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Eficiência energética é um assunto essencial na agenda mundial. No Brasil, o 

desperdício de energia no setor residencial é estimado em 15%. Estudos indicaram que 

maiores ganhos em eficiência são conseguidos quando o usuário recebe as informações 

de consumo detalhadas por cada aparelho, provocando mudanças comportamentais e 

incentivando os consumidores na conservação de energia. 

Monitoramento não intrusivo de cargas (NILM da sigla em inglês) é um termo 

relativamente novo. A sua finalidade é inferir o consumo de um ambiente até observar 

os consumos individualizados de cada equipamento utilizando-se de apenas um único 

ponto de medição. Métodos sofisticados têm sido propostos para inferir quando os 

aparelhos são ligados e desligados em um ambiente. 

Dentro deste contexto, este trabalho apresenta uma metodologia para a definição 

de um conjunto mínimo de características elétricas e sua taxa de extração que reduz a 

quantidade de dados a serem transmitidos e armazenados em servidores de 

processamento de dados, preservando níveis equivalentes de acurácia. São utilizadas 

diferentes técnicas de aprendizado de máquina visando à caracterização e solução do 

problema. 

Como adendo ao trabalho, apresenta-se um banco de dados de eletrodomésticos 

brasileiros, com amostras de equipamentos nacionais para desenvolvimentos futuros em 

NILM, além de um medidor inteligente de baixo custo para desagregação de cargas, 

visando tornar o consumo de energia mais sustentável.
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Energy efficiency is a key subject in our present world agenda, not only because 

of greenhouse gas emissions, which contribute to global warming, but also because of 

possible supply interruptions. In Brazil, energy wastage in the residential market is 

estimated to be around 15%. Previous studies have indicated that the most savings were 

achieved with specific appliance, electricity consumption feedback, which caused 

behavioral changes and encouraged consumers to pursue energy conservation. 

Nonintrusive Load Monitoring (NILM) is a relatively new term. It aims to 

disaggregate global consumption at an appliance level, using only a single point of 

measurement. Various methods have been suggested to infer when appliances are 

turned on and off, using the analysis of current and voltage aggregated waveforms. 

Within this context, we aim to provide a methodology for NILM to determine 

which sets of electrical features and feature extraction rates, obtained from aggregated 

household data, are essential to preserve equivalent levels of accuracy; thus reducing the 

amount of data that needs to be transferred to, and stored on, cloud servers. 

As an addendum to this thesis, a Brazilian appliance dataset, sampled from real 

appliances, was developed for future NILM developments and research. Beyond that, a 

low-cost NILM smart meter was developed to encourage consumers to change their 

habits to more sustainable methods.
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1. Introduction 

Energy efficiency is an important subject in today’s world agenda; not only because 

of greenhouse gas emissions, which contribute to global warming, but also because of 

the possibility of supply interruptions and delivery constraints in some countries and 

regions of the world. 

Recent research (Armel, et al., 2013) has estimated that about 20% of the total 

demand for commercial and residential energy in the U.S. could be reduced by energy 

savings. This corresponds to about 8% of the energy consumed by, and distributed 

through, different end uses, as shown in Table 1. In Brazil, energy waste is 

conservatively estimated to be around 15% in the residential market (CERNE, 2017). 

 

Table 1 - Electricity Consumption in the USA, by end use, (EIA, 2010) 

End Use 
Total Consumption  

(Billion kWh/yr) 

Consumption per Household  

(kWh/yr) 

Total Cost  

(in billions) 
Cost per Household 

Space Heating 125.5 1,089 $13.2 $115 

Air Conditioning 222.2 1,928 $23.5 $204 

Water Heating 130.4 1,131 $13.8 $119 

Lighting 210.3 1,824 $22.2 $193 

Appliances 699.3 6,067 $73.8 $641 

Total 1,387.7 12,039 $146.5 $1,271 

 

According to the Electric Power Research Institute’s (EPRI, 2009) research, 

numerous studies have suggested that feedback on specific electrical appliance’s 

consumption could support and encourage consumers in energy conservation. It has 

proved to be one of cheapest and most eco-friendly ways to improve energy 

measurement, in order to benefit businesses and environment (THE ECONOMIST, 

2014). The term, “Negawatt-hour”, was coined by Amory Lovins (Lovins, 1989) to 

describe a theoretical representation of the amount of energy (measured in kilowatt-

hours) saved.  
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Investment in energy saving is a large and growing market. In 2011 alone, 

expenditure on energy savings, by governments, utilities and businesses, was estimated 

to be around $300Bi (THE ECONOMIST, 2014), with the International Energy Agency 

(IEA, 2011) reporting that the same amount of investment was made to generate 

electricity from oil, gas and coal. However, a 2009 ScienceDirect paper (Marianne R., 

2009) showed that the actual energy saved, in several global energy efficiency 

endeavors did not have impressive results (Armel, et al., 2013). 

Experts postulate that the poor results stem from behavioral barriers (Armel, et al., 

2013), and some studies (Pereira, et al., 2012; Quintal, et al., 2010) have found that 

consumers progressively lose interest in eco-feedback solutions over time (about four 

weeks after their deployment); thus, diminishing the potential of energy savings.  

The ‘human element’ tends to reduce the feasibility of most solutions; the 

behavioral culprit is known as the “rebound effect” (Gillingham, et al., 2014). This 

occurs when the money that is saved through energy economies is used to buy new 

appliances; thus, generating a new cycle of increased power consumption. This 

phenomenon demonstrates that consumers would benefit from an ongoing solution that 

would maintain their understanding of consumption so they would continue to save 

energy. Moreover, spending billions of dollars, to install "smart meters", without first 

making a careful consideration of their ability to maximize energy efficiency, is also not 

a clever solution. 

Past studies by the American Council for an Energy-Efficient Economy (ACEEE) 

indicated that the most savings were achieved, depending on the level of consumer 

feedback information, which prompted behavioral changes (ACEEE, 2010). Reported 

energy savings were normally achieved by simple changes in consumer habits or by 

replacing low-cost, inefficient appliances, such as halogen light bulbs with LED bulbs, 

and investments in new energy-efficient equipment. 

More than fifty studies have attempted to investigate the effects of feedback 

information’s being shown on electricity bills. Significantly, results indicated that the 

best rates of saving were achieved when users were shown feedback such as appliance-

load information (Armel, et al., 2013). Armel’s research indicated that solutions based 

on appliance feedback increased savings by over than 12% using automated and 
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personalized recommendations, and by sending the information directly to customers’ 

smart phones or to dedicated displays inside their homes. 

According to the ACEEE (ACEEE, 2010), and as illustrated Figure 1, there was a 

correlation between the results of the level of feedback, given to energy consumers and 

the average percentages of savings. The shown characterization was based on EPRI´s 

first categorization (EPRI, 2009). 

 

 

Figure 1 - Average Household electricity savings by feedback [adapted from 

ACEEE (ACEEE, 2010)] 

 

In addition, utility companies also exhibit a growing demand for information about 

how consumers are using energy: which appliances are the ‘energy villains’, and at 

what time of the day will the demand for power increase? A deeper awareness of energy 

expenditure and the possibility of use-predictions will help the distribution sector make 

better contracts with the power plants; thus, reducing energy costs. Moreover, utilities 

want to be able to provide large demand side management (DSM) strategies in order to 

prevent demand peaks and overloads. For these reasons, electric companies require 

appliance-level metering to differentiate the individual loads from the global 

consumption.  
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Unfortunately, most utilities use intrusive methods to monitor their customers, such 

as the placement of smart plugs and circuit breakers that sensor and control appliances, 

individually. Smart equipment, with communication and metering features, are 

expensive ($25-$100+ per device) (Armel, et al., 2013). Their adoption can incur an 

extra cost of hundreds to thousands dollars per home or office. This solution would not 

be feasible for mass adoption and, in most cases, the payback on investment is 

uncertain. 

Nonintrusive Load Monitoring (NILM) is a relatively new term. Its purpose is to 

disaggregate global consumption down to appliance level, using only a single point of 

measurement, which is placed on the home breaker panel. Previously, a variety of 

methods have been proposed, to infer when appliances are turned on and off, using 

information taken from an analysis of current and voltage aggregated waveforms. Some 

methods used the same energy meters that were used by power utilities, to charge 

consumers. In more advanced solutions a custom designed meter was used to inform 

users about their consumption. 

Several NILM researchers have suggested using the data from the utilities’ already 

installed smart meters, to disaggregate power consumption. This would reduce the cost 

compared to using dedicated NILM-ready hardware. However, typically, most of 

current affordable smart meter solutions export basic data only (in some cases only 

energy values), with a long sampling period (five to sixty+ minutes) of aggregated load 

records. At these feature extraction rates, NILM’s methods remain very inaccurate for 

low power appliances and offer fair levels of confidence in the absence of a large a-

priori known reference database (Weiss, et al., 2012). 

In a 2014 study, the U.S. International Trade Commission (Alejandro, et al., 2014) 

showed that the smart meter market has grown quickly. They estimated that the global 

market for smart meters could rise, from USD 4Bi in 2011 to USD 20Bi in 2019, with 

the global market for smart grid equipment expected to rise to more than USD 400Bi by 

2020. In the United States, as shown in Figure 2, smart meter penetration rate was lower 

than 25% in 2014 (Alejandro, et al., 2014). In other developed countries, smart meters 

may already be a reality; however, the market for selling "NILM-ready" smart meters, 

to utility companies is huge and is expanding. 
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Figure 2 - United States Smart Meter Penetration by 2014 [adapted from (GTM 

RESEARCH, 2013)] 

 

 

Beyond that, in Brazil and other developing countries, the majority of electricity 

meters are still electromechanical induction watt-hour meters. Brazil´s government and 

utilities are planning to install 63Mi new smart meter units by 2021 (VEZ-BR, 2012) 

and in India, the government is planning to install 130Mi new units (VEZ-BR, 2012). 

Therefore, this shows that the smart meter market remains open to opportunities for new 

"NILM ready" hardware custom solutions, and is growing. 

Given this situation, we aim to contribute to NILM problem solving, by providing a 

methodology for feature extraction rate and feature selection1. The result of 

proposed methodology is the reduction of the amount of recorded data, necessary for 

NILM processing, and, therefore, communication bandwidth required, from smart 

meters to cloud-based servers, lowering the overall cost of the solution, while 

preserving similar levels on six metric scores for three different classification 

algorithms. The proposed methodology applies machine learning techniques to search 

for the lowest feature extraction rate necessary and then to achieve a feature ranking. 

Moreover, the methodology proposes a minimum set of electrical features, based on 

                                                

1 Main contribution of the thesis 
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feature ranking, which maintains equivalent levels, on the studied scenario, of 

classification accuracy for each one of the three NILM classification algorithms. 

Another outcome of this development is the delivery of a Brazilian appliance 

dataset2 for present and future NILM developments and research, as well as a novel 

method for mixing individual appliances’ high frequency measurements in order 

to create synthetic mixtures of datasets3. 

Additionally, this thesis will deliver a smart metering hardware platform4, which 

can potentially help energy consumers develop more sustainable habits. The proposed 

solution will collect data from a unique point of measurement.  

  
                                                
2 BRazilian Appliance Dataset - BRAD 

3 Will mix distinct time sampled appliance data to create simulated household aggregate data 

4 Hardware for NILM community 
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2. Nonintrusive Appliance Load 

Monitoring 

2.1. Background 

 

Nonintrusive appliance load monitoring focuses on researching how to identify 

appliances without ambiguity. If power consumption is assumed to be in discrete time, 

with real values ���� ∈  ℝ ∶ � ∈ [1, ], with 
 appliances, and  states for each 

appliance overall, an aggregate signal can be defined by the formula: 

 

���� = ����� + ����� + ⋯ + �!��� +  "      (2.1.1) 

 

where �#��� is a particular appliance’s consumption, 
 is the appliance index, " is noise 

and � ∈ [1, ]. Based on the principle of superposition, current and its product, power, 

could be expressed as the overlap of the individual measurements. (Prasad, et al., 2013). 

Therefore, a disaggregation problem aims to obtain every single appliance’s 

contribution �# given a combined ����. The number of appliances 
 and each 

distinctiveness characteristic is, in most cases, indefinite. Thus, most of these signatures 

must be learned, either individually or, in some cases, from an aggregate with 

supervised or unsupervised methods. The exact solution for NILM inference is known 

to be intractable (Pattem, 2012), but most NILM methods attempt to identify as many 

indistinguishable characteristics of an appliance (such as equipment fingerprints), as 

possible, to solve the problem. 

In general, NILM algorithms can be described in five steps (Berges, et al., 2011): 

 

I. Data acquisition –The voltage and/or current signals, from a home´s 

breaker panel, are acquired and digitalized; 
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II. Event detection – After observing one or more of the measurements that 

were obtained from the acquired data, events are detected and flagged for 

later identification.  

 

III. Feature extraction – Using the samples of an known appliance, electrical 

features are calculated, to measure the single characteristics of a piece of 

equipment, such as active power, reactive power, frequency, Fourier 

harmonics, the amount of samples, size of step change, transitory time etc.; 

 

IV. Classification – Events are labeled and clustered, using statistics or 

machine learning algorithms, to create a model of how events are designed 

by those systems; 

 

V. Energy computation – Using separate events and transitions, with 

associated power levels, the specific consumption of each appliance can be 

estimated, using multiple or single machine learning methods.  

 

Feature extraction is crucial for a complete load identification process. The 

process of extraction transforms an observation space into a feature space, which, 

generally, has fewer dimensions than the observation space (Lin, et al., 2011). The 

focus of past studies has been on which features are absolutely necessary, and sufficient, 

to achieve results, and how algorithms should process the data from the meter (Prasad, 

et al., 2013).  

George Hart (Hart, 1992) was a pioneer of this research and introduced an NILM 

load monitor in his article written for the Proceedings of the IEEE, in 1992. In this, he 

proposed a method to disaggregate appliances from single steady-state metering data, 

with step changes, calling it an Event Based approach. His work proposes an NILM 

solution for a whole-house power metering system, with different appliances 

overlapping their different consumption steps, as shown in Figure 3. 
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Figure 3 - Total Load vs. Time patterns of appliances [adapted from (Hart, 1992)] 

 

Hart’s main idea was to reconstruct the individual power that each load drew, using 

the aggregated information. In this way he could obtain information about specific 

appliances, in a non-intrusive manner, and without using any additional hardware to 

measure the individual appliances (shown in Figure 4).  

 

 

Figure 4 - Disaggregation of an overall signal into individual load appliances 
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Hart (Hart, 1992) proposed describing the use of measured active power and voltage 

to calculate "normalized power" as: 

P$%&'�t� � 	 ) ��*
+,-.�/�0

� P�t�    (2.1.2)  

 

His work suggested normalizing the drawn power by adjusting the measured voltage 

with nominal voltage values (120V USA), in order to deal with voltage fluctuations. 

Rapid step changes can give a voltage fluctuation of more than 10% and can affect the 

power consumption of loads. Hart’s normalization proposal is based on the load’s 

admittance (in siemens): 

Y�t� � 	 2�/�
+,-.3�/�       (2.1.3)  

which is a voltage independent property of a linear load, in preference of just power or 

current signatures. For non-linear devices, the generalization given was: 

 

P$%&'�t� � 	 ) ��*
+,-.�/�0

4 P�t�   (2.1.4)  

where β was empirically parameterized for each individual appliance. Hart’s tests 

suggested values ranging from (0.7, 2.4) for active power. His procedure for power 

normalization could also apply for reactive power. The measurement results are shown 

in Figure 5. 

 

Figure 5 - Signature space on a plane, active power vs. reactive power [adapted from 

(Hart, 1992)] 
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Hart (Hart, 1992) also suggested four different groups to characterize appliances; 

described as follows: 

 

I. On-Off Appliances – Appliances such as a light bulb or a water pump 

with only one on-off switch; 

II. Finite State Machines (FSM) or Multistate devices – Household 

appliances with a high-load, power-consumption profile such as 

refrigerators, air conditioners, washing machines and dryers. These 

appliances pass through definite states, using cycles of different power 

levels automatically or via human action; 

III. Continuously Variable Devices – Consumer appliances with a variable 

range of operations, such as dimmable lights, inverter controlled motors 

etc.; 

IV. Permanent Consumer Devices – Appliances which remain on for 

twenty-four hours a day, with approximately constant power consumption, 

such as security cameras and monitoring systems. 

 

Hart´s method only detects appliances from groups I and II. The power consumption 

graph for the three first groups is shown on Figure 6. 

 

 

Figure 6 - On/Off, Continuously Variable and Multistate Devices [adapted from 

(Zoha, et al., 2012)] 
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Several years after Hart’s research, Laughman (Laughman, et al., 2003) showed that 

the two-dimensional signature space, PxQ, became crowded whereas the number of 

loads increased, which generated ambiguity and indistinguishable results for the 

separation of loads. Furthermore, Laughman et al.’s illustrated their research with a case 

where the turning on and off of a computer and an incandescent light bulb were only 

distinguishable when a 3rd Fourier harmonic component (in phase) was used in event 

detection, as illustrated in Figure 7. 

