads   cp  vary during an incremental step, and hence 

such variation must be reflected within the global tangent stiffness matrix used in the nonlinear 

iterative procedure. 

In order to avoid the above complexities, the equivalent nodal loads are obtained in a local system 

which is fixed during an incremental step and which coincides with the last equilibrium configuration 

of the element, as shown in Fig. 3. The choice of such a system is mirrored in conventional Updated 

Lagrangian approaches (Wen and Rahimzadeh, 1983), which assume small incremental 

displacements between the last equilibrium configuration and the current unknown configuration. 

With this assumption, the deflected shape of the quartic element can be expressed in terms of 14 

local freedoms   uu  including the two midside freedoms: 

  u
u  u1x,u1y,u1z,1x ,1y,1z,u2x, u2y ,u2z,2x,2y,2z,my,mz

T
 (27) 

ux (x) 
1

2
u1x  u2x  u2x  u1x 

x

L







 (28.a) 
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uy (x)  2L 2z  1z  16my 
x

L







4

 2 u2y  u1y  L 1z  2z  
x

L







3


L

2
2z  1z  8my







x

L







2


3

2
u2y  u1y 

L

4
1z  2z 





x

L








u1y  u2y

2








 my











 

(28.b)

 

uz(x)  2L 1y  2y 16mz 
x

L







4

 2 u2z  u1z  L 1y  2 y  
x

L







3


L

2
1y  2y  8mz







x

L







2


3

2
u2z  u1z 

L

4
1y  2y 





x

L








u1z  u2z

2








 mz









 

(28.c)

 

Note that quartic shape functions are employed for the transverse global displacements uy ,uz , 

whereas a linear shape function is used for the axial displacement u x . It is also important to note 

that the two midside freedoms are referred to the current element chord, instead of the last known 

chord position, so that equivalent loads corresponding to the midside Eulerian freedoms can be 

obtained and used in the static condensation process discussed previously. 

A vector of local distributed element loading   uw  is first defined, which is obtained from the global 

vector W given by (25) through applying a transformation matrix   d T of direction cosines of the last 

known configuration with reference to the global system: 

  u
w  wx ,wy ,wz

T
 dTW  (29) 

The equivalent local nodal loads   up  are then determined from   uw  as follows: 

  u
p  P1x ,P1y ,P1z,R1x ,R1y ,R1z, P2x ,P2y ,P2z, R2x ,R2y, R2z, Pmy ,Pmz

T
 (30.a) 

  

up i  wx

ux

uu i

wy

uy

uu i

wz

uz

uu i




 


dx


L

2

L

2




  (30.b) 

where the derivatives of local element displacements, ux , uy and uz , with respect to local freedoms 

  uu  are constant during an incremental step and can be determined readily from (28). For uniformly 
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distributed loads,   uw  is constant over the element length, and hence the integration of (30.b) leads 

to the following explicit expression for the equivalent local nodal loads: 

  
up 

L

2
wx, wy, wz, 0,

wzL

30
,

wyL

30
, wx , wy , wz, 0,

wzL

30
,
wyL

30
,

16wy

15
,

16wz

15

T

 (31) 

The first twelve terms of   up  associated with the end nodes 
  

u
e
p  P1x, .. ., R2z

T  can be 

transformed into global equivalent nodal loads   
e
P  through applying the same transformation matrix 

  d T used in (29): 

  
e
P  dT

T
u
e
p  (32) 

where, the equivalent loads   
e
P  are subsequently treated as applied global nodal loads within the 

current incremental step. 

The last two terms of   up  associated with the midside freedoms 
  

u
m

p  Pmy ,Pmz

T



 are used in the 

static condensation process discussed previously. 

Solution Procedure 

The quartic formulation can be used within an incremental approach employing an iterative strategy, 

such as the Newton-Raphson method, for the solution of the nonlinear equations of  equilibrium. 

Within an incremental step, the applied nodal loads, the distributed element loads and the 

temperature distribution over the elements are prescribed, and hence the basic unknowns of the 

problem are the global nodal displacements which can be obtained from equilibrium considerations. 

In this context, the two main requirements of the iterative solution procedure are (1) the ability to 

establish global nodal forces given a set of global nodal displacements and, (2) the determination of a 

global tangent stiffness matrix which can be used for guiding the solution process. 

Although the quartic formulation is derived in the local Eulerian system, transformations accounting 

for large global displacements and finite rotations can be used to determine its global response 

characteristics (Izzuddin & Elnashai, 1993-b). The first requirement of the iterative procedure can be 

met through transforming global displacements into local displacements, establishing the local forces 
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using (16), and then transforming the local forces into global forces. The second requirement is 

satisfied merely through transforming the local tangent stiffness matrix   ck  given by (22) into a global 

tangent stiffness matrix. 

VERIFICATION 

The proposed quartic formulation has been implemented in ADAPTIC v2.5.4 (Izzuddin, 1991; 

Izzuddin & Elnashai, 1992), which is a computer program for the adaptive nonlinear analysis of 

steel, reinforced concrete and composite framed structures. ADAPTIC is used herein to analyse 

several example problems which demonstrate the ability of the quartic formulation to represent 

accurately the response of imperfect beam-columns subject to thermal effects with only one element 

per member. In all examples, temperatures are incremental from a base value at which the unloaded 

structure under consideration is stress free. 

Column 

The column shown in Fig. 4.a is subjected to an eccentric axial load (P) with the pre- and post-

buckling responses obtained using four different models:  one quartic element based on the proposed 

formulation (Q1), one quartic element based on the formulation by So and Chan (1991), and one 

and four cubic elements (C1, C4) (Izzuddin & Elnashai, 1993-a). The resulting load-deflection 

curves given in Fig. 5 for the axial displacement demonstrate that one quartic element predicts the 

buckling load (Pc1) almost exactly, whereas one cubic element over-estimates the buckling load by 

over 20%. Although the quartic element proposed by So and Chan (1991) is accurate in predicting 

the buckling load, it over-estimates the post-buckling response considerably as compared to the 

more accurate results of four cubic elements. On the other hand, the quartic element proposed herein 

retains the post-buckling accuracy up to considerable axial displacements. This is attributed mainly 

to the fact that the proposed quartic formulation employs the constant axial force criterion instead of 

a linear shape function for the axial displacements as adopted in the formulation of So and Chan. 
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The same column with parabolic imperfections of (L/2000) is restrained against extension, as shown 

in Fig. 4.b, and is subjected to two cases of thermal loading. The two cases correspond to uniform 

and parabolic temperature distributions over the column length, respectively, with both cases 

assuming no temperature variation within the cross-section. For the parabolic case, the mid-length 

temperature is twice the temperature at the column ends. The variation of the mid-length transverse 

displacement and axial force is shown in Figs. 6.a and 6.b, respectively, where the results are 

obtained using one quartic element (Q1U, Q1P), one cubic element (C1U, C1P) and four cubic 

elements (C4U, C4P) for the two cases of uniform (U) and parabolic (P) temperature distributions. 

These results show that one cubic element overestimates the buckling temperatures for both 

temperature distributions by over 20%, whereas one quartic element provides an excellent prediction 

of the pre- and post-buckling response in comparison with four cubic elements. The results also 

demonstrate that the parabolic thermal load requires a higher mid-length temperature to initiate 

buckling in comparison with uniform thermal loading. However, in both cases the buckling 

temperatures are well below the threshold temperature ( ts  150 C ). Above this threshold 

temperature the elastic modulus starts decreasing, and hence the axial force required to sustain the 

buckling state reduces, as shown in Fig. 6.b. 

The column is now restrained against rotation at one of its ends, as shown in Fig. 4.c, and is 

subjected to uniform and parabolic thermal loading cases, as described for the previous column. The 

variation of the axial force and transverse displacement is shown in Figs. 7.a and 7.b, respectively. 

These results demonstrate the accuracy of one quartic element (Q1U, Q1P) in predicting the 

temperature at which buckling occurs and the post-buckling response for the two thermal loading 

cases in comparison with four cubic elements (C4U, C4P). It is also shown that one cubic element 

(C1U, C1P) overestimates the buckling temperature by over 50% for both temperature 

distributions. Consideration of Fig. 7.b shows that one quartic element overestimates the axial 

buckling force (Pc2) by 3% for both loading conditions, since the quartic shape function for the 

transverse displacements is a slightly inaccurate representation of the associated buckling mode. 

Nevertheless, one quartic element provides a superior accuracy to that of one cubic element, which 

overestimates the buckling force for both loading conditions by approximately 40%. 
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Cantilever 

The large displacement response of the cantilever shown in Fig. 8.a was considered by Kassimali and 

Abbasnia (1990), who employed a beam-column formulation based on stability functions. 

Comparison of the results for the (U) and (V) tip displacements in Fig. 9 shows that one quartic 

element provides almost identical results to those of Kassimali and Abbasnia, which they showed to 

be in excellent agreement with the exact analytical solution. 