 

Figure 7 - Computer and light-bulb in plane P x Q (up) and Q x 3rd harmonic 

(down) [adapted from (Laughman, et al., 2003)] 

Instead of steady-state detection, Laughman and his colleagues (Laughman, et al., 

2003) introduced transient detection. Employing this extra feature meant appliances 

could be distinguished via their intrinsic manufacturing characteristics, as the turn-on 

sampled transients could be compared with the pre-learned, known values of individual 

measurements, called "ground truth" data. 

Additionally, the identification of loads using transient and spectral analysis gives 

NILM the ability to detect loads that are continuously variable, instead of only FSM or 

On-Off devices. However, as previously stated, this requires a training period in order 

to assemble an a priori database of known devices and their transient waveforms. 

Regardless of the efforts made in NILM, its algorithms have only a marginal 

accuracy with low-power appliances. For this reason, the global disaggregation results 

for household appliances are accurate to only approximately 80% (Zeifman, et al., 
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2011). The major reason for this is the potential overlap between the different power-

drawing levels of appliances, which makes them indistinguishable. 

Notwithstanding that, steady-state and/or transient analysis of a load features, such 

as active power (P), reactive power (Q), transient waveform, harmonic components and 

their magnitudes, crest factor, current waveform, admittance and power factor have 

been used to assist in the identification of the individual appliance energy in specific 

NILM problem solving.  

Modern NILM systems, which have feature extraction rates that are larger than 1Hz, 

have the possibility to disaggregate a wider range of appliances. Armel and her 

colleagues (Armel, et al., 2013) made a review of publications about scientific energy 

efficiency and NILM, and related the feature extraction/sampling rate to the maximum 

number of detectable distinguishable appliances and their categories, as shown in Table 

2.  

Table 2 - Feature extraction/sampling rate vs. number of detectable appliances 

[adapted from (Armel, et al., 2013)] 

Feature 

extraction 

rate 

1 per 

15min~1h 
1 per 1s~1min 

1Hz to 

60Hz 

60Hz to 

40kHz 
> 1Mhz 

Number of 

Appliances 
~3 <10 10-20 20-40 40-100 

Type 

Continuous load, 
time-dependent 
and correlated 
with outdoor 
temperature. 

Refrigerator, 
ACs, heaters, 
pool pumps, 

washers, dryers 
etc. 

Steady State 
steps. Good 

range. 

Toasters, 
computers 

etc. 

Can differentiate 
even 2 light 

bulbs from the 
same 

manufacturer. 

 

2.2. NILM Overview 

A. I. Cole (Cole, et al., 1998) said, "Any load can be distinguished by its transient 

changes, its steady-state power levels, or some combination of the two". The objective 

of NILM is to recognize multiple individual loads in aggregate and to assign the energy 

for each appliance correctly. 
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 The correct assignment of disaggregated energy for each appliance is a complex 

process of recognition and classification, and multiple changes in the load states can 

give unclear results. Additionally, many loads have oscillating, transitory or ramping 

changes in their power waveforms, which hinder the disambiguation process. Therefore, 

whenever the magnitude of an electrical feature, from the various appliances, overlaps 

or falls below the measurement uncertainties, load recognition may not be ensured 

(Bouhouras, et al., 2012). For this reason, NILM researchers have begun to look for 

different methods to detect, learn and classify both transient and steady-state power 

transitions, in order to solve the disaggregation problem. 

The majority of NILM classification methods consider that only one appliance may 

be activated in one instance of time, using the "Switch Continuity Principle" (Hart, 

1992), which assumes that in a small timeframe, two or more appliances cannot be 

turned on or off at the exactly same moment. 

The identification and classification of existing NILM approaches are based on the 

multi-label classification techniques, used in the field of information theory. A 

classification learner maps a vector through different appliance labels, using historical 

data. According to Basu and his colleagues (Basu, et al., 2015), there are two broad 

approaches to handling these classification algorithms: the first is by problem 

transformation; that is reducing a multi-label problem into one or more single-label 

problems, such as SVM (Support Vector Machines) or DT (Decision Tree). The second 

is by using an algorithm adaptation method, such as ML-KNN (Multi-Label K-Nearest 

Neighbor), to modify existing single-label algorithms for multi-label classification. 

The Hidden Markov Model (HMM), and its variations, have also been used in 

NILM. This method uses the load measurements (observations) to find the best set of 

parameters, in order to maximize the probability of observing a sequence of particular 

events, in a given probability model. 

Electric loads can also be characterized by their front-end circuit topologies. This 

strategy makes it possible to extract common "fingerprints" for each group of 

appliances, and the resultant categories are described by Du, in his research work (Du, 

et al., 2015): 
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I. Category R (resistive loads) – There is no phase angle between voltage 

and current. The load usually contains a resistance connected to the 

front-end; 

 

II. Category X (reactive loads) – There is a large phase difference between 

voltage and current. Typically an inductance is connected to the front-

end circuit; 

 

III.  Category NP (electronic loads without power factor correction) – The 

current’s waveforms contains abundant harmonics. This normally 

consists of a rectifier, filters (EMI, voltage or current), and a DC-DC 

converter; 

 

IV. Category P (electronic loads with power factor correction) – Generally, 

this consists of a front-end EMI, a rectifier, a voltage regulator, PFCM 

(power factor correction module) and a DC-DC converter; 

 

V. Category T (linear loads) – Commonly consists of a transformer and 

other downstream electronics; 

 

VI. Category PAC (phase angle controllable loads) – The PAC equipment 

continuously adjusts its load current by controlling the firing angle of a 

switch (e.g. a thyristor or IGBT); 

 

VII. Category M (complex structure loads) – In this category, the current’s 

waveforms are made up of multiple categories - the result of a multiple 

front-end power-supply unit; 

As shown in Figure 8, an electric load can also be identified by its V-I trajectory 

graphical signature. Under this condition, the classification of an unknown load can be 

achieved by comparing its patterns with one of the known, listed categories and without 

using Fourier transformations or any frequency domain analysis. 
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In the NILM load detection process, variable and always-on loads require discreet 

techniques in order to be classified correctly. The classification of variable speed drives, 

power electronic controlled loads (inverters) and similar, are often labeled as non-

identifiable loads.  

 

 

Figure 8 - Normalized expected V-I trajectories of the seven load categories  

(a) R (b) X (c) NP (d) P (e) M (f) T (g) PAC [adapted from (Du, et al., 2015)] 

Wichakool and his colleagues (Wichakool, et al., 2015) presented a method that 

uses frequency domain and harmonic spectrum to identify power electronic controlled 

loads, by observing the intrinsic properties of a current’s waveform. Using sampled and 

synthetic waveforms of variable speed drives (VSDs), computers, light dimmers and 

other variable loads, to observe the common properties of the loads, such as periodicity, 

the presence of zero-current regions, symmetry and other features, with very promising 

results. 

The classification of NILM algorithms usually involves Event Based (EB) and Non-

Event Based (NEB) methods. Event based methods can easily detect on-off appliances 

and multistate devices (FSM) assuming the system has been previously trained, but they 
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usually have trouble distinguishing variable and always on loads. Conversely, Non-

event based methods generally have a higher computational complexity, and use the 

entire waveform, or a long time-series of computed features mean values, to evaluate 

problems. They employ data mining or hidden Markov modeling techniques and do not 

require any previous knowledge of the appliances (Pereira, et al., 2015). 

NILM algorithms have also been classified by their feature extraction/sampling rate; 

however, there is no consensus about the rates and related terminology. As an example, 

a recent work (Parson, 2014) classified High Frequency measurements as being a 

feature extraction rate that was greater than 1 Hz. Conversely, Patel’s work, from 2007 

(Patel, et al., 2007), put the High Frequency sampling rate between 50 kHz and 100 

MHz. 

This thesis used sampling rates of 10 kHz for current and voltage, which gave a 

large Fourier harmonic spectrum for measurements, at 60 Hz (Brazil, USA etc.) and 50 

Hz (most European countries etc.). Thus, as concerns the feature extraction rate, our 

measurements occurred from 60 Hz (~16.67ms) to 1/15 Hz (15s).  

In general, machine learning algorithms, as well as NILM classification methods, 

could also be categorized using their learning technique. Supervised, Semi-supervised 

and Unsupervised methods could be used for NILM problem solving. 

 
2.3. NILM Approaches 

 

2.3.1. Event Based Methods 

Recent Event Based (EB) implementations use digital "de-noising" to plane edges’ 

transition. A median filter is also widely used, but has the disadvantage of frequently 

smoothing edges (Liu, et al., 2014). Basseville (Basseville, 1986) was the first to 

propose a method for detecting sequential processes that he called the generalized 

likelihood ratio (GLR). A modified GLR detector was also implemented by Luo (Luo, 

et al., 2002), who benefited from a reduced number of parameters to be set.  

A group of researchers from CMU Inferlab (Berges, et al., 2011; Berges, et al., 

2009) used a modified version of the GLR to detect abrupt changes in power 
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measurements and a nearest neighbor approach, in Euclidean space, to perform NILM 

classification. 

Research from Carnegie Mellon University (Giri, et al., 2013) sought an automated 

EB unsupervised method, to label step changes in real power, using a pre-defined 

threshold (50W in their approach). When, on average, power measurement stays above 

50% of a previous event and for at least two seconds, transition is labeled as on. For the 

off labels, parameterization is to 80%. This step is characterized as event detection, as 

explained in item 2.1. 

In the Feature extraction step of their work (Giri, et al., 2013), researchers extracted 

three seconds of transient for each event and, subsequently, normalized it. The 

normalization process for on events includes four steps: (1) a smoothing process, done 

by a moving the average window of 10ms; (2) a threshold selection, calculating the 

RMS values of cycles and choosing the threshold using 5% of the lowest established 

value; (3) a non-negative threshold normalization, which removes the threshold offset, 

point-wise, and changes negative values to zero; and (4) normalization by maximum, 

where all the data were normalized by their highest RMS value. 

Feature extraction for off events was different, because off transients looked the 

same for all the devices they studied in their work (Giri, et al., 2013). The solution they 

adopted was to subtract the aligned current waveforms by phase (finding zero-crossing 

of the voltage) before and after the timestamp of event detection. The waveform 

generated by the difference (between the before and after measurement) was then 

normalized and used as a classification feature. 

Kamat (Kamat, 2004) used Fuzzy Logic theory, originally developed by Zadeh 

(Zadeh, 1973), to introduce a supervised pattern recognition approach, using specialist 

knowledge to identify appliance patterns, without the need for extensive training or the 

implementation of an artificial neural network. This technique proposed matching 

transients in waveform with a pre-set-up database. An algorithm compared two vectors 

(� and 6) of length .  

Ducange and his colleagues (Ducange, et al., 2014) also implemented an approach 

based on Fuzzy Logic Transitions for NILM multistate and on-off devices. Their work 

associated linguistic variables and triangular fuzzy sets and fuzzy transitions 7��8 → �#� 

through the :;-<=>? rule: 
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@8,#: :; ����� BC �8 D?E ∆� BC F∆G,HI,J
 D?E ∆K BC F∆L,HI,J

 <=>? ����� BC �# 

where S$ is a set of the working states of generic appliances; ∆P and ∆Q are linguistic 

variables defined from a variation of active power and reactive power steps for each 

appliance, in a given rule universe, as displayed in Table 3. 

Table 3 - Transition rules and working states of monitored appliances (Ducange, et al., 

2014) 

Appliance State Description If State is And ∆N is And ∆O is Then State is 

Food Cutter 
FC0 
FC1 

OFF 
ON 

FC0 
FC1 

FS10 
FS7 

FS13 
FS2 

FC1 
FC0 

Hair Dryer 
HD0 
HD1 
HD2 

OFF 
COLD 
HOT 

HD0 
HD1 
HD1 
HD2 

FS12 
FS5 
FS12 
FS5 

FS7 
FS8 
FS7 
FS8 

HD1 
HD0 
HD2 
HD1 

Refrigerator 

R0 
R1 
R2 
R3 

OFF 
PEAK 

ENGINE 1 
ENGINE 2 

R0 
R1 
R2 
R1 
R3 
R2 

FS13 
FS4 
FS13 
FS4 
FS8 
FS8 

FS14 
FS5 
FS14 
FS4 
FS5 
FS4 

R1 
R2 
R1 
R3 
R2 
R0 

Microwave oven 

MO0 
MO1 
MO2 
MO3 

OFF 
ON Power 1 
ON Power 2 
ON Power 3 

MO0 
MO1 
MO2 
MO2 
MO3 

FS10 
FS14 
FS3 
FS3 
FS9 

FS14 
FS1 
FS13 
FS14 
FS14 

MO1 
MO2 
MO0 
MO3 
MO1 

Certainly this approach is not feasible for a real world application, as it manually 

generates all the fuzzy rules and transitions for every appliance. However, if the rules 

and states could be automatically generated from previously-learned data, the fuzzy 

approach might guarantee a simple way to do state transitions on an EB NILM 

approach, with a very low computational cost. 

 

2.3.2. Non-Event Based Methods 

The labeling process for event based methods is considered an error-prone process, 

which could decrease the confidence of a classification method. Non-event-based NILM 

approaches eliminate the necessity to label every event, in available datasets, in order to 
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provide information about the "ground truth" data. Every feature extraction is used to 

determine the actual and future appliance status. 

Blind source separation (Cardoso, 1998), a signal processing subject, could also be 

used as a Non-Event Based NILM classification algorithm. Processing audio for channel 

separation– Independent Component Analysis (ICA) - where the aim is to disaggregate 

multiple sound sources, could be applied to NILM, which has electrical mixed 

measurements with appliances being their different sources. However, Parson (Parson, 

2014) described this kind of approach as not getting any benefits from the dependencies 

of metering correlation among sequential events and, said that it offers low scalability to 

a large number of simultaneous sources (the number of appliances in a home or office). 

Hidden Markov models have been widely used in the scientific community as 

machine learning algorithms (Ridi, et al., 2014). They are in the group of probabilistic 

temporal graphical models, and are predominantly acknowledged as useful in problems 

concerning temporal pattern recognition. HMM compute the probability of a particular 

sequence of events. 

Kim and his colleagues (Kim, et al., 2011) used four variants of a HMM to model 

data: the factorial hidden Markov model (FHMM); the conditional factorial hidden 

Markov model (CFHMM); the factorial hidden semi-Markov model (FHSMM); and a 

combination of FHSMM and CFHMM. These variants of the original HMM were 

proposed in order to incorporate additional features to be modeled, such as the time of 

the day, appliances’ dependencies and other sensor measurements. Data were collected 

from seven homes, over a six-month period, from different appliances, as illustrated in 

Figure 9. 

 

Figure 9 – Histograms of TVs, PS3 and XBOX of different homes [adapted from 

(Kim, et al., 2011)] 
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 Pattem (Pattem, 2012) also used a Viterbi algorithm to find the most likely state 

sequence and, in particular, to find the ´zero´ state (i.e. the state where all appliances are 

at start of measurement) with a high degree of confidence, thus preventing errors from 

one part of a sequence affecting the other parts. 

Ridi (Ridi, et al., 2014) also used HMM. This group of researchers used 0.1Hz as 

their feature extraction rate and a window length for each analysis of up to 50 seconds, 

so they could cluster the states of different appliance categories with a reasonable 

success ratio. 

 

2.4. Feature Extraction Rate 

 

2.4.1. Low frequency  

Low frequency, feature extraction rate algorithms, also called steady-state methods, 

aim to use the data that is gathered from existing installed utilities’ smart meters. 

Parson´s work (Parson, 2014) established a minimum feature extraction rate of 

approximately 10 seconds, to achieve reasonable NILM accuracy. The majority of 

NILM Low frequency algorithms, in the literature, have used feature extraction rates 

from 1Hz to 1/10Hz. 

However, most of these smart meters send measured data to utilities with a 

periodicity of fifteen or more minutes and show a reduced set of features; thus, they 

require the installation of extra custom-hardware (or, at least, modified billing meter 

firmware) to solve the disaggregation problem. 

Dinesh and his colleagues (Dinesh, et al., 2015) developed a method that could 

"tolerate very low sampling rates" (they said of 1 Hz or less) without any significant 

level loss in NILM metrics. Their method used an auto-correlation function matrix 

(ACM) and the Karhunen-Loève Transform (KLT) (Maccone, 1994), which is another 

expansive method of representing a signal spectrum, as an electrical feature 

measurement disambiguation, using voltage and current waveforms. 
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As a result, they (Dinesh, et al., 2015) computed the uncorrelated spectral 

components of a washing machine and an LCD TV, presented for both Fourier and 

Karhunen-Loève frequency domain information. Their results demonstrated a broader 

and richer orthogonal harmonic content for KLT, which suggested they might be useful 

and promising features for future NILM disambiguation analysis. 

 

2.4.2. High frequency 

High Frequency NILM methods that use a higher sampling and/or feature extraction 

rate, can provide better results when more appliances are in the mixture. Typically, 

these methods use transients to detect waveform changes, or, extended feature 

extraction. 

Feng and his colleagues (Feng, et al., 2013) used the waveforms of currents to take 

advantage of the harmonic features in the identification process. They used the odd 

Fourier harmonics, from 3rd to 15th, and their work combined eight similar types of 

active power loads (Compact Fluorescent Lamps - CFLs, PC´s and T5 lamps) mixed in 

a controlled test bed environment, with individual switches. Their results showed that 

when new features were combined with existent active and reactive power 

measurements, classification algorithms could increase disaggregation rates. 