The response of the same cantilever to uniformly distributed loading, as shown in Fig. 8.b, is studied 

using 1, 2 and 4 quartic elements. The results for the (U) and (V) tip displacements, depicted in Fig. 

10, show that one quartic element is capable of predicting accurately the response under distributed 

loading up to very large displacements (U≤25cm & V≤100cm). The inaccuracies beyond this range 

of displacements are primarily attributed to the inability of one quartic element to represent the 

complex variation in the axial force over the cantilever length. In such a case, it is shown that two 

quartic elements provide favourable results over the full range of displacements under consideration. 

Propped-Cantilever 

The cantilever considered in the previous example is now propped at a 45˚ angle and supports a 

constant vertical load of (4.45 N) at its tip, as shown in Fig. 11, with a rigid connection assumed 

between the cantilever and the prop. The effect of applying uniform thermal loading to the prop is 

investigated using three models consisting of one cubic element per member (C1), ten cubic 

elements per member (C10) and one quartic element per member (Q1). 

The variation of tip displacements (U) and (V) with temperature is shown in Fig. 12.a, where the 

results of the (C10) and (Q1) models compare favourably, thus demonstrating the accuracy of one 

quartic element. On the other hand, one cubic element (C1) is shown to overestimate the buckling 

temperature by over 10% and to provide a similar level of inaccuracy in predicting the post-buckling 

response. It is worth noting that buckling occurs at a prop temperature of 410 ˚C, which is relatively 

high in comparison with the buckling temperatures of the restrained columns in the first example. 

This is primarily attributed to the flexibility of the cantilever which provides negligible resistance to 
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the prop thermal expansion, thus leading to an insignificant variation in the prop axial force prior to 

the buckling temperature, as shown in Fig. 12.b. At 410 ˚C, the elastic modulus of the prop has been 

reduced sufficiently for buckling to be initiated, with a further increase in temperature leading to a 

reduction in the prop axial buckling force, therefore causing a greater part of the vertical load to be 

taken by the cantilever. The deflected shapes of the propped cantilever at 410 ˚C and 500 ˚C are 

shown to scale in Fig. 13, which illustrates the high levels of deformation involved in this problem. 

To illustrate the efficiency of the quartic formulation, the CPU time demands of the (C1), (C10) and 

(Q1) models are obtained as 0.65 sec, 2.61 sec and 0.72 sec, respectively. These figures show that 

one quartic element is only 11% more computationally demanding than one cubic element, while 

providing the same levels of accuracy of 10 cubic elements with computational savings of 72%. 

CONCLUSIONS 

This paper presents a new formulation for geometrically nonlinear analysis of imperfect beam-

columns subject to thermal loading. The formulation is derived in a local Eulerian system, where 

quartic shape functions are used for the transverse displacements, and the constant axial force 

criterion is employed instead of shape functions for the axial displacement. In addition, the proposed 

formulation models transverse imperfections using quartic interpolation functions, and assumes 

parabolic distribution of temperature over the element length. Whilst the quartic formulation 

accounts for the effect of temperature variation within the cross-section on thermal stresses, it 

assumes a constant elastic modulus over the cross-section which is determined by the centroidal 

temperature. However, the variation of the elastic modulus along the element length due to variation 

in the centroidal temperature is modelled, where a parabolic interpolation function is used. 

The quartic formulation has been implemented in the nonlinear analysis program ADAPTIC, which 

is used to verify the ability of the formulation to model the elastic thermal response of imperfect 

beam-columns using only one element per member. This proves to be an important requirement in 

the context of adaptive elasto-plastic analysis, since automatic mesh refinement need thus be applied 

during analysis only to those elements where material plasticity is detected. 
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It is demonstrated that one quartic element predicts accurately the buckling and post-buckling 

response of beam-columns, particularly for effective length factors greater than 0.7. For the case of a 

column rotationally-restrained at one end (i.e. effective length factor ≈ 0.7), one quartic element 

over-estimates the axial buckling force by 3%. However, such inaccuracies, although relatively 

small, diminish when the overall resistance of a structure is considered. This is partly because 

effective length factors of individual components in a structure often exceed 0.7, and partly due to 

the fact that the resistance of a buckled component represents a partial contribution to the overall 

structural resistance. 

It is also shown that the quartic formulation models accurately and efficiently the effect of non-

uniform temperature distribution along the beam-column length using only one element. In addition, 

it is noted that the formulation accounts for temperature variation over the cross-section, although 

the level of accuracy is slightly reduced when such variation leads to a non-uniform elastic modulus 

within the cross-section. Due to the complexity of including the effect of a varying cross-sectional 

elastic modulus in a formulation derived on the level of generalised actions, it is proposed that such a 

condition is considered in conjunction with the condition of material plasticity to control the 

application of automatic mesh refinement. In this context, one quartic element per member is 

retained during analysis until either condition is detected, after which the corresponding quartic 

element is refined into more computationally expensive elements which can model both conditions 

accurately. 
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APPENDIX A 

A.1. Equivalent Thermal Variables 

Given a temperature distribution t(y,z) over the cross-section, the generalised stresses due to thermal 

strains can be established as follows: 

f
t
 E t dA  (33.a) 

my
t
 E t y dA  (33.b) 

mz
t
 E t z dA  (33.c) 

The values of thermal variables tc , t y, t z  can be established to correspond to the same values of 

generalised stresses associated with t(y,z) and given by (33). Therefore, the following simultaneous 

equations must be satisfied: 

E  tc  t yy  t zz dA



 f

t
 (34.a) 

E  tc  t yy t zz y dA



 my

t
 (34.b) 

E  tc  t yy t zz z dA



 mz

t
 (34.c) 

Since the y and z axes are principal axes of bending and have their origin at the cross-section 

centroid, the following equalities apply: 

ydA  zdA  yzdA  0  (35) 

Considering (33)-(35) with the assumption that (E) and () are constant over the cross-section, the 

following equivalent thermal variables can be established from t(y,z): 
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t c 

t dA


dA



t dA


A
 (36.a) 

t y 

t ydA


y2 dA


t ydA


Iy

 (36.b) 

t z 

t z dA


z2 dA


t z dA


Iz

 (36.c) 

A.2. Elastic Modulus Ef 

The equivalent elastic modulus Ef needed for axial force calculation depends on the values of the 

elastic modulus at the element ends and mid-length E1, E2,Em , which may be different due to 

temperature variation along the element length. Considering (9.a) in conjunction with (14), the 

following expressions for Ef can be derived: 

Ef  Em if E1  E2  Em  (37.a) 

Ef 
E1  E2

log
E1

E2




 




if Em 
E1  E2

2







 (37.b) 

Ef 


log
1  1  
1  1  











if   0  (37.c) 

Ef 


2 tan1   tan1   
if   0  (37.d) 

where, 

  4Em  E1 E2 2  4E1E2  (38.a) 

 
4Em  E1  3E2 


 (38.b) 
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 
4Em  3E1  E2 


 (38.c) 

Note that if the elastic modulus (E) is uniform along the element length, then the equivalent elastic 

modulus Ef reduces to this constant value. 

A.3. Elastic Modulii E, tE and Ge 

The matrices of equivalent elastic modulii E and tE, used in (17) and (19), depend on the three 

discrete values for the elastic modulus E1, E2,Em , and are expressed as follows: 

  

E

529E1  17E2  244Em

756

67E1  67E2  8Em

126

25E1  4E2 13Em

42

67E1  67E2 8Em

126

17E1  529E2  244Em

756

4E1  25E2 13Em

42

25E1  4E2 13E m

42

4E1  25E2 13Em

42

11E1 11E2  20Em

42





























 (39.a) 

  

tE 

143E1 11E2  64Em

196

11E1 17E2  20Em

14

16E1  5E2  4Em

7

17E1 11E2  20Em

14

11E1 143E2  64Em

196

5E1 16E2  4Em

7

13E1  E2  2Em

14

E1 13E2  2Em

14

E1  E2  16Em

14





























 (39.b) 

Note that if the elastic modulus (E) is uniform along the element length, then all the terms of E and 

tE reduce to this constant value. 

The equivalent elastic shear modulus (Ge), used in (17), can be expressed in terms of the three 

discrete values G1, G2,G m  as follows: 

Ge 
G1 G2  4Gm

6
 (40) 

Note again that if the shear modulus (G) is uniform along the element length, then the equivalent 

shear modulus (Ge) reduces to this constant value. 
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APPENDIX B: NOTATION 

- Generic symbols of matrices and vectors are represented by bold font-type with left side 

subscripts or superscripts (e.g.   cu ,   c
b
k ).

 

- Subscripts and superscripts to the right side of the generic symbol indicate the term of the vector 

or matrix under consideration (e.g.   cu i ,   c
b
k 3,3). 

Operators 

   : right-side superscript, transpose sign. 

–
 : incremental operator for variables (e.g. y ) 

   : partial differentiation. 

    : encloses terms of a matrix. 

  : encloses terms of a row vector. 

  : encloses terms of a column vector. 