A researcher who sought more features to assist in the disambiguation process, 

proposed the use of wavelet transform coefficients (WCTs), discrete wavelet transforms 

(DWT) and multi-resolution analysis (MRA) (Chen, et al., 2013; Chang, et al., 2014) 

for additional feature extraction. They also suggested the use of back-propagation 

artificial neural networks (BP-ANN) (Chang, et al., 2014) and inner product (Chen, et 

al., 2013) to resolve NILM disaggregation problem. Their (Chen, et al., 2013; Chang, et 

al., 2014) sampling frequency was 15 kHz and it included six different loads, with 

variable and multistate power loads. After processing the data, the achieved results 

were superior to those methods that only used P (active power) and Q (reactive power) 

as the electrical characteristics for disambiguation. 
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2.4.3. Very high frequency 

 

In 2007 researchers (Patel, et al., 2007) presented a new NILM method that 

explored the broadband electrical noise produced by the swift switch of electrical 

transient loads between hot and neutral (normal mode noise) and from neutral to ground 

(common mode noise). Patel (Patel, et al., 2007) stated that observed noise was close to 

AM radio frequencies and typically lasted only a few microseconds. Radio transient 

noise flows through power lines and can be detected at any electrical outlet. 

The device generated noise, returned to power lines, cannot surpass certain limits 

that are defined by the Federal Communications Commission (FCC, 2016), for a 

spectrum of up to 30 MHz. Patel’s research (Patel, et al., 2007) acquired data from 100 

Hz to 100 MHz. The selected point of measurement was a specific outlet in the home. 

This meant that the electrical measurement point did not necessarily have to be at the 

home breaker panel, in order to sample the complete current load flow.  

The test results, for event detection, were promising but, as expected, the system had 

some limitations to mass adoption: the hardware that generated such remarkable 

sampling rates was expensive. Nevertheless, this method is promising as a way of 

lowering installation costs and complexity, because it can be plugged into any outlet as 

an ordinary appliance; thus obviating the need for handling the home´s breaker panel. 

 

2.5. NILM Learning Process 

 

The process of classification is an extensive topic when discussing NILM 

approaches. Methods vary; some use supervised learning techniques that require 

training and validation from direct observations; while others use unsupervised learning, 

where an algorithm automatically detects steps and creates a self-labeling and clustering 

process. Algorithms that could be used, might range from the k-nearest neighbor 

(Pereira, et al., 2012) to Deep Learning techniques (Kelly, et al., 2015), using advanced 

neural and machine learning systems in order to achieve the correct regression and/or 

energy classification process. 
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Prasad (Prasad, et al., 2013) used a multi-algorithm approach, through a technique 

called a committee decision mechanism (CDM). This uses a voting scheme, of multiple 

classification algorithms, to solve NILM. The method performs successive eliminations 

for the classification filtering problem, where the results of each algorithm are evaluated 

one at a time, sorted by their computational effort, to distinguish multiple loads. 

Automatic clustering techniques that use unsupervised learning could also be used 

to discover the loads’ multiple power steps. In recent research, Giri (Giri, et al., 2015) 

proposed a method to create a clustering map, automatically, based on a variation of 

active (ΔP) and reactive (ΔQ) power and, a state transition model, using transition 

probability matrices and historical data, as shown in Figure 10. Bergman (Bergman, et 

al., 2011) suggested that genetic algorithms, and dynamic programming, could also be 

applied to build finite state machines (FSM) from the events that occurred in a temporal 

series. 

 

Figure 10 - Clustering results for a fridge, in the plane ∆P x ∆Q [adapted from (Giri, 

et al., 2015)] 

 

Additional approaches have been implemented using machine learning algorithms 

that fall within the multi-label classification, such as the boosting technique (Breiman, 

1998), a method which selects "weak learners" in a voting scheme, to create a "strong 

learner"; multi-label k-nearest-neighbor (ML-KNN) (Zhang, et al., 2007) a method that 

extends the single-label k-NN to a multi-label classifier; and back-propagation multi-

label learning (BP-MLL) (Zhang, et al., 2006), an extension of back-propagation 

algorithm. 
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Lin developed a Neuro-Fuzzy classification method, with a Fuzzy C-Means 

clustering algorithm (Lin, et al., 2014). Pereira (Pereira, et al., 2012) also references a 

Java machine learning (JML) and Weka APIs for NILM classification.  

 

2.5.1. Supervised learning 

At present, the methods that are conventionally associated with supervised 

approaches use previously human-labeled training samples to support their 

classification algorithms. However, the manual provisioning of labels, concerning the 

state of each appliance on a timeline, could potentially be at risk of human error in real-

life scenarios. Additionally, brand new appliances are released every day and number of 

manufacturers is growing exponentially, making such labeling almost impossible to 

maintain. 

Regrettably, manual labeling demands homeowners switch each monitored 

appliance and then label all the states separately. This task is inconvenient and future 

users may hesitate to accept this task (Iwayemi, et al., 2015). 

In an effort to create a signature database, that would support and help future 

supervised methods, Klein (Klein, et al., 2014) acquired data from a set of appliances 

such as refrigerators and freezers, microwave ovens, and washing machines. After 

processing the data, the researchers found similar characteristics in these classes. This is 

illustrated in Figure 11, which is uses the example of cooling devices. 

 

Figure 11 - Power signatures of consumer cooling devices from six different 

manufacturers [adapted from (Klein, et al., 2014)] 



 

26 

 

In 2011, researchers presented an interactive supervised learning method called 

dNILM (Bergman, et al., 2011). This distinct solution reacts continuously when a new 

appliance is found and, after asking users, it appends the new, unique appliance 

signature to a dynamic table in its memory. After insertion, a timeout counter begins, to 

prevent unused or broken electrical devices remaining in its memory indefinitely. 

 

2.5.2. Unsupervised learning 

Under NILM unsupervised learning, the labeling process is skipped and no human 

intervention is needed. The aim is to acknowledge the differences in features 

automatically and to cluster distinctive equipment together, using only aggregated data. 

Dynamic time warping (DTW) (Müller, 2007) is an example of a scalable unsupervised 

method, which does not require re-training of the entire dataset when new appliances 

are added to the set-up. 

Liao and his colleagues (Liao, et al., 2014) compared three different NILM 

unsupervised methods: decision tree (DT), dynamic time warping (DTW) and the 

hidden Markov model, on five distinct appliances: one toaster, a dishwasher, a washing 

machine with integrated dryer, a microwave oven and a refrigerator. Their results 

showed that each classification algorithm performed better on a specific kind of 

appliance, reinforcing the idea of the benefits of using multiple algorithms, for 

disaggregating several appliances. 

 

2.5.3. Semi-supervised learning 

Semi-supervised learning exploits the benefits of a limited quantity of previous 

knowledge, garnered from labeled data and the processing of large amounts of 

unlabeled data. The process of learning appliance signatures from one home to another 

is called generalization. Poorer results were always obtained when the generalization 

was applied. This approach aims to provide a stronger generalization of a hybrid, 

machine-learning algorithm. 

Support vector machine (SVM) methods, such as semi supervised support vector 

machine (S3VM) and transductive support vector machine (TSVM) are examples of 
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methods in this class. By definition an SVM constructs a hyperplane (n-dimensional 

space) which could be used for classification tasks. As a drawback to this method, the 

computational load of an SVM may need to be very high to ensure a reasonable 

outcome. 

Iwayemi (Iwayemi, et al., 2015) designed a semi-supervised method that returned 

promising results, even in generalization scenarios. However, no classifier is currently 

available, which works for any device and under all circumstances (Liu, et al., 2014). 

 

2.6. Privacy Concerns 

 

Today, automated systems that are able to obtain knowledge, from large amounts of 

data are a reality. "Big Data" is a huge trend in computer-aided analysis; however, the 

mining of personal data, to gather valuable information, brings questions about NILM 

usage. The extraction of valuable awareness about user behaviors is positive when it is 

done to improve efficiency in energy consumption. However, the utilities and 

companies that possess these data could easily discover other facts, such as when a 

consumer is at home, what time they took their last shower or when they watched 

television. 

If the aim is to safeguard privacy, it is mandatory to store data anonymously. 

However, in order to inform each user about their own consumption habits, NILM 

systems must process information in a personalized way. Thus, directly or indirectly, 

NILM solutions carry the risk of disclosing personal information in the disaggregation 

process. 

In research conducted in 2013, Chen (Chen, et al., 2013) associated appliances with 

daily activities. Researchers identified simple household tasks such as waking up, 

cooking, taking a shower, and arriving home with an average accuracy of around 85%, 

after 100 days of artificial intelligence training and 50 days of testing.  

Researchers (Alcala, et al., 2015) also used NILM to monitor the health of elderly 

people, living alone, which would seem a positive use of NILM behavioral knowledge. 

Using the recognition of the weekly usage from kettles and probabilistic models, the 

system triggered alarms when it detected a deviation in patterns of routine, permitting 
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earlier healthcare interventions in houses that had previously demonstrated a consistent 

routine in more than 80% of cases. 

However, NILM could potentially expose companies internal secrets to competitors, 

when used in industrial settings, revealing information about occupancy, server loads, 

and industrial processes (Adabi, et al., 2015) etc. Nevertheless, it is clear that the use of 

NILM could benefit most consumers, by improving efficiency in energy consumption 

and even changing how customers select and acquire their new household appliances. 

 

2.7. Energy household datasets 

 

Energy datasets are a basic requirement of NILM academic research, providing the 

means to compare multiple methods and algorithms’ performance using the same source 

of data. Both household (aggregate) and individual appliance energy data (ground truth) 

must be sampled to enable performance comparison over different techniques.  

Table 4 displays public datasets for NILM. The selection was made based on 

Bonfigli (Bonfigli, et al., 2015) and Monacchi’s (Monacchi, 2014) research. REDD 

(Kolter, et al., 2011) was the first to release a public household dataset that was 

available for NILM research. This dataset has been used extensively in NILM 

performance evaluation and contains both the data of aggregate power consumption 

(sampled at 15 kHz) and circuit-level data (up to four seconds for each measure). 

In 2015, researchers proposed (Pereira, et al., 2015) the creation of a standard file 

format for datasets, based on the standard, resource-interchange file format – waveform 

(RIFF-WAVE) format. The researchers remarked that the file format supports the 

storage of data, and the relevant metadata, for all NILM applications. Kelly (Kelly, 

2014) further proposed a standard metadata scheme to represent appliances, meters, 

buildings, and all known actors, which could be included in NILM research. It creates a 

tier-based model to describe how appliances and meters connections are interrelated. 

Geo-based and weather information could also be represented.  
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In other studies, researchers (Pereira, et al., 2014) provided detailed information 

about the included metadata, in SURF file format for an NILM Event Based dataset, 

with the associated timestamps and information about appliances. 

PLAID (Gao, et al., 2014) was designed to be a crowd-sourcing individual appliance 

dataset, which sampled voltage and current waveforms at 30 kHz. It sampled eleven 

different appliance types, from different manufactures and models, for a few seconds, 

and the data is available for public download. 

 

Table 4 – Energy Household Datasets  

Dataset Location 
Duration 

per house 

Number 

of 

houses 

Appliance 

sample 

resolution 

Aggregate 

sample 

resolution 

Features Sensors Reference 

ACS-F2 SWZ 1 hour N/A 10 sec 10 sec 
I, V, Q, f, 

Φ 

225 devices 
in total 

(10types) 

(Ridi, et al., 
2014) 

AMPds CDN 1 year 1 1 min 1 min 
I, V, pf, F, 

P, Q, S 
19 

(Makonin, et 
al., 2013) 

BERDS USA 1 year N/A 20 sec 20 sec P, climate 55 
(Maasoumy, et 

al., 2013) 

BLUED USA 8 days 1 
state 

transition 
label 

12 kHz 
I, V,  

switch-
events 

Aggregated 
(Anderson, et 

al., 2012) 

COMBED IND 
18 

months 
8 30 sec 30 sec 

8 
parameters 

200 
(Batra, et al., 

2014) 

ECO CH 8 months 6 1 sec 1 sec P, Q 6-10 
(Kleiminger, et 

al., 2015) 

GreenD AT/IT 1 year 9 1 sec 1 sec P 9 
(Monacchi, 

2014) 

HES UK 
1 or 12 
months 

251 2 or 10 min 2 or 10 min P 13-51 
(Zimmermann, 

et al., 2012) 

iAWE IND 73 days 1 1 or 6 sec 1 sec 
V, I, f, P, 
S, E, Φ 

33 sensors  
10 appliance 

(Batra, et al., 
2013) 

Pecan 

Street 

Sample 

USA 7 days 10 1 min 1 min S 12 
(PECAN 
STREET, 

2016) 

PLAID USA 
Few 

seconds 
55 30 kHz N/A V, I 

11 appliance 
types 

(Gao, et al., 
2014) 

REDD USA 3-19 days 6 3 sec 
1 sec & 15 

kHz 

Aggregate: 
V, P 

Sub meter: 
P 

9-24 
(Kolter, et al., 

2011) 

SustData PT 5 years 50 50 Hz 50 Hz 
P, Q, S, V, 

I 
50 

(Pereira, et al., 
2014) 

Tracebase DE N/A 15 1-10 sec N/A P 
158appliance 

(43 types) 
(Reinhardt, et 

al., 2012) 

UK-DALE UK 
3-

17months 
4 6 sec 

1-6 sec & 
16 kHz 

Aggregate: 
P 

Sub meter: 
P, switch-

status 

5 (house 3) 
53 (house1) 

(Kelly, et al., 
2015) 

UMass 

Smart 
USA 3 months 3 1 sec 1 sec 

Aggregate: 
P, S  

Sub meter: 
P 

25 circuits, 
29 appliances 

(Barker, et al., 
2012) 
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Unfortunately, there is no standardization, for datasets specifications, for a 

minimum sampling rate of aggregate data, a sampling rate of individual appliances, the 

number of appliances, or even any data format or associated metadata. NILMTK (Batra, 

et al., 2014) is an open-source toolkit for NILM which contains a parser for the various 

datasets available, as part of an effort to offer data interchangeability between the 

different datasets. Nevertheless, appliance generalization between different datasets is 

still is a difficult development.  

 

2.8. Metrics 

Differing NILM approaches and algorithms require an objective manner, to evaluate 

and compare performance. In order to achieve accurate characterization in NILM, a 

tradeoff will be necessary between sensitivity, when missing detections occur, and 

specificity, when false-positives are discovered. Researchers (Zeifman, et al., 2011) 

suggested using receiver operating characteristic (ROC) curve analysis (Egan, 1975) to 

improve the fine tuning parameterization of NILM methods. 

A set of metrics was also used, to compare applications in energy disaggregation 

researches. In Batra and his colleagues’ work on NILMTK (Batra, et al., 2014), and in 

other studies (Bonfigli, et al., 2015), researchers described each metric used in NILM 

and its mathematical definition and meaning. Their objective was to validate appliance 

states; for example, on or off (shown as P), and each energy contribution (stated as Q) 

from different perspectives, and assuming that both the classification of the correct state 

and the reconstruction of the power waveform were essential for a complete NILM 

algorithm.  

Thus, measured data, as real measurements from appliances, are defined as: 

• Q8 - energy measured of appliance �; 

• yS - measured state of appliance i; 

Reconstructed estimated data, as inferred output from the NILM algorithm, are defined 

as: 

• EVS energy reconstructed of appliance i; 
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• yW S reconstructed state of appliance i; 

where: 

• K is the number of appliances; 

• T is the number of sample time index; 

• t is the time index; 

and: 

• True positives (TP) are defined as: 

7� �Z ��P8 �� [�	F\		�PW8 �� [��	
]

8^�
	

• True negatives (TN) are defined as: 

7\ �Z ��P8 �� [__�	F\		�PW8 �� [__��	
]

8^�
			 

• False positives (FP) are defined as: 

`� �Z ��P8 �� [__�	F\		�PW8 �� [��	
]

8^�
				 

• and False negatives (FN) are defined as: 

`\ �Z ��P8 �� [�	F\		�PW8 �� [__��	
]

8^�
				 

 

This thesis selected the metrics that were used the most in previous studies, to 

measure NILM performance. They were defined as: 

 

I. Total energy correctly assigned (TECA) 

<>aD � bc	∑ ∑ |fI�g�hfiI�g�|	jBkb<lkb
m∑ 	jBkb fI

  

II. Normalized error in assigned power (NEAP) 

?>Dn �	∑ |�fIhfiI�|jBkb
∑ fIjBkb

    

III. Precision (P) – The ratio of correctly predicted ON observations to the 

total predicted ON observations: 

n � <n
<n � ;n 
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IV.  Recall (R) – The ratio of correctly predicted ON observations to all ON 

observations: 

o =
<n

<n + ;?
 

V. Accuracy (A) – The ratio of correctly predicted observation to the total 

observations: 

 D = 	 <np<?
<np;np<?p;?      

VI. F-measure / F-score (F1) - The weighted average of Precision and 

Recall 

;b � m.n.o
npo 	      

Empirically, we can infer that, as the complexity of the aggregated data increases, so 

NILM’s methods obtain a poorer performance. One example can be observed in the 

work of Kim and his colleagues (Kim, et al., 2011), where performance, which was 

measured by F-score, falls as the number of appliances is increased (shown in Figure 

12). Similarly, the same behavior is expected when sampling frequency, or the number 

of features, decreases. 

 

Figure 12 – Performance comparison of multiple models vs. number of mixed 

appliances [adapted from (Kim, et al., 2011)] 

Most implementations of NILM only compare the effectiveness of load level 

recognition rate with defined metrics. However, the efficiency of NILM algorithms also 

depends on the time it takes to compute the method, especially for those requiring real-

time applications (Bouhouras, et al., 2012).  
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3. Methodology overview 

The term ‘machine learning’ was invented by Arthur Samuel in 1959 (Koza, et al., 

1996). It refers to a computer’s ability to solve problems and to execute tasks without 

being explicitly programmed to do so. Today, in a world where computers “see” things 

and “understand” people’s voice commands; where cities are “smart”, human life is 

logged and connected twenty-four hours a day over social networks and sensing health 

and environment are a reality, developing systems to help analyze these vast amounts of 

data is crucial. 

Recent progress in the field of machine learning algorithms is formidable. However, 

large amounts of data are required for training large models successfully, including the 

highly advanced techniques of Deep Learning. These deeply structured and hierarchical 

learning mechanisms were inspired by nature, in a similar manner to the functioning of 

the brain’s neurons. 

As mentioned earlier (in Section 2.7), much effort has been made to create datasets 

that epitomize human behavior inside households, requiring the collection of years’ 

worth of data, to achieve the mass information required to train machine learning 

algorithms. 

A similar approach was successful in 1996 and 1997, when the supercomputer, IBM 

Deep Blue, (IBM, 1996) beat Garry Kasparov in a pair of six-game chess matches. 

Deep Blue mimicked tactics by learning many human chess moves. Unfortunately, this 

approach to the problem is limited by the creativity and intuition of the human brain. 

The AlphaGo Zero Project, developed a machine algorithm, to play the Chinese 

abstract strategy, 19 x 19 grid, board game, Go. This new version surpassed all previous 

versions of AlphaGo (including the Lee Sedol 9p player, version) in only forty days of 

training, entirely from self-play, and without human intervention or the use of human 

historical data (DEEPMIND, 2017). The technique used reinforcement learning, where 

a machine acts as its own trainer. As the algorithm plays, the computer tunes itself, 

creating a better and improved version of itself; thus, establishing cutting-edge artificial 

intelligence. Using this strategy, AlphaGo Zero showed unusual and non-trivial 

movements compared to humans, but they were still efficient and winning strategies. 

Scientists called this as machine intuition (Kohs, 2017). 
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This thesis takes the AlphaGo team’s approach as inspiration and proposes a new 

method for the automatic generation of non-trivial appliance dataset mixtures, which 

will also create a new category of synthetic datasets. The method, detailed in Chapter 4, 

will permit training to be as long as required, and will create a voltage and current 

mixture by using individual real data samples from single appliances. Hence, a synthetic 

mixtures generator develops the capability to generate innumerable singular 

combinations. 

Because of the potential importance of a widespread adoption of NILM and its 

positive consequences for society, we propose to move the research forward with 

various contributions. They are:  

(I) A BRazilian Appliance Dataset (BRAD); 

(II) A new method for creating synthetic dataset mixtures that uses voltage and 

current waveforms from individual appliances’ only;  

(III) A method for determining the minimum set of features (feature selection) 

and desired feature extraction rate, using three different disaggregation 

methods; and 

(IV) The development of custom hardware for energy and features 

measurements. 

This Chapter presents an overview of each of these contributions, explaining the 

methods used and referencing the chapters where they are detailed. 

3.1. Overview of BRAD 

In 2015, Adabi and his colleagues (Adabi, et al., 2015) postulated, "The required 

sampled training data period needed to achieve a certain high accuracy in pattern 

recognition for a specific algorithm decreases as the sampling rate increases, and 

increases with the number of devices whose signatures are in the data to be 

disaggregated". As seen in Section 2.8, algorithms’ performance drops, when the 

number of aggregated appliances is increased. 

Furthermore, using higher sampling rates produces key features and resources to 

distinguish overlapped appliance signatures. Zeifman’s studies (Zeifman, et al., 2011) 
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showed how an ordinary home might include anywhere from thirty to fifty different 

appliances and these numbers generally increase each year. 

Using a Yokogawa DL850EV ScopeCorder (YOKOGAWA, 2015), which was 

available at the LEMT Laboratory at COPPE/UFRJ, our first step was to acquire 

voltage and current signals, as illustrated in Figure 13. 

This thesis adopted a sampling rate of 10 kHz. This choice was made based on the 

analysis from a Chinese study (Liu, et al., 2014). They considered Fourier harmonics up 

to the 20th adequate electric features for disambiguation, and suggested the use of a 

sampling rate of at least 8 kHz for feature extraction. The Yokogawa DL850EV 

ScopeCorder works with sampling frequency-steps of 5 kHz, thus, the lowest rate after 

8 kHz was the rate used (10 kHz). Beyond that, Armel (Armel, et al., 2013) correlated 

sampling frequency intervals with the maximum number of distinguishable appliances, 

as listed in Table 2. Therefore, this suggests that using this sampling rate, the number of 

distinguishable appliances will be between 20 to 40 unique signatures. 

 

Figure 13 – Experiment’s setup using Yokogawa DL850EV 

We acquired up to four single-phase appliances at a time - the number was limited 

by the available current channels of the DL850EV - using the 127Vrms reference 

provided by the Rio de Janeiro energy distribution utility. A sample of waveforms is 

shown in Figure 14. It is important to highlight that the sampling procedure guaranteed 

that all activations of appliances, as states in a Finite State Machine, were recorded 
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entirely. The procedure forced all measured appliances into a comprehensive cycle for 

activating all power states. 

 

Figure 14 – Example of four individual current and voltage samples acquired by the DL850EV 

 

The list of selected appliances followed directives obtained from the PROCEL 

research (PROCEL, 2005) on the most-used appliances in Brazil. Thus, we included at 

least one appliance from each residential electricity category as follows: refrigerators, 

contribute to 22% of power consumption in Brazilian residences, air conditioning 

(20%), lightning systems (14%), televisions (9%), freezers (5%), sound systems 

(3%), irons (3%) and others (24%), including computers (desktops and laptops), and 

printers. Hair dryers, microwave ovens, dishwashers, washers and dryers were also 

included in current dataset. 

The availability of appliances was also a challenge, and we used several homes in 

Rio de Janeiro, Brazil, to achieve a total number of 94 appliances. The sampling of 

individual appliances was done randomly, and was limited by the maximum current of 

the selected transducer evaluated with DL850EV (100A @ 127Vrms). The duration of 

each measurement was done based on each complete appliance power cycle; taking 

from a few minutes (light bulbs, for example, turned on and off at least three times) up 

to 6h20m (a washer with integrated dryer through a complete activation). The complete 

list of acquired appliances is shown in Table 5. Details about the adopted file format 

and metadata are described in Appendix A. 
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Table 5 – List of the acquired waveforms of 94 different appliances 

Appliance Code Description Category 

hd_seagate_4tb External Hard drive Office and Computer 

Ibebedouro Drinking fountain Office and Computer 

Icafe Coffee maker Office and Computer 

mon_philips23led FullHD LED Monitor Office and Computer 

monitor_lg_29_wd FullHD UW LED Monitor Office and Computer 

monitor_s_23lcd FullHD LCD Monitor Office and Computer 

net_digital_sd SD Cable TV Tuner Office and Computer 

net_hd_digital HD Cable TV Tuner Office and Computer 

notebook_14_vaio Notebook Corei5 14LED Office and Computer 

pc_6cor_gtx960 PC with GPU Office and Computer 

pc_amd_apu PC with APU Office and Computer 

xerox_laser_mf Laser Printer Office and Computer 

air_fryer_ford Kitchen air fryer AC, Home & Kitchen 

ar_consul7500btu Window air conditioning AC, Home & Kitchen 

aspirador_po Vacuum Cleaner AC, Home & Kitchen 

coifa_electr Exhaust hood AC, Home & Kitchen 

ferro_brit_1120w Iron AC, Home & Kitchen 

filtro_gela_colr Water filter with cooling AC, Home & Kitchen 

fogao_dako_5boca Gas stove with electric starter AC, Home & Kitchen 

fogao_eletrico Electrical stove AC, Home & Kitchen 

foreman_grill Kitchen Grill AC, Home & Kitchen 

freezer_consul Freezer AC, Home & Kitchen 

frigobar_consul Small Fridge AC, Home & Kitchen 

gas_rinnai Water heater AC, Home & Kitchen 

geladeira_electr Fridge AC, Home & Kitchen 

grill_ford Kitchen Grill AC, Home & Kitchen 

Igeladeira Fridge AC, Home & Kitchen 

iogurteira Yogurt maker AC, Home & Kitchen 

lava_elect_10.5k Washing Machine AC, Home & Kitchen 

lavalouca_braste Dishwasher AC, Home & Kitchen 

lavaseca_10ksams Washing Machine with dryer AC, Home & Kitchen 

liquid_osterizer Blender AC, Home & Kitchen 

microondas_lg Microwave over AC, Home & Kitchen 

microondas_pana Microwave over AC, Home & Kitchen 

panela_walita Electrical pan AC, Home & Kitchen 

pipoqueira Popcorn maker AC, Home & Kitchen 

secador_taiffrs3 Hair dryer AC, Home & Kitchen 

steamer Steamer iron AC, Home & Kitchen 

waffle_maker Waffle machine AC, Home & Kitchen 

walita_processad Food processor AC, Home & Kitchen 

fluo_W_osram_!5W Fluorescent lamp bulb Lightning 

fluo_W_tasch_13w Fluorescent lamp bulb Lightning 

fluo_Y_18w_osram Fluorescent lamp bulb Lightning 

fluo_Y_kian_15W Fluorescent lamp bulb Lightning 

fluo_Y_light_9W Fluorescent lamp bulb Lightning 

fluo_Y_osram_13w Fluorescent lamp bulb Lightning 

fluo_Y_osram15w Fluorescent lamp bulb Lightning 
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Appliance Code Description Category 

fluor_Y_flc_23W Fluorescent lamp bulb Lightning 

halo_tasc_40w_cb Incandescent lamp bulb Lightning 

led_grow_28wrgb LED lamp bulb Lightning 

led_rzd80_5W LED lamp bulb Lightning 

led_Smart_7w LED lamp bulb Lightning 

led_W_ecp_9w LED lamp bulb Lightning 

led_Y_foxlux_10w LED lamp bulb Lightning 

led_Y_galax_4W LED lamp bulb Lightning 

osram_11w_fluor Fluorescent lamp bulb Lightning 

osram_5.5w_led LED lamp bulb Lightning 

osram_60w_halog Incandescent lamp bulb Lightning 

osram_7w_led LED lamp bulb Lightning 

osram_halogen_70 Halogen lamp bulb Lightning 

amazon_echo_dot Echo DOT home AI system Home Theater and Network 

android_mp Android Media Player Home Theater and Network 

harmonyhub Logitech Harmony hub Home Theater and Network 

ht_bluray_samsun Home-theater all-in one Home Theater and Network 

modem_net_aires Internet Cable Modem Home Theater and Network 

rec_denon_1403 Audio Receiver Home Theater and Network 

som_2.1_logitech Audio system Home Theater and Network 

tp_link_850re Wi-Fi repeater Home Theater and Network 

tplink_archerc59 Wi-Fi router Home Theater and Network 

tv_14_lg Small CRT Television Home Theater and Network 

tv_15_lg Small Flat CRT Television Home Theater and Network 

tv_50_plasma_pan Plasma TV Home Theater and Network 

TV_LG_50 LED TV Home Theater and Network 

xbox_one X-box one Home Theater and Network 

barb_philips_qcs Electric Shaver Others 

bose_mini2 Bluetooth sound system Others 

chrg_dash_one+ Cell-phone charger Others 

chrg_hoverB84W Hoverboard charger Others 

chrg_ipad10w Cell-phone charger Others 

chrg_iphone5w Cell-phone charger Others 

chrg_lg_8W Cell-phone charger Others 

chrg_orico40w Cell-phone charger Others 

chrg_samsung10w Cell-phone charger Others 

chrg_xiaomi_10w Cell-phone charger Others 

f38Wdh Cell-phone charger Others 

fragment_aurora Paper shredder Others 

furadeira_350w_b Drilling Machine Others 

furadeira_port Drilling Machine charger Others 

powersave_outlet Smart outlet meter Others 

sonnoff_1ch Smart relay Others 

ssocket_eekbes Smart outlet controller Others 

ssocketSWA1_bivt Smart outlet controller Others 

vent_teto_3vel Ceiling fan Others 

vent_teto_spirit Ceiling fan Others 
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3.2. Overview of synthetic mixture generator  

Using the individual appliances samples, we propose a method to mix individual 

measurements that will give an aggregated stream of synthetic data waveforms similar 

to those sampled in a real-life scenario. In addition, the proposed method is capable of 

controlling whether appliances are on and off in an environment and also the 

appearance times for each sampled domestic or industrial device. As previously stated 

in this thesis, the creation of a broad and comprehensive data stream is essential for 

successfully training large classification models. The proposed sequence for creating 

synthetic appliance mixtures is illustrated in Figure 15 and comprises four steps to 

prepare data for processing. The first step, sampling individual appliances, has already 

been described in Section 3.1, with the creation of BRAD. 

 

Figure 15 – Sequence for creation of synthetic data to different machine learning 

algorithms 

The next step of the proposed method concerns the synchronization of the phase and 

frequency of the voltage and current for all appliances. This is done to guarantee that, 

for all cycles of voltage and current, (1) all sampled cycles will have exactly the same 

number of samples; thus, forcing cycles to have the same oscillating frequency	ω�t�; 
and (2) all cycles must be in-phase	ϕ�t�. The combination of these two premises 

enables us to merge individual current waveforms by simply manipulating the sampled 

data.  

Frequency and phase are interrelated by: 

t��� � 	 uv�g�ug                       (3.2.1) 

 

���� � 	��0� �	x t��y����y�g
*                     (3.2.2) 
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where ω�t� is the angular frequency and ϕ�t� is the phase of the fundamental frequency 

in a sinusoidal signal. 

The purpose of a phased-locked loop (PLL) is to replicate and track the frequency 

and phase presented at input, at its output, and preferably without offset, allowing one 

oscillator to track with another. In this case, a complete feedback system includes a 

VCO at output, a phase detector and a low-pass loop filter (UCSB, 2011).  

In order to measure the frequency and phase of voltage channels and, consequently, 

the current channel, we proposed using a PLL algorithm, which would provide the 

phase ϕ�t� and frequency ω�t� of the original signals. The general scheme for a PLL is 

illustrated in Figure 16. 

 

 
Figure 16 – Description of a phased-locked loop (PLL) general scheme for tracking and locking 

frequency and phase 

 

The synchronization process provided phase	����, as a sawtooth waveform, as 

illustrated in Figure 17, and, as a result, the number of samples per acquired cycle. We 

evaluated that each cycle of voltage and current would not present the same number of 

samples, because the sampling rate (10 kHz) and voltage fundamental frequency (60 

Hz) were not multiples. The ratio between both frequencies was, in most steady state 

measurements (excluding starting and ending sampled data), a number between 166 and 

167 data points. Thus, it is proposed that, for each cycle which does not equal 167 

points, a resample be made to achieve a new simulated sampling rate of 10,02kHz, thus, 

forcing all the cycles to equal 167 points. 
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Figure 17 – Example of a PLL phase ���� lock as a normalized sawtooth waveform 

Now, with all the waveforms resampled and synchronized (see further details in 

Sections 4.6 and 4.7) new mixture scenarios can be developed synthetically. This is 

achieved by manipulating individual appliances’ current channels as an aggregate - the 

last phase of proposed method. Using Kirchhoff's circuit laws, and the superposition 

principle, it is possible to infer that, for linear systems, an aggregate of two or more 

currents, flowing into a node, could be represented by the sum of each current 

separately.  

Therefore, using previously synched, resampled appliances’ waveforms, each 

current cycle could be merged randomly; thus, creating a synthetic current mixture. In 

addition, we propose to select the main voltage channel using the longest duration 

sampled voltage from the set of appliances. Synthetic datasets could perform sets of 

appliances with or without repetition, by combining M by N appliances as needed (with 

M being the number of appliances to be combined and N being the minimum number of 

each appliance’s appearance, proportioned over all datasets).  

Therefore, we used ten non-repeated appliances per synthetic generated data stream 

mixture; so, as result, each appliance appeared at least ten times in 93 generated 

datasets, using a “branch and cut” optimization algorithm. The full description and 

results of creating random mixtures is detailed in Section 4.7. 

 

3.3. Relevant Features 

The purpose of NILM is to disaggregate energy. Therefore, for each individual 

appliance, active power (P) was computed as a main feature. In 2012, Pattem (Pattem, 

2012) showed that active power (P), reactive power (Q) and Fourier harmonic 

components were sufficient to detect most appliances (~90%). Unfortunately, 
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researchers didn’t define exactly which set of features was capable of disaggregating 

which category of the appliances for each NILM method tested. 