Symbols 

A :  cross-sectional area 

E :  Young's elastic modulus; E1, E2,Em  represent discrete values of (E) at the two end 

nodes and mid-length 

E : (33) matrix of equivalent elastic modulii for bending stiffness 

Ef  : equivalent elastic modulus for axial stiffness 

  tE : (33) matrix of equivalent elastic modulii for thermal effects on bending 

f : axial force; generalised stress 

  cf  : local element forces; M1y, M2y, Fmy ,M1z ,M2z ,Fmz ,MT ,F
T

 



29 

G : elastic shear modulus; G1, G2,Gm  represent discrete values of (G) at the two end 

nodes and mid-length 

Ge  : equivalent shear modulus 

Iy  : cross-sectional second moment of area in local y direction 

Iz  : cross-sectional second moment of area in local z direction 

J : St. Venant's torsion constant 

  ck  : (66) local tangent stiffness matrix after static condensation 

  c
b
k  : (88) local tangent stiffness matrix before static condensation 

  fk  : (88) stiffness matrix representing beam-column effect; includes   f
y
k  and   f

z
k  

  tk  : (89) matrix modelling thermal effects on bending; includes   t
y
k  and   t

z
k  

  uk  : (88) linear bending stiffness matrix; includes   u
y
k ,   u

z
k  and   u

T
k  

L : element length 

my  : bending moment in y-direction; generalised stress 

mz  : bending moment in z-direction; generalised stress 

mT  : torsional moment; generalised stress 

  up  : equivalent local nodal loads; includes   u
e
p  and   u

m
p ; 

  P1x ,P1y, P1z , R1x ,R1y ,R1z ,P2x, P2y, P2z ,R2x ,R2 y,R2z ,Pmy,Pmz

T

 

t : temperature 

t c  : centroidal temperature; generalised strain 

  ct  : vector of temperature variables; t1c ,t2c ,t mc , t 1y, t 2 y, t my, t 1z , t 2z , t mz

T

 

t y  : rate of temperature change in local y direction; generalised strain 

t z  : rate of temperature change in local z direction; generalised strain 

  d T : transformation matrix of direction cosines 
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u : axial displacement 

  cu  : local element freedoms; 1y,2y ,my ,1z ,2z ,mz ,T ,
T

 

  c
a
u  : local element displacements including imperfections; 

  1y
a

,2y
a

,my
a

,1z
a

,2z
a

,mz
a

,T
a

,
a T

 

  c
i
u  : local element imperfections; 1y

i
,2y

i
,my

i
,1z

i
,2z

i
,mz

i
,0,0

T
 

  uu  : local element freedoms for equivalent nodal loads calculation; 

  u1x ,u1y ,u1z ,1x ,1y ,1z ,u2x ,u2y, u2z ,2 x,2y ,2z ,my,mz

T
 

v : transverse element displacement in local y direction 

v
i
 : transverse element imperfection in local y direction 

w : transverse element displacement in local z direction 

W : distributed element loads in global system; WX, WY, WZ

T
 

w
i
 : transverse element imperfection in local z direction 

  uw  : distributed element loads in local system; wx ,wy ,wz

T
 

 : element rotational twist

c  : centroidal generalised strain 

c
t
 : centroidal thermal strain 

 : coefficient of thermal expansion 

 y  : generalised curvature strain in y direction 

 y
t
 : thermal curvature strain in y direction 

 z : generalised curvature strain in z direction 

 z
t
 : thermal curvature strain in z direction 

 : rate of twist generalised strain 
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Fig. 1 Effect of temperature on elastic modulus 
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Fig. 2 Local degrees of freedom of quartic formulation 
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Fig. 3 Local system for equivalent nodal load calculation 
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Fig. 4 Column subject to three cases of boundary conditions 
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Fig. 5 Buckling of eccentrically-loaded column: axial displacement 
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Fig. 6.a Thermal buckling of pin-ended column: transverse displacement 
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Fig. 6.b Thermal buckling of pin-ended column: axial force 
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Fig. 7.a Thermal buckling of rotationally-restrained column: transverse displacement 
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Fig. 7.b Thermal buckling of rotationally-restrained column: axial force 



Izzuddin: Quartic Formulation for Elastic Beam-Columns Subject to Thermal Effects 

 

Fig. 8 Cantilever subject to two loading cases 
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Fig. 9 Response of cantilever to point loading 
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Fig. 10 Response of cantilever to uniformly distributed loading 
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Fig. 11 Geometric configuration of propped cantilever 
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Fig. 12.a Buckling of propped cantilever: tip displacements 
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Fig. 12.b Buckling of propped cantilever: prop axial force 
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Fig. 13 Deflected shapes of propped cantilever 

 