 Therefore, based on the preceding chapter’s examination of scientific papers 

concerning the state of the art of NILM, we compiled a list of the more prevalent 

features for both aggregate and ground-truth data. The listed features are described in 

Table 6. 

Table 6 – Thirty selected features for offline computation 

Feature Representation or Unit Extraction Rate 

IRMS A 16.67ms to 15s 

Crest Factor Dimensionless 16.67ms to 15s 

Active Power W 16.67ms to 15s 

Reactive Power VAr 16.67ms to 15s 

Apparent Power VA 16.67ms to 15s 

Non-Normalized Fourier Transform Spectrum up to the 

25th harmonic, including fundamental 

One value for  

each 60Hz harmonic 
16.67ms to 15s 

An example of the five features (root mean square (rms) voltage - V, root mean 

square current - I, active power - P, apparent power - S, reactive power - Q) over feature 

measured samples (x axis) is shown in Figure 18, and is measured from a LED light 

bulb. 

 

Figure 18 – Example of a set of features from a 5.5W LED light bulb 

The algorithms that computed features were previously tested using synthetic 

sinusoids which generated different in-phase harmonics’ components, with assorted 
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amplitudes, in order to guarantee correct feature extraction for each appliance. A sample 

of a synthetic Fourier spectrum analysis is shown in Figure 19. It has a sinusoid with 

90% of the 2nd harmonic, 70% of the 3rd harmonic, 50% of the 5th harmonic, 30% of the 

7th harmonic, 20% of the 9th harmonic and 10% of the 11th harmonic. We applied Zero 

padding and a Blackman window for the Fourier analysis to provide a better resolution 

of the sampled data. The software was developed in Python, using auxiliary libraries to 

calculate features as NumPy 1.14.0 (NUMPY, 2017) and ScyPy 1.0.0 (SCYPY, 2018). 

 

Figure 19 – Example of a Fourier transform calculation using a synthetic sinusoid with 

pre-defined harmonic spectrum content for testing 

Note that the individual 10 kHz data samples from the voltage and current 

waveforms were not used by this thesis. The raw data was considered inadequate for 

streaming over actual smart meter communication channels’ bandwidth. However, 

manipulation of waveforms could be used in future works, to generate more features 

and to exploit more advanced and distinctive variables.  
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3.4. Overview of feature extraction rate and feature 

selection  

As noted in Chapter 1, NILM platforms have the potential to improve energy 

efficiency in most residential scenarios. Unfortunately, the use of smart meters requires 

a great deal of new telecommunications infrastructure and storage capacity, as 

illustrated on Figure 20. Utilities currently use remote smart metering, in order to avoid 

field services, for example to remove the need for manual data collection from power 

meters. 

 

Figure 20 – Actors involved in the smart metering process 

 For the utilities, each user that sends data to a datacenter represents a pre-defined 

cost for the telecommunications channel and the storage of historical data. However, 

billions of energy users in every big city around the globe would need to be attached to 

a smart grid infrastructure. Consequently, reducing the amount of generated data to be 

transmitted and, consequently, processed and stored becomes a binding premise for the 

success of load disaggregation technologies mass adoption. With this in mind, we 

propose the development of a method to reduce the amount of data transferred, by 

answering two questions: 

Q1. Given a set of calculated features, what is the minimum feature 

extraction rate required, to preserve similar levels of 

disaggregation performance?  

 

Q2. Given a defined feature extraction rate, what is the minimum set 

of electrical features, obtained from the aggregated household 

data, which will maintain equivalent levels of accuracy as the 

maximum extraction rate?  
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As described in Section 2.8, we can infer, empirically that as the complexity of the 

aggregated data increases, NILM’s methods obtain a poorer performance in metrics. 

Therefore, we expect the same behavior when data transfer is decreased, by dropping 

the feature extraction rate, or the number of extracted features, as shown in Figure 21. 

 

Figure 21 – Expectation for performance of NILM by the reduction of data transfer  

In order to evaluate NILM’s performance, we used six metrics (as listed in Section 

2.8); each one defined as a Metric Score. In our quest to find an optimum combination 

of performance and feasible computing time, we also included two more metrics to 

assist in the evaluation of the problem: (1) Fit time - the required time for the training 

process of the NILM problem solving algorithm and, (2) Predict time - the time required 

to formulate predictions about load disaggregation. Finally, eight Metric Scores were 

used to evaluate performance: 

I. Total energy correctly assigned (TECA) 

II. Normalized error in assigned power (NEAP) 

III. Precision (P)  

IV. Recall (R)  

V. Accuracy (A)  

VI. F-measure / F-score (F1)  

VII. Fit Time (training) 

VIII. Predict Time 

To find the desired minimum feature extraction rate, we propose to make a 

comprehensive survey over an interval of extraction rates, measuring all eight Metric 
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Scores; thereafter, to discover when performance drops below a chosen set point. In 

order to achieve this, the first step of proposed method is to identify the maximum value 

for each metric displayed by a NILM classification algorithm. As previously stated, we 

expect that the maximum disaggregation performance will be achieved using the 

maximum feature extraction rate. 

As described in Section 3.3, we adopted a sampling rate of 10 kHz for both voltage 

and current channels. After a consideration of the premises of earlier researches (see 

Chapter 2 of this thesis) concerned with feature extraction rate selection, we defined 

rates empirically, in an interval between 60Hz (period of 16.67ms) and 0.067Hz (period 

of 15s) in order to evaluate our results. 

The seventy one (71) pre-defined period intervals, listed as feature extraction rates, 

are displayed in Table 7. For simplification, we adopted a specific notation for feature 

extraction rates by numerically counting the number of 60Hz cycles. For example, one 

(1) cycle rate represents a 16.67ms period, and nine hundred (900) cycles rate, is a 15s 

period, all referenced to a 60Hz voltage frequency. 

Table 7 – The pre-defined feature extraction rates intervals 

Period start Period end Period intervals 

From 1 cycle (16.667ms) to 60 cycles (1.000s) 60 bins (1, 2, …, 60 cycles) 

From 61 cycles (1.167s) to 100 cycles (1,667s) 4 bins (70, 80, 90, 100 cycles) 

From 101 cycles (1.683s) to 149 cycles (2,483s) 1 bin (120 cycles) 

From 150 cycles (2.500s) to 300 cycles (5.000s) 4 bins (150, 200, 250, 300 cycles) 

From 301 cycles (2.517s) to 900 cycles (15.000s) 2 bins (600, 900 cycles) 

 

This means that, using the full set of 30 features (as detailed in Section 3.3) to train 

and predict load disaggregation with synthetic datasets, the proposed method will plot 

each Metric Score alongside the feature extraction rate interval. We propose to establish 

an acceptable metric score value as a set point for each best metric score, which we 

expect to be at the maximum feature extraction rate (defined as a number of 60Hz 

cycles). Thus, whereas the feature extraction rate (displayed in cycles) advances, and 
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each metric score starts to fall, the minimum feature extraction rate is determined when 

acceptable metric score is achieved. We used 5% less than the best metric score as a 

heuristic premise value for the acceptable metric score. Figure 22 shows our proposed 

scheme to find the minimum feature extraction rate.  

 

Figure 22 – Scheme for finding the minimum feature extraction rate for an appliance 

 

Furthermore; more than just reducing the feature extraction rate, a smart selection of 

a set of features also guarantees that any data that does not need to be transferred and 

stored is expunged. This is a useful point, given that redundant or irrelevant features 

could potentially complicate computational models, extend training and predicting 

times, and reduce generalization (Bermingham, et al., 2015). 

Feature selection algorithms are usually categorized as (1) filter methods: only the 

intrinsic correlation between the properties of data are scored, thus, features with low 

scores are removed; (2) wrapper methods: different sets of features are evaluated, 

coupled with a computational model (for regression or classification); and, (3) 

embedded methods: a feature’s importance is obtained directly by a training model 

(Huijskens, 2017).  

Feature selection has been studied extensively and several algorithms have already 

been proposed to realize an effective selection of discriminant features. In an attempt to 

improve this analysis, we started using three different, widely-used algorithms for a 

further analysis of their performance in the feature selection process. 
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Apart from NILM, the AdaBoost algorithm (Freund, et al., 1997) was used in 

previous research (Silapachote, et al., 2005) for feature selection within the problem 

area of facial recognition. Another work (Zhou, et al., 2007) used AdaBoost for feature 

selection in acoustic event detection, to select features that outperformed classical 

speech feature sets. Wang and his colleagues (Wang, 2012) also mentioned AdaBoost 

as a widely used algorithm, which offered a promising performance for feature 

selection. 

Other researchers proposed a multi-class exponential loss function with low 

computational cost (Zhu, et al., 2006) as a method of extending the original AdaBoost 

algorithm (Freund, et al., 1997) in order to solve multi-class classification problems. 

The implemented algorithm, detailed in their work (Zhu, et al., 2006), was called 

AdaBoost ‘Stagewise Additive Modeling using a Multi-class Exponential’ (SAMME) 

loss function. After examining the studies mentioned above, and previously, we selected 

multi-class AdaBoost SAMME as the first algorithm to be analyzed. 

Mutual Information (Kozachenko, et al., 1987) measures the mutual dependence, 

or the amount of information, between two random variables. This concept is linked to 

the entropy of a variable, an important subject in the Information Theory field, and has 

been detailed in Ross’s work (Ross, 2014). Cang and his colleagues (Cang, et al., 2012) 

used feature selection, using Mutual Information, in three experimental classification 

problems, finding that it was an efficient, robust and stable method. In 2014, researchers 

(Vergara, et al., 2014) presented all of the successful, state-of-the-art feature selection 

methods based on mutual information field. We have also chosen to use Mutual 

Information for feature selection. 

Within the subject field of NILM, one study on feature selection 

(Sadeghianpourhamami, et al., 2017) proposed using a Random Forest (Ho, 1995) 

algorithm as the main classification model. Similar algorithms, such as Extremely 

Randomized Trees (Extra-Trees) (Geurts, et al., 2006), have also been used 

successfully for feature selection in other subjects, such as polarimetric synthetic-

aperture radar (SAR) image classification (Zou, et al., 2009), seamounts classification 

derived from bathymetry data (Lawson, et al., 2017), protein disorder prediction (Smith, 

et al., 2018), and has even proved to be efficient with noise data. This has been 

therefore selected as the last algorithm to be evaluated. 
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We propose a method based on recursive feature elimination (RFE) (Guyon, et al., 

2002), to determine which minimum sets of features are strongly correlated. The 

proposal begins by constructing a classification model using all the features and 

evaluating its performance using the (previously listed) eight Metric Scores. The second 

proposed step of the method will use a greedy solution, to rank feature importance using 

the three feature selection algorithms: mutual information (Ross, 2014); a multi-class 

AdaBoost (Zhu, et al., 2006) and extra-trees (Geurts, et al., 2006).  

After a supervised analysis of the generated ranking, all features with an importance 

below an empirically pre-defined parameter will be expunged from the main set of 

features. It should be noted that the proposed feature selection is a heuristic procedure 

which does not corresponds to the best feature set. However, the use of this procedure is 

intentional in that it allows each high-correlated feature to appear more than once in a 

set. 

From the three different sets, obtained from the feature selection algorithms, we 

propose to continue on to a validation of the sets, for different NILM solving methods; 

checking for robustness, accuracy and stability of the disaggregation process. 

In line with a comparison of previous studies, published by the Imperial College 

(Kelly, et al., 2015) and COPPE/UFRJ (Nascimento, 2016), our validation of the 

disaggregation methods will not use algorithms to solve regression problems 

(reconstructing the output waveform). Instead, the focus will be on classification 

algorithms, using quantized pre-clustered power outputs, as each appliance is declared 

as a finite state machine (FSM). As Nascimento pointed out, in his dissertation 

(Nascimento, 2016), models, where each state was associated with a power value given 

by distribution, appeared to have better performance, for inferring and correctly 

classifying estimated individual energy contributions, than regression algorithms. 

 
3.5.  Overview of quantization of active power  

Logically, the disaggregation problem in NILM is a regression problem. This means 

our development must: 

i. Reconstruct active power demand,  
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ii. Correctly assign power consumption, and 

iii. Establish turn on and off moments of each appliance.  

 However, regression problems are usually difficult to develop in machine learning 

systems, for the most traditional L2 metric criterion, as they suffer from the presence of 

outliers and this can raise the importance of meaningless features. For this reason, this 

thesis proposes to manage NILM problems using a different approach. We propose 

quantizing active power outputs from appliances, using an unsupervised clustering 

algorithm. An example of quantized active power (P) output is illustrated in Figure 23. 

In this manner, the algorithm could automatically determine the clusters values, 

associating their active power (P) values as a state of a FSM for each appliance. In this 

way we could manage the NILM problem as a classification problem. 

 

 

Figure 23 – Quantization of active power (P) by clustering near measurements in a fixed state 

Clustering algorithms, with various implementations, are widely available in 

scientific papers. Out of the possible available algorithms in literature, we found that the 

approach of Density-based spatial clustering of applications with noise (DBSCAN) 

(Ester, et al., 1996), that was implemented by the Hierarchical Density-Based Spatial 

Clustering of Applications with Noise (HDBSCAN) library (McInnes, et al., 2017), 

presents good performance and scaling for massive datasets implementation on Python. 

The quantization of active power, with detailed parameterization, which will be 

described in Section 5.1, creates predefined levels (quantization) in order to reduce 
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number of possible outputs for all appliances, from two (2) to six (6) cluster bins. An 

example of both clustered and original active power is shown in Figure 24. The green 

line is the output of HDBSCAN algorithm, as detailed in the HDBSCAN library 

documentation (McInnes, et al., 2017). 

 

Figure 24 – Stacked original active power (blue) and clustered output (green) of a 15 inch TV 

alongside measured samples in x axis 

 

3.6. Overview of classification algorithms 

 

Outside of the previously stated algorithms for choosing the set of features, the list 

of classification methods is extensive. Moreover, the correct energy classification of 

individual appliances on NILM is a finely-tuned exhaustive recursive development. 

Each algorithm requires multiple fine-tunings of its parameters and different levels of 

computational resources.  

After feature extraction of the mixtures, and the quantization of the sampled 

individual appliance active power (P), called ‘ground truth’ data, the next step of this 

study is to train machine learning models to predict load disaggregation, as illustrated in 

Figure 25. Therefore, we propose to evaluate three different supervised classification 

algorithms, thereafter providing three trained models for each appliance-feature set, 

in order to complete a comprehensive comparison of the results. 
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Figure 25 – Training with appliance and mixture voltage and current samples 

 

The input for each training model is the normalized features set, which standardizes 

features by removing the mean and scaling to unit variance; thus, forcing all features to 

have variance of the same order and to be centered on zero. The quantized active power 

(P), known as ‘ground truth’ data, is used as the output to be fitted. The proposed 

architecture for disaggregating appliances is shown in Figure 26, where the stream of a 

normalized feature sets is multiplexed for several pre-trained classifiers. 

For clarification, the proposed method provides twelve different trained models, for 

each appliance, one for each of the three classification algorithms, by each one of the 

four features sets: (1) using a full set of 30 features; (2) using mutual information (Ross, 

2014), (3) using multi-class AdaBoost (Zhu, et al., 2006), and (4) using extra-trees 

(Geurts, et al., 2006).  

 

 

Figure 26 – Proposed scheme for individual classification for each appliance as a pipeline 
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Logistic Regression was first introduced by Berkson (Berkson, 1944) in 1944, and 

has been widely used in social and biomedical sciences (Allison, 2015) since then. 

Despite its name, Logistic Regression, or the logit model, estimates probabilities 

between independent variables with pre-trained categories of dependent variables. 

Multi-class logistic classifier evaluates a Softmax function that turns scores, or logits, 

into proper predictions probabilities for each output class. Details about the algorithm 

are explained in Kleinbaum and Klein’s book (Kleinbaum, et al., 2010). 

Outside the field of NILM, Logistic Regression has been widely used for subjects 

from statistical models in epidemiology (Clayton, et al., 1993) to language recognition 

(Leeuwen, et al., 2006). Two articles (Shulga, 2018; Allison, 2015) reinforced the 

importance of Logistic Regression as an important model to be evaluated. Thus, the first 

classification algorithm to be tested by this thesis is Logistic Regression, and uses the 

implementation described by Freedman (Freedman, 2009). 

Support Vector Machines (SVM), described in detail by Campbell (Campbell C., 

2011), have been previously used for financial time series forecasting (Tay, et al., 

2001), text categorization (Joachims, 1998), gene selection for cancer classification 

(Guyon, et al., 2002) and other machine learning applications. Formally, classification 

tasks from SVM constructs a set of hyperplanes (or a unique hyperplane) in high-

dimensional space (or infinite dimensional space) in order to separate the nearest 

training data points into different classes. Due to its prominence as a classification 

algorithm this study selected SVM as the second classification algorithm to be 

evaluated. The implementation used by this thesis, Support Vector Machines with 

Support Vector Classification (SVC), is detailed in LIBSVM (Chang, et al., 2013). 

Deep Learning, a metaphoric expression, is an extension of Artificial Neural 

Networks, with improvements having been made to create deeper and larger artificial 

neurons connections. Its advanced mathematical models try to mimic the activity of the 

brain’s neo-cortex, where approximately 80% of human thinking occurs (MIT 

Technology Review, 2013). Huge companies have applied Deep Learning to several 

hardware and software solutions; ranging from voice recognition (Amazon Alexa, 

Google Home and Apple Siri for example) to image recognition where, since 2015, 

algorithms (Vanhoucke, et al., 2015) have surpassed humans in fast image recognition 
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tests. Thus, the evaluation of a model that uses this technology is clearly promising as a 

potential solution to the disaggregation problem. 

However, creating deeper neuron networks introduces many training problems, such 

as overfitting. Deep Learning concepts such as layers, activations, initializers, 

optimizers and regularization methods are summarized below in order to mitigate those 

related problems. 

Dense Layer 

Dense layer in Deep Neural Networks is a fully connected artificial feed-

forward neural network. Neurons can contain linear or non-linear activations 

and, when combined, have the potential to create a sophisticated universal 

approximator. 

Activations 

Each neuron in an artificial neural network has an activation function, 

describing how it works intrinsically. Activations map non-linear or linear 

functions, using training weights and bias, in neurons connections. Several 

activation functions have been developed over the years, ranging from the 

simple linear function:  

P��� =  z� ;         

To a non-linear tanh: 

�(�) = tanh (�) =
~�h~��

~�p ~��
 ,  

as shown in Figure 27 (a); 

Passing by the rectified linear unit - ReLU (Nair, et al., 2010): 

_(�) = max (0, �),  

as shown in Figure 27 (b).      
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Figure 27 – (a) tanh or sigmoid shape activation and (b) rectified linear unit (ReLU) 

Early stopping 

The Oxford English Dictionary (OXFORD, 2018) defines overfitting as 

“The production of an analysis which corresponds too closely or exactly to a 

particular set of data, and may therefore fail to fit additional data or predict 

future observations reliably”. In machine learning, overfitting impairs a trained 

model’s ability to generalize about unseen datasets, by creating a model with 

more parameters than necessary.  

For this reason, artificial neural networks and, consequently deep learning, 

developed multiple techniques to prevent overfitting. As shown in Figure 28, 

one efficient method is to discontinue training when the loss of validation 

dataset stops decreasing and starts to rise. At that specific moment, the model 

starts to memorize training data samples rather than being able to generalize 

and “understand” training. 

 

Figure 28 – Early stop moment 
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Dropout 

Dropout (Srivastava, et al., 2014) is a technique to prevent overfitting in 

large and deep networks, where random activations between artificial neurons 

are dropped, preventing them from co-adapting too much. This algorithm 

promotes robustness in training, by developing a consensus of an ensemble, 

where different areas of a network are activated, resulting in redundant 

training, as shown in Figure 29.  

 

Figure 29 – (a) Fully connected neural network and (b) Dropout applied on neural 

model 

Batch normalization 

Training Deep Neural Networks is a time-consuming task. The majority of 

previous research into Deep Learning has used specialized hardware, such as 

graphics processing units (GPU) or tensor processing units (TPU), to accelerate 

the training process.  

In the search for potential improvements to the software, a team from 

Google (Ioffe, et al., 2015) developed a technique, which they called Batch 

Normalization (BN) that reduces internal covariate shift by normalizing layer 

inputs. This technique achieved same accuracy with up to fourteen-times fewer 

training steps (Ioffe, et al., 2015) in an image recognition dataset.  
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Initializers 

Each artificial neural network “synapse” must be initialized with values for 

weight and bias. Assorted distributions were created for different purposes, 

enabling designers to choose between then. However, each distinct distribution 

contributes differently to network convergence. In 2010, a work (Glorot, et al., 

2010) presented the Xavier normal initializer. 

Optimizers 

Classic neural networks, calculate the gradient descent of an artificial neural 

network many times, in order to adjust weights and bias. The Stochastic 

Gradient Descent (SGD) optimizer, detailed in the work of Bottou and his 

colleagues (Bottou, et al., 2008), gets a computational advantage over classic 

gradient descent (GD) by calculating the gradient over only some parts of the 

entire dataset. 

SGD has also improved on classic GD algorithms, in order to avoid a 

training problem that is known as “Local Minima”. This is where it is possible 

to identify the gradients “getting stuck” at “Local Minima”, as shown in Figure 

30. It should be noted that the achievement of “Global Minima” is an ideal 

which is not usually achieved by the majority of algorithms. The Adam 

optimizer (Kingma, et al., 2014) has also shown promising results in 

minimizing classification errors.  

 

Figure 30 – Local Minima problem associated with “Back Propagation” 
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The process of discovering a necessary size for each layer, as well as the number of 

required layers, and which activations, initializers and optimizers or regularization 

methods your Deep Neural Network will request, is a recursive and thorough procedure. 

There is no scientific method that describes “how to” manage those parameters. For 

these reasons, our developed model was designed heuristically, by validating the related 

architectures, and by comparing similar complexity problems and, then, verifying the 

convergence of networks to a subsample of datasets recursively. 

The initial neural network was very deep, and was based on previous Deep Learning 

NILM research from the Imperial College (Kelly, et al., 2015) and COPPE/UFRJ 

(Nascimento, 2016). After each test, we began to remove layers; to reduce and replace 

models whenever there was any significant loss in measured metric scores. It is 

important to note, here, that the reduced model used only nine fully connected (Dense) 

layers, without the advantage of more advanced deep layer architectures. However, we 

decided to maintain the definition of “Deep Learning” for our classifier, based on the 

definition that if a technique performs learning in more than two hidden neuron layers, 

it could be called ‘deep’. 

One Deep Neural Network model was evaluated for each electrical/electronic 

device. Our models used dense layers, using ReLU, Softmax and Linear activations; we 

also used a Batch normalization layer and Dropout layer for training. Early stopping 

was applied in the training phase, which was parameterized for a maximum number of 

2560 epochs of training. Our tests also revealed that the Xavier normal initializer and 

Adam optimizer reduced training time on most of the appliances. The complete 

evaluated architecture is detailed in Section 5.3.3. 

Input sampled data was treated as single data measurement, without any Sliding 

Window approach, or a Curriculum Learning strategy (Zaremba, et al., 2014). Dataset 

samples were randomly shuffled, keeping 10% hidden from training, as data for 

validating metrics, and 90% for training. The development of these non-linear 

classifiers, using Deep Learning techniques, was built with TensorFlow v1.5 

(GOOGLE, 2018) library and KERAS high-level neural networks API (Chollet, et al., 

2015). 
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3.7. Overview of smart meter development  

 

After an analysis of feature selection and feature extraction rate methods, this 

research focused on the development of an NILM capable hardware, which was able to 

deliver a metering, storage and computational capacity to evaluate metrics, at a desired 

frequency, and to communicate with cloud servers. It is important to mention that this 

hardware can potentially help electricity customers to improve energy efficiency. 

To achieve this, two different and interrelated requirements must be evaluated: cost 

of hardware and computational limits. Platform restrictions include power processing, 

memory, storage capacity, and communication technology. Newer technologies, 

offering more powerful data rate transfers, usually are more costly. In contrast, 

established and already mass-adopted technologies are more common and are usually 

cheaper. 

In order to realize a powerful cost-effective solution for a large scale scenario, we 

decided to evaluate NILM algorithms on cloud servers. Local processing tasks should 

only include feature extraction and communication skills. Our proposal takes advantage 

of cloud computing (Kondo, et al., 2009) whereby shared resources, software and 

storage are provided over a network (Internet of Things - IoT paradigm). 

Anticipating the architecture, detailed in Appendix B, Figure 31 shows the proposed 

platform. The NILM meter holds data in local storage (microSD card) until a 

connection from the user begins the download process. With Bluetooth technology 

(BLUETOOTH, 2016) users can use their own computers, smart phones or tablets to 

connect directly to the NILM meter wirelessly. 
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Figure 31 - Proposed architecture for NILM platform 

 

The downloaded data from the meter is sent to cloud servers over the user’s own 

internet connection. The processed data, containing the results of the load 

disaggregation, are then returned to the user’s location to be shown as valuable 

information about their consumption. An additional Wi-Fi module could potentially be 

integrated into the platform, therefore avoiding users’ need to download data manually, 

sending measurements directly to cloud servers.  
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4. Synthetic mixture generator 

 

As previously described in Section 3.2, waveforms must be synchronized for the 

fitting and merging individual current waveforms. This implies that all cycles of each 

voltage and current channels must have the exact same number of samples. 

In power electronic systems, phased-locked loops (PLLs) are widely used to 

synchronize active filters, Flexible Alternating Current Transmission Systems (FACTS) 

equipment and Uninterruptible Power Supply (UPS) systems. Numerous studies on 

power systems have applied the Enhanced PLL (EPLL) to industrial equipment 

(Karimi-Ghatemani, et al., 2004). Ziarani´s method for the extraction of nonstationary 

sinusoids, was adapted from control systems for power electronics, and in this thesis is 

called Zirani’s phased-locked loops (ZPLL) (Ziarani, et al., 2004). 

In an attempt to compare both PLL´s (EPLL and ZPLL) and to determine which is 

transiently safer (with faster locking and lower offset in frequency and phase), we 

propose an initial comparison of both algorithms. 

 

4.1. PLL comparison for voltage phase 

synchronization 

Our proposed Phased-Locked Loop (PLL) comparison aims to guarantee the 

stability of steady state and transient frequency and phase extraction, using four 

different tests:  

1. Voltage magnitude step response 

2. Frequency step response 

3. Voltage magnitude step response on presence of harmonics 

4. Frequency step response on presence of harmonics 

In our study, a Brazilian energy-distribution standard, called PRODIST (ANEEL, 

2018), was used to set the parameters for the characterization of different electrical 
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disturbances on distribution lines, for both transitory events and for a steady-state 

operation (described in Table 8).  

 

Table 8 – Brazilian energy-distribution standard limits, from PRODIST (ANEEL, 

2018) Module 8 (Power Quality) for short-time voltage momentary variation and 

steady-state for V ≤ 1.0kV 

Name Description 
Minimum 

Value 

Maximum 

Value 
Duration 

SAG 
Short duration reduction 

in RMS voltage 
0.1pu 0.9pu Up to 3s 

SWELL 
Short duration increase in 

RMS voltage 
Larger than 

1.1pu 
NA Up to 3s 

Short 

Interruption 

Relevant short duration 
reduction in RMS voltage 

NA 
Lower than 

0.1pu 
Up to 3s 

Frequency 
Maximum Accepted 

Frequency Range 
56,5Hz 66Hz Up to 10s 

THD 
Total Harmonic 

Distortion 
NA 10% 

95% of 
Steady-State 

EHD 
Harmonic Distortion for 

Even harmonics  
NA 2.5% 

95% of 
Steady-State 

OHD 
Harmonic Distortion for 

Odd harmonics  
NA 7.5% 

95% of 
Steady-State 

3rdHD 
Harmonic Distortion for 

3rd harmonic  
NA 6.5% 

95% of 
Steady-State 

 

In order to analyze the PLL’s response to a group of transitory steps and operations, 

this study used PRODIST as its standard to introduce steps in voltage and frequency, 

providing limit conditions for each PLL higher than those established by the references. 

The chosen test intervals are described in Table 9. Our objective was to excite the 

control loop of a PLL in the presence of transitory events and steady state harmonics, to 

verify how frequency and phase were affected in the presence of disturbances; 

something which occurs frequently in real distribution systems. 
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Table 9 – Selected PLL test interval limit values for magnitude and frequency tests 

Name Values Duration 

SAG 0.8pu 0.5s 

SWELL 1.2pu 0.5s 

Interruption 0.0pu 0.25s 

Frequency range 54Hz ~ 66Hz 0.5s 

THD 26% 100% of  
Steady-State 

EHD 5% 100% of  
Steady-State 

OHD 21% 100% of  
Steady-State 

3rdHD 7% 100% of  
Steady-State 

 

 

The sets of parameters for each tested PLL are described in Table 10, and are 

derived from Ziarani´s work (Ziarani, et al., 2004) and from an M.Sc. dissertation from 

COPPE/UFRJ (T. A. Brasil, 2013), and are adjusted for an adequate response at 60Hz. 

 

Table 10 – Parameters used for adequate response at 60Hz input 

EPLL Parameters ZPLL Parameters 

Kpamp 100000.0 u1 100.0 

Kp 150.93 u2 10000.0 

Ki 22485.0 u3 0.0 
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4.2. Voltage magnitude step response test 

 

The first test intended to discover the PLL´s behavior in the presence of voltage 

steps, with a clean 60Hz signal at the input of the tested system. Our test showed a brief 

startup moment, up to 0.75s of 1.0pu magnitude, followed by a SWELL (voltage 

increasing) of 1.2pu magnitude for 0.5s, before going back to 1.0pu up to 1.75s. After 

1.75s, the system exhibited a short interruption (0.0pu) of 0.25s and then restored the 

supply’s voltage signal to 1.0pu for 0.5s. The next step had a SAG (voltage decreasing) 

of 0.8pu magnitude for 1s, and then restored supply at 3.5s up to 4.0s, for the entire 

duration of the simulated test. The complete setup for the magnitude steps is shown in 

Table 11 and illustrated in Figure 32. 

The sequence of disturbance test zoom is displayed for SWELL in (Figure 33), 

SWELL out (Figure 34), Interruption in (Figure 35), Interruption out (Figure 36), SAG 

in (Figure 37) and SAG out (Figure 38). 

 

Table 11 – PLL Test (1) Setup for magnitude of voltage steps 

Time interval Voltage input Frequency Harmonics 

0.00 ~ 0.75s 1.0 pu 60Hz 

none 

0.75 ~ 1.25s 1.2 pu 60Hz 

1.25 ~ 1.75s 1.0 pu 60Hz 

1.75 ~ 2.00s 0.0 pu 60Hz 

2.00 ~ 2.50s 1.0 pu 60Hz 

2.50 ~ 3.50s 0.8 pu 60Hz 

3.50 ~ 4.00s 1.0 pu 60Hz 
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Figure 32 - PLL Tests - Full view of voltage input (in pu) and frequency output (in pu) of EPLL 

and ZPLL 

 

 

 
Figure 33 - SWELL In (1.0 to 1.2pu) - Zoom of frequency output (in pu) of EPLL and ZPLL 
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Figure 34 - SWELL Out (1.2 to 1.0pu) - Zoom of frequency output (in pu) of EPLL and ZPLL 

 

 

 

 
Figure 35 - Interruption In (1.0 to 0.0 pu) - Zoom of frequency output (in pu) of EPLL and 

ZPLL 
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Figure 36 - Interruption Out (0.0 to 1.0pu) - Zoom of frequency output (in pu) of EPLL and 

ZPLL 

 

 

 

Figure 37 - SAG In (1.0 to 0.8pu) - Zoom of frequency output (in pu) of EPLL and ZPLL 
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Figure 38 - SAG Out (0.8 to 1.0pu) - Zoom of frequency output (in pu) of EPLL and ZPLL 

The results of the maximum error of ω measurement and maximum settling time (in 

ms) of each PLL are presented in Table 12. It is important to highlight that there was a 

minimum difference between the PLL´s control loops, with acceptable results for both 

algorithms. In the steady state, both tested algorithms presented zero offset, locking 

frequency perfectly, without the presence of harmonics at input. 

Table 12 – PLL Test (1) Results for voltage step events 

 Events 

Measurement 
SWELL 

In 

SWELL 

Out 

Interruption 

In 

Interruption 

Out 

SAG 

In 

SAG 

Out 

EPLL ω 

Max Error 
3.9% 4.1% 22.5% 35.4% 4.1% 4% 

ZPLL ω 

Max Error 

1% 1.3% 8.2% 18.2% 1.1% 0.8% 

EPLL / ZPLL  

Error ratio 
3.9X 3.15X 2.74X 1.94X 3.72X 5X 

Maximum measured settling time 

EPLL 270ms ZPLL 120ms 
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4.3. Voltage magnitude step response test with 

harmonics 

The second test intended to discover the behavior of the PLL´s in the presence of 

voltage steps, with in-phase harmonic components mixed with the 60Hz at the input of 

each PLL. The harmonic magnitude ratios for each individual in-phase contributions are 

shown in Figure 39. The 2nd harmonic has 1%, the 3rd harmonic 7%, the 4th harmonic 

1%, the 5th harmonic 5%, the 6th harmonic 1%, the 7th harmonic 3%, the 8th harmonic 

1%, the 9th harmonic 3%, the 10th harmonic 1% and the 11th harmonic has 3%. The 

displayed values were assigned heuristically, based on PRODIST, as previously shown 

in Table 8. 

 

 

Figure 39 – Harmonic components for PLL setup test 2 

The test for the voltage steps with harmonics follows same time distribution as in 

Section 4.2. It started with magnitudes from 0s to 0.75s of 1.0pu, followed by a SWELL 

of 1.2pu for 0.5s, and then returned to 1.0pu, finishing at 1.75s. Thereafter, the system 

exhibited a short interruption (0.0pu) of 0.25s and then restored the supply voltage to 

1.0pu for 0.5s. The next step had a SAG of 0.8pu magnitude for 1s, and then restored 

supply to 1.0pu at 3.5s for up to 4.0s, for the total duration of the simulated test. The 

complete setup for the magnitude steps is shown Table 13 and in Figure 40. 
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Table 13 – PLL Test (1) Setup for magnitude of voltage steps 

Time interval Voltage input Frequency Harmonics 

0.00 ~ 0.75s 1.0 pu 60Hz 

2nd harmonic - 1% 

3rd harmonic - 7%  

4th harmonic - 1% 

5th harmonic - 5%  

6th harmonic - 1% 

7th harmonic - 3% 

8th harmonic - 1% 

9th harmonic - 3% 

10th harmonic - 1% 

11th harmonic - 3% 

0.75 ~ 1.25s 1.2 pu 60Hz 

1.25 ~ 1.75s 1.0 pu 60Hz 

1.75 ~ 2.00s 0.0 pu 60Hz 

2.00 ~ 2.50s 1.0 pu 60Hz 

2.50 ~ 3.50s 0.8 pu 60Hz 

3.50 ~ 4.00s 1.0 pu 60Hz 

 

 

Figure 40 - PLL Tests - Full view of voltage input (in pu) and frequency output (in pu) of EPLL 

and ZPLL with harmonics 

 

The sequence of the disturbance test zoom is displayed for SWELL in (Figure 41), 

SWELL out (Figure 42), Interruption in (Figure 43), Interruption out (Figure 44), SAG 

in (Figure 45) and SAG out (Figure 46), for all steps of the developed test. 
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Figure 41 - SWELL In (1.0 to 1.2pu) - Zoom of frequency output (in pu) of EPLL and ZPLL 

with harmonics 

 

 

 

Figure 42- SWELL Out (1.2 to 1.0pu) - Zoom of frequency output (in pu) of EPLL and ZPLL 

with harmonics 
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Figure 43 - Interruption In (1.0 to 0.0 pu) - Zoom of frequency output (in pu) of EPLL and 

ZPLL with harmonics 

 

 

 

Figure 44 - Interruption Out (0.0 to 1.0pu) - Zoom of frequency output (in pu) of EPLL and 

ZPLL with harmonics 
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Figure 45- SAG In (1.0 to 0.8pu) - Zoom of frequency output (in pu) of EPLL and ZPLL with 

harmonics 

 

 

 

Figure 46 - SAG Out (0.8 to 1.0pu) - Zoom of frequency output (in pu) of EPLL and ZPLL with 

harmonics 

The results are shown in Table 14 for both a maximum error of ω locking and the 

maximum settling time (in ms) of each PLL. It is important to highlight the significant 

difference between the PLL´s control loops. In a steady state, the algorithms presented a 

variation of ±10% for EPLL and less than 1% for ZPLL, offset around the fundamental 

frequency by the presence of harmonics.  
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The voltage from the energy distribution lines usually featured harmonics, induced 

by non-linear loads and the absence of active filters over distribution lines. Thus, the 

performance of the ZPLL presents advantages for the mitigation of these instabilities in 

steady-state ω tracking. 

Table 14 - PLL Test (2) Results for voltage step events with harmonics 

 Events 

Measurement 
SWELL 

In 

SWELL 

Out 

Interruption 

In 

Interruption 

Out 

SAG 

In 

SAG 

Out 

EPLL ω 

Max Error 
11.6% 11% 11% 59.7% 9.8% 9.9% 

ZPLL ω 

Max Error 

4.0% 3.98% 3.95% 38% 3.65% 3.7% 

EPLL / ZPLL  

Error ratio 
2.9X 2.76X 2.78X 1.57X 2.68X 2.67X 

Maximum measured settling time 

EPLL 120ms ZPLL 70ms 

 

4.4. Frequency magnitude step response test 

The third test aimed to observe the behavior of the PLL´s in the presence of 

frequency steps. The test started with 1.0s of 1.0pu magnitude (60Hz), followed by a 

step to 1.1pu (66Hz) for 0.5s, and then returned to 1.0pu (60Hz) at 1.5s. At this time, 

system continued for 1.0s up to 2.5s, when frequency dropped to 0.9pu (54Hz) for 0.5s, 

and was then restored to 1.0pu (60Hz), from 3.0s up to 4.0s, for the total duration of the 

simulated test. The complete setup for the magnitude of the steps is shown in Table 15 

and illustrated in Figure 47.  
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Table 15 - PLL Test (3) Results for frequency step events 

Time interval Voltage input Frequency Harmonics 

0.00 ~ 1.0s 1.0 pu 60Hz 

none 

1.0 ~ 1.5s 1.0 pu 66Hz 

1.5 ~ 2.5s 1.0 pu 60Hz 

2.5 ~ 3.0s 1.0 pu 54Hz 

3.0 ~ 4.0s 1.0 pu 60Hz 

 

 

 

Figure 47 - PLL Tests - Full view of frequency (pu) and frequency tracking of EPLL and ZPLL 

 

At full view, and, more obviously, at zoom view, Figure 48 shows that the test 

demonstrated the superiority of ZPLL over EPLL, for tracking frequency steps. ZPLL 

presented no overshoot, in contrast of 6.5% from EPLL, and had a faster response time 

(approximately 60ms to recover against approximately 160ms from EPLL) for 

reestablishing the new frequency and tracking it correctly. 
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Figure 48 – Zoom view of frequency (pu) and frequency tracking (pu) of EPLL and ZPLL 

It is important to take conditions such as this into account for testing purposes, when 

attempting to guarantee the stability of PLL´s control loops, because frequency steps are 

difficult to replicate in a grid connected environment, because of the natural stability of 

the synchronous generators used by energy providers in their grids. However, it is 

altogether possible that this situation could occur within certain environments; for 

example, inside microgrids or with a huge virtual power plant (VPP) with intermittent/ 

renewable power supplies, or with an uninterruptible power supply (UPS) connected to 

that environment.  

4.5. Frequency magnitude step response test with 

harmonics 

The fourth test aimed to investigate the behavior of the PLL´s in the presence of 

frequency steps and harmonics, mixed with the 54Hz, 60Hz and 66Hz steps of the test. 

The observed individual in-phase harmonic contribution content has already been 

presented in Figure 39, with values based on PRODIST, and also previously shown in 

Table 8. 

As expected from previous tests, in Section 4.4, this test demonstrated the 

superiority of ZPLL over EPLL, for tracking frequency steps, in the observed scenario. 

Moreover this was true in a steady-state and not only transient states. The results are 

shown in Figure 49, as a full test view. Figure 50 shows the zoom between 2.0s and 
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3.0s. ZPLL showed no overshoot, in contrast of an overshoot of 12.5% for EPLL, and 

once again, ZPLL had a faster response time for reestablishing and correctly tracking 

the new frequency. 

 

Figure 49 - PLL Tests - Full view of frequency (pu) and frequency tracking (pu) of EPLL and 

ZPLL with harmonics 

 

Because of the results achieved in this PLL study, we decided to use ZPLL as the 

main PLL for frequency synchronization, and for delivering synchronized datasets to 

the next step of the proposed method. 

 

 

Figure 50 – Zoom view of frequency (pu) and frequency tracking (pu) of EPLL and ZPLL 
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4.6. Resampling waveforms 

This thesis sampled approximately 100 hours of data from appliances at 10 kHz, as 

the initial step of the BRAD dataset, shown in Figure 51. After using ZPLL to track the 

frequency and phase of individual appliances’ voltage waveforms, including all 94 

appliances, the PLL algorithm had evaluated 8,596,755 cycles of 60Hz. 

 

Figure 51 – Sampled data numbers 

It is known that, by ratio between sampling rate (10 kHz) and voltage of grid rate 

(approximately 60Hz), not every cycle of sampled voltage and current will display the 

same number of samples. From the BRAD dataset, approximately 64.2% of the total 

measured 60Hz cycles contained 167 samples. Because the majority of cycles contained 

167 samples, we proposed resampling the remaining 3,076,667 cycles, which did not 

match the 167 samples, in order to cohere them to other 167 samples 60Hz cycles.  

The proposed resampling process allowed all voltage and current cycles from the 

different appliances to have the same number of samples. As previously stated (in 

Section 3.2), this condition permits the creation of synthetic mixture scenarios by 

adding individual appliances’ current channels as an aggregate, because the mixture of 

two or more currents, flowing into a node, could be represented by the sum of each 

current separately. 

The resampling was made using a resample function from MATLAB software 

(MATHWORKS, 2016). This performs an FIR filtering process, including anti-aliasing, 

normalization of the results, and then implements a rate change, by a desired value. Our 

initial tests of the waveform processing evaluated some voltage and current cycles and, 

visually, those cycles didn’t show any distortion in waveform, including edge effects. 
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However, a visual check of signals alone, does not guarantee that all the processes 

of resampling will maintain the original waveforms and their features integrally. Thus, 

we proposed a method to investigate all 3,076,667 cycles, which did not match the 167 

points, automatically, by measuring the variation of generated waveforms and 

comparing their shapes before and after the resample processing. Thus, if the measured 

variation was below an acceptable value, the feature extraction from the resampled 

waveform assured a preservation of the original information. 

Power Spectrum Density (PSD) describes how the power of a signal is distributed 

over frequency. The nature of the signal can often be determined from information 

contained in the measured spectrum. Consequently, evaluating an estimation of PSD, 

before and after resampling, for both voltage and current, can provide important 

information about changes in waveforms.  

To accomplish that, we proposed a method to evaluate significant changes in studied 

signals automatically by computing the PSD. The steps are described as:  

i. For each appliance K, use the PLL algorithm and enumerate each cycle (N) 

of 60Hz, as shown in Figure 52. 

 

Figure 52 – Each cycle of voltage and current from the appliance samples is 

enumerated after the synching procedure 

ii. For each cycle index (N) from the original sampled channels of voltage and 

current, compute the sum of the spectrum for each signal: 

 �����!��~u��, \� = ���
���	��P�����, \����!��~u
���g��~ ����
���	��P�����, \����!��~u

����~�g ��; 

 

iii. For each cycle index (N) from the resampled channels of voltage and 

current, compute the sum of the spectrum for each signal: 

����~��!��~u��, \� = ���
���	��P�����, \���~��!��~u
���g��~ ����
���	��P�����, \���~��!��~u

����~�g ��; 
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iv. For each evaluated sum, compute the ratio between signals before and after 

resampling: 

��	��g8���, \� =  ����~��!��~u��, \� ÷  �����!��~u��, \�; 

 

v. For each evaluated voltage and current channel in ��	��g8���, \�, compute the 

mean value of all ratios, obtained from the cycle index (N), for each 

appliance K: 

��	!~����� =  
�����	��g8���, \�, \�; 

 

vi. For each evaluated voltage and current channel in ��	��g8���, \�, compute the 

standard deviation value of all the ratios, obtained from the cycle index 

(N), for each appliance K: 

��	�gu��� =  ������	��g8���, \�, \�; 

The mean (��	!~����� ) and standard deviation ���	������� values, obtained for each 

appliance K, contained important information about the changes in the power spectrum 

that originated in the resample process. The ��	�gu��� measured how far the different 

cycles were from the mean. It is important to mention that completely different signals 

can exhibit similar values for the mean and standard deviation of the PSD, which 

could have misled the proposed comparison. However, our proposed analysis related 

two signals that were, by assumption, from the same source and, therefore, intrinsically 

high correlated, allowing this comparison to proceed. 

According to an article from NiPy (NITIME, 2009), naive estimations of power 

spectrum, based on Fourier Transform DFT/FFT algorithms, suffer from several 

problems (Teukolsky, et al., 2007). Welch´s periodogram (Welch, 1967) and Multi-

taper spectral estimation (MTSE) (Percival, et al., 1993) are both algorithms that are 

able to infer the PSD more precisely, with MTSE being less error-prone than Welch´s 

algorithm (NITIME, 2009).  

Therefore, we computed all appliances’ waveforms PSD´s using MTSE in order to 

evaluate the proposed method. The results of ��	!~����� for the voltage and current 

channels, of each appliance K, are illustrated in Figure 53 and Figure 54, respectively. 

Similarly, ��	�gu��� for the voltage and current channels, of each appliance K, are shown 

in Figure 55 and Figure 56. 
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Figure 53 – Voltage ��	
����� values for each appliance K 
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Figure 54 – Current ��	!~����� values for each appliance K 
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Figure 55 – Voltage ��	�gu��� values for each appliance K  
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Figure 56 – Current ��	�gu��� values for each appliance K 
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When we reviewed the results for ��	!~����� in the voltage and current channels, the 

majority of values were near 99~100%, denoting similar PSD mean values for both the 

original and the resampled waveforms. Otherwise, results obtained from standard 

deviation, suggested that error spread in the PSD, caused by the resampling, were low 

(less than ~2%). This means that most of the spectrum was preserved. Consequently, the 

resample was applied to all the sampled data, for both voltage and current waveforms, 

enabling us to combine the current signals from different appliances into a single 

mixture stream. 

 

4.7. Synthetic dataset results 

In order to ensure different aggregate scenarios, with similar non-intrusive 

monitoring complexity levels, we proposed initially selecting ten appliances at a time, 

from the 94 individual acquired appliances, without repetitions. These rules forced each 

singular scenario to have different appliances, thus avoiding duplicates. Furthermore, 

we wanted each appliance included, to be inside at least ten different mixture scenarios, 

for training purposes. 

This meant that the number of potential combinatorial analysis for 94 appliances, at 

10 by 10, and without repetitions, was nearly 9.04 x 1012. Without using a brute force 

algorithm, we used a combinatorial optimization “branch and cut” algorithm, which was 

described by Mitchell in his work (Mitchell, 1999). In this way it was possible to use 

only 93 different combinations, to meet the combinatorial requirements. 

To resolve the problem of different waveform lengths, smaller waveforms were 

repeated up to the length of the larger ones, and the final samples were clipped if the 

size did not match. In order to display the waveforms in each scenario, we highlighted 

one example from the combinatorial mixture files. The randomly selected appliances 

were: 

1 – A 15 inch TV (waveform displayed in Figure 57),  

2 – A fridge (waveform displayed in Figure 58), 

3 – The charger for an electric drill (waveform displayed in Figure 59), 

4 – A food processor (waveform displayed in Figure 60), 
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5 – A 15W yellow fluorescent light (waveform displayed in Figure 61), 

6 – A 18W yellow fluorescent light (waveform displayed in Figure 62), 

7 – A 48W hoverboard charger (waveform displayed in Figure 63), 

8 – The lighter for a stove (waveform displayed in Figure 64), 

9 – A vacuum Cleaner (waveform displayed in Figure 65), 

10 – A 7W LED light (waveform displayed in Figure 66). 

 

 

 
Figure 57 – Appliance 1 - Base current waveform envelope of a TV with 23.066.040 samples 

 

 

 

Figure 58 – Appliance 2 - Current waveform envelope of a fridge with 3 (last clipped) 

repetitions to achieve base current samples of Figure 57. 
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Figure 59 - Appliance 3 - Current waveform envelope of the charger for and electric drill with 4 

(last clipped) repetitions to achieve base current samples of Figure 57. 

 

 
Figure 60 - Appliance 4 - Current waveform envelope of a food processor with 5 (last clipped) 

repetitions to achieve base current samples of Figure 57. 

 

 

 
Figure 61 – Appliance 5 - Current waveform envelope of a 15W yellow fluorescent light with 5 

(last clipped) repetitions to achieve base current samples of Figure 57. 
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Figure 62 - Appliance 6 - Current waveform envelope of a 18W yellow fluorescent light with 5 

(last clipped) repetitions to achieve base current samples of Figure 57. 

 

 

Figure 63 - Appliance 7 - Current waveform envelope of a 48W hover board charger with 5 (last 

clipped) repetitions to achieve base current samples of Figure 57. 

 

 

 

Figure 64 - Appliance 8 - Current waveform envelope of a Lighter of a stove with 7 (last 

clipped) repetitions to achieve base current samples of Figure 57. 
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Figure 65 - Appliance 9 - Current waveform envelope of a Vacuum Cleaner with 8 (last 

clipped) repetitions to achieve base current samples of Figure 57. 

 

 

 

Figure 66 - Appliance 10 - Current waveform envelope of a LED 7W light with 10 (last clipped) 

repetitions to achieve base current samples of Figure 57. 

 

 

Therefore, the waveform displayed in Figure 67, plotted a resultant synthetic 

aggregate of 10 non-repeating appliances, selected to be used in the training process of a 

machine learning algorithm and, thus, feature extraction. As mentioned in Section 3.2, 

the grid voltage channel was defined by using the longest sampled individual appliance 

voltage channel, as illustrated in blue in Figure 68. 
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Figure 67 – Current waveform envelope result of synthetic aggregate of appliances set 

 

 

 

Figure 68 - Current and Voltage waveforms envelope results of synthetic aggregate of 

appliances set 

 

 

The resample process simulated a synchronized sampling frequency of 10,020Hz 

(167 x 60Hz) with a complete sinusoid inside 167 points. It is important to note that 

there is a phase error, derived from the sampling rate, of approximately 2.1o, which is 

inherent to the involved frequencies. However, at this time, this thesis will not cover 

this associated problem. 
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5. Algorithms’ Parameterization 

As previously described in Chapter 3, classifiers need quantized outputs to fit their 

models correctly. For this reason, we used an unsupervised clustering algorithm for the 

quantization of active power (P) with performance and scaling for massive datasets. The 

algorithm was density-based spatial clustering of applications with noise (DBSCAN) 

(Ester, et al., 1996), which was implemented by the Hierarchical Density-Based Spatial 

Clustering of Applications with Noise (HDBSCAN) library (McInnes, et al., 2017). 

In order to develop feature selection, we compared sets of features, using three 

different algorithms: (i) Mutual Information (Ross, 2014); (ii) Multi-class AdaBoost 

(Zhu, et al., 2006) and, (iii) Extra-Trees (Geurts, et al., 2006). For each appliance and 

each feature extraction rate, those estimators calculated a different optimal set of 

features. 

In addition, we used three different NILM classification algorithms to measure the 

performance of sets of features and feature extraction rates: Support Vector Machines 

(Campbell C., 2011) with SVC (Support Vector Classification); Logistic Regression 

(Freedman, 2009) and a Deep Learning technique, using TensorFlow v1.5 (GOOGLE, 

2018) with KERAS high-level neural networks API (Chollet, et al., 2015). 

5.1. HDBSCAN parameters 

The unsupervised clustering algorithm, HDBSCAN, was forced to contain two (2) 

to six (6) cluster bins. This meant that all the appliances were forced to have no more 

than six, and never less than two, distinctive power states. To force the algorithm to 

discover clusters between these limits, some of the algorithm’s parameters had to be 

changed dynamically, depending on the size of the data. Thus, we created dynamic 

parameters, K1 and K2 that were adjusted, depending of the results of the first 

HDBSCAN.  

The initial value of K1 was parameterized at 0.018 and K2 at 0.038. After the first 

run of the HDBSCAN algorithm, if the number of clusters was between two and six, the 

adjustment was not required and clustering process was complete. However, if the 

number of clusters was greater than six, K2 was readjusted to its last value plus 0.004 

and K1 was readjusted to its last value plus 0.002. Alternatively, if the number of 
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clusters was smaller than two, K2 was readjusted to its last value minus 0.004 and K1 

was readjusted to its last value minus 0.002. The valid interval for each K1 and K2 

variable was [0.001,0.9]. 

In order to find the correct parameterization for ‘min_cluster_size’ and 

‘min_samples’ (the inputs of HDBSCAN that were responsible for discovering the 

number of clusters), we used the number of samples from each appliance (N), and 

multiplied it by K1 for ‘min_cluster_size’ and by K2 for ‘min_samples’. All the 

parameterization was done heuristically, by adjusting the best parameters that worked 

well for the 94 studied appliances. The complete parameterization that was used in this 

study, for HDBSCAN, is listed in Table 16. The specific chebyshev metric and boruvka 

with kdtree algorithm operation is detailed in the HDBSCAN library web page 

(McInnes, et al., 2017).  

Table 16 – HDBSCAN algorithm parameterization 

Parameter Description Selected Value 

min_cluster_size The minimum size of clusters. min(N*K1;10) 

min_samples 

The number of samples in a 
neighborhood for a point to be 

considered a core point. 
min(N*K2;5) 

metric 

The metric to use when 
calculating distance between 
instances in a feature array. 

chebyshev 

alpha 
A distance scaling parameter as 
used in robust single linkage. 

0.06 

algorithm Select which algorithm to use. boruvka_kdtree 

leaf_size 
The number of points in a leaf 

node of the tree. 
5 

core_dist_n_jobs 

Number of parallel jobs to run 
in core distance computations. 

below -1: (n_cpus + 1 + 
core_dist_n_jobs) 

are used. 

-1 

cluster_selection_method 

The method used to select 
clusters from the condensed 
tree. Excess of Mass (eom) 
algorithm to find the most 

persistent clusters. 

eom 

allow_single_cluster 
Allow to produce a single 

cluster. 
True 
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We also verified the magnitude of clustering errors, in active power, using 

HDBSCAN library. Adequate results were obtained, with quantized values almost 

overlapping the measured values, as shown in Figure 69. The majority of measured 

errors were lower than 1.0 x 10-12 Wh, for all the individual measurements. 

 

Figure 69 – Microwave oven clustered and original active power sample with 1s (60 cycles) 

feature measurement with HDBSCAN 

However, because of the algorithm’s implementation, it was not possible to compute 

processing for appliances’ waveforms with more than 500,000 data points, on the super 

computer used by this study, as it consumed more than 128GB of RAM and 90GB of 

swap file, as shown in Figure 70. Thus, some files (18) were discarded from the 

processing (from 6674 files). Expunged datasets were: the washing machine, up to 6 

cycles; the fridge, up to 4 cycles; the drinking fountain, up to 6 cycles; the dishwasher, 1 

cycle; and the water heater, for 1 cycle.  

 

 
Figure 70 – RAM and SWAP file memory limit achieved during clustering process 

 
5.2. Feature Selection 

In order to determine which minimum set of electrical features, obtained from the 

household aggregate data, maintained equivalent levels in NILM metrics for most of 

appliances, we evaluated algorithms to measure feature correlation from the input to 

output, called ‘feature importance’, and expunged all irrelevant data from the main set.  

 We evaluated three different algorithms: (i) Mutual Information (Ross, 2014); (ii) 

Multi-class AdaBoost (Zhu, et al., 2006) and, (iii) Extra-Trees (Geurts, et al., 2006), 
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(previously described in Section 3.5) to discover the correlation between input features 

and quantized active power (P), in order to assign a selected feature set. For each 

algorithm, this study used a greedy criterion that considered all features with a greater 

importance than a specified parameter. A classification algorithm was evaluated for 

each feature set, in order to validate whether there was a significant loss in metric 

scores. The feature set with the minimum number of features was then selected for 

posterior analysis, a process that this thesis called Feature Ranking. The ranking drove 

our choice of proposed method, based on this context and this sample universe of 

appliances, to find the most relevant and prevalent features to resolve the NILM 

problem. 

5.2.1. Mutual Information parameters 

The Mutual Information (MI) (Ross, 2014) algorithm, measures the correlation 

between variables, based on entropy estimation from k-nearest neighbors, as described 

in Scikit-Learn API (Pedregosa, et al., 2011). The algorithm needs to fit MI model, 

according to given training data; therefore, this we used the 30 features array as input; 

and, as the output of model, we used active power (P). The model fit used individual 

acquired data from each appliance. The parameterization used in the algorithm is 

described in Table 17. 

Table 17 – Parameters used in Mutual Information algorithm 

Parameter Description Selected Value 

n_neighbors 

Number of neighbors to use for 
MI estimation for continuous 

variables 
30 

random_state 

The seed of the pseudo random 
number generator for adding 

small noise to continuous 
variables in order to remove 

repeated values. 

None 

featureImportanteLimit 

The metric used to remove 
non-important features. 
Heuristically defined.  

0.2 

As an example; using a specific appliance, with a defined feature extraction rate, 

processing datasets with Mutual Information output a feature importance list as 

illustrated in Figure 71, and as described numerically in Table 18. Graphically, it is 

possible to identify 12 taller bins, over features P, Irms, S, Q, CF, h1 (Fourier spectrum 
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magnitude of fundamental frequency), h2, h3, h4, h5, h7, and h9 (Fourier spectrum 

magnitude of 2nd, 3rd, 4th, 5th, 7th and 9th harmonics). It should be noted that, for each 

appliance and feature extraction rate studied, this algorithm evaluated a different feature 

importance ranking. 

 
Figure 71 – Example of a Feature Importance list by Mutual Information 

Samples from ten different appliances were tested initially, to parameterize safe 

limits so that uncorrelated features might be expunged. Therefore, for this algorithm, 

this study heuristically parameterized 0.2 as the minimum importance limit to determine 

the size of a feature set. 

Table 18 – Feature importance ranking by Mutual Information 

Feature Importance Feature Importance Feature Importance 

P 1.465079 CF 0.690280 h24 0.040969 

S 1.176086 h4 0.579836 h22 0.038349 

Q 1.168983 h13 0.118458 h20 0.036345 

h1 1.153246 h15 0.113563 h25 0.032411 

Irms 1.068231 h6 0.084500 h18 0.029952 

h3 0.819415 h14 0.082526 h10 0.029296 

h5 0.769135 h16 0.072623 h11 0.027822 

h7 0.759107 h23 0.066127 h17 0.019246 

h9 0.759053 h19 0.051066 h21 0.017410 

h2 0.705037 h12 0.049898 h8 0.000000 
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5.2.2. Multi-class AdaBoost parameters 

The Multi-class AdaBoost (Zhu, et al., 2006) algorithm is a meta-estimator that fits 

a classifier to the original dataset and additional copies. The weights of the incorrectly 

classified instances are adjusted to focus subsequent classifiers on those incorrect 

classifications, theoretically the more complex cases, in order to fit the model. Its 

implementation is based on AdaBoost SAMME.R (Zhu, et al., 2006). The 

parameterization that was used in the algorithm is described in Table 19. 

 

Table 19 – Parameters used in Multi-class AdaBoost algorithm 

Parameter Description Selected Value 

n_estimators 

The maximum number of 
estimators at which boosting is 

terminated 
600 

learning_rate 
Learning rate shrinks the 

contribution of each classifier 
1 

base_estimator 
The base estimator from which 

boosted ensemble is built. 
Decision Tree 

algorithm 
SAMME.R or SAMME 

boosting algorithm 
SAMME.R 

featureImportanteLimit 

The metric used to remove 
non-important features. 
Heuristically defined. 

0.001 

 

 

As an example; from a specific appliance, with a defined feature extraction rate, 

processing datasets with Multi-class AdaBoost output a feature importance list as 

illustrated in Figure 72, and as described numerically in Table 20. Graphically, it is 

possible to identify 4 bins, over features P, Irms, Q and h5 (Fourier spectrum magnitude 

of 5th harmonic). It should be noted that, for each appliance and feature extraction rate 

studied, this algorithm also evaluated a different feature importance ranking. 
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Figure 72 – Example of a Feature Importance by AdaBoost  

 

Samples from ten different appliances were tested initially, to parameterize safe 

limits so that uncorrelated features might be expunged. Therefore, for this algorithm, 

this study heuristically parameterized 0.001 as the minimum importance limit to 

determine the size of a feature set.  

 

Table 20 – Feature importance ranking by AdaBoost SAMME.R 

Feature Importance Feature Importance Feature Importance 

P 0.862223 h1 0.000000 h13 0.000000 

Irms 0.077405 h2 0.000000 h14 0.000000 

S 0.035278 h3 0.000000 h15 0.000000 

h5 0.015731 h4 0.000000 h16 0.000000 

Q 0.002885 h6 0.000000 h18 0.000000 

h24 0.002841 h7 0.000000 h19 0.000000 

h21 0.002181 h25 0.000000 h20 0.000000 

h17 0.001454 h9 0.000000 h22 0.000000 

h8 0.000000 h11 0.000000 h23 0.000000 

CF 0.000000 h12 0.000000 h10 0.000000 
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5.2.3. Extra-Trees parameters 

Extremely randomized trees, or Extra-Trees (Geurts, et al., 2006), is part of the tree-

based ensemble methods, as described in Scikit-Learn API (Pedregosa, et al., 2011). 

The parameterization that was used in the algorithm is described in Table 21.  

 

Table 21 – Parameters used in Extra-Trees algorithm 

Parameter Description Selected Value 

n_estimators 
The number of trees in the 

forest. 
600 

max_depth 
The maximum depth of the 

tree. 
None 

min_samples_split 

The minimum number of 
samples required to split an 

internal node. 
2 

min_samples_leaf 

The minimum number of 
samples required to be at a leaf 

node. 
1 

featureImportanteLimit 

The metric used to remove 
non-important features. 
Heuristically defined. 

0.01 

 

 

As an example, from a specific appliance, with a defined feature extraction rate, 

processing datasets with Extra-Trees output a feature importance list as illustrated in 

Figure 73, and as described numerically in Table 22. Graphically, is possible to identify 

11 taller bins, over features P, Irms, S, Q, CF, h1 (Fourier spectrum magnitude of 

fundamental frequency), h2, h3, h5, h7, and h9 (Fourier spectrum magnitude of 2nd, 3rd, 

5th, 7th and 9th harmonics). It should be noted that, that for each appliance and feature 

extraction rate studied, this algorithm also evaluated a different feature importance 

ranking. 
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Figure 73 – Example of a Feature Importance given by Extra-Trees  

 

Samples from ten different appliances were tested initially, to parameterize safe 

limits so that uncorrelated features might be expunged. Therefore, for this algorithm, for 

this algorithm, this study heuristically parameterized 0.01 as the minimum importance 

limit to determine the size of a feature set. 

 

Table 22 – Feature importance ranking by Extra-Trees 

Feature Importance Feature Importance Feature Importance 

P 0.221036 CF 0.021795 h16 0.006819 

Q 0.108412 h4 0.014238 h12 0.006768 

h1 0.100638 h15 0.009446 h14 0.006622 

S 0.098660 h6 0.008836 h10 0.006378 

Irms 0.082065 h13 0.008685 h22 0.006368 

h3 0.068902 h11 0.008181 h17 0.006134 

h5 0.062321 h23 0.008097 h8 0.006132 

h7 0.038320 h19 0.007772 h21 0.005925 

h9 0.030587 h24 0.007355 h18 0.005700 

h2 0.025310 h25 0.007112 h20 0.005387 

 



 

100 

 

5.3. Classification methods 

As described in Section 3.6, we proposed evaluating NILM problem solving with 

three different classification algorithms, each with its particular traits: (i) Logistic 

Regression, described by Freedman (Freedman, 2009) as a statistical method; (ii) 

Support Vector Machines with SVC (Support Vector Classification), described by 

Campbell (Campbell C., 2011) as a non-probabilistic classifier with non-linear 

classification capabilities; and, (3) a developed non-linear classifier using Deep 

Learning techniques, with TensorFlow v1.5 (GOOGLE, 2018) and KERAS high-level 

neural networks API (Chollet, et al., 2015). 

Each algorithm required extensive parameterization before it began to converge. 

The final parameters that were used for each method were presented in Sections 5.3.1, 

5.3.2 and 0. The models were trained using thirty chosen features as input, and the 

quantized active power (P) was the output of the classifiers. The training process used 

90% of the synthetic dataset as training data and 10% was kept aside as validation data 

(unseen data) for the metrics’ evaluation. The appliance and the feature extraction rate 

were chosen randomly to display examples of the classification results of the tested 

algorithms. The appliance example, “Desktop PC”, displayed four different quantized 

power states, at the desired feature extraction rate. 

We preprocessed the data for each appliance before using it in the training. For the 

BRAD dataset, where individual appliances were sampled, we established offset and 

gain values for each extracted feature, for each appliance. Therefore, each offset and 

gain value were computed to provide zero mean and scaling to unit variance, thus 

forcing all input to have the same order and to be centered on zero. 

 

 

5.3.1. Logistic Regression parameters 

The selection of parameters, listed in Table 23, was tuned to a Logistic Regression 

implementation that was built on Scikit-Learn API (Pedregosa, et al., 2011). 
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Table 23 – Parameters used in Logistic Regression classifier 

Parameter Description Selected Value 

penalty 
Used to specify the norm used 

in the penalization. 
L2 

tol Tolerance for stopping criteria. 1e-4 

C 
Inverse of regularization 

strength. 
1e-4 

solver 
Algorithm to use in the 
optimization problem. 

lbfgs 

max_iter 

Maximum number of iterations 
taken for the solvers to 

converge. 
5000 

multi_class 

The loss minimized is the 
multinomial loss fit across the 
entire probability distribution 

multinomial 

warm_start 

Reuse the solution of the 
previous call to fit as 

initialization. 
True 

 

Figure 74 shows a Logistic Regression classifier model prediction. It is possible to 

identify the algorithm’s predictions of active power (P), on the y axis, inside a mixture 

of ten other appliances (displayed in scale in Figure 75) over samples on the x axis.  

 

Figure 74 – Logistic Regression predictions' zoom for a Desktop PC  

 

These results were obtained using a heuristic recurring approach for training the 

same model, ten times, and by setting the warm_start parameter to True. This option 

reuses the previous model as the initial condition of next model, which showed the best 

results for most of the appliances. 
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Figure 75 – Logistic Regression predictions for a Desktop PC inside a mixture 

 

5.3.2. Support Vector Machines parameters 

The selection of parameters, listed in Table 24, was tuned to a Support Vector 

Machines implementation based on LIBSVM (Chang, et al., 2013). The classifier, 

shown, is difficult to scale when a dataset is larger than 50,000 points, hence, (and as 

previously described in Section 2.8) fit (training) and predict times were also collected 

to allow a further comparison using sets of classification algorithms and appliances 

mixture datasets.  

The parameterization required extensive fine-tuning to return adequate results, 

showing more sensitivity in the parameters to optimize than Logistic Regression did. 

However, the outcomes were promising, and it recovered disaggregated quantized 

active power accurately in most assorted mixture scenarios. 

Table 24 – Parameters used in SVM classifier 

Parameter Description Selected Value 

svm_type Set the type of SVM. 0 (C-SVC) 

kernel_type Set type of kernel function. 2 (radial basis function) 

degree Set degree in kernel function. 3 

cost Set the parameter C of C-SVC. 1.0 

cachesize Set cache memory size in MB. 8192 

epsilon 
Set tolerance of termination 

criterion. 
0.002 
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Figure 76 shows an SVC model prediction. It is possible to identify the algorithm’s 

predictions of active power (P), on the y axis, inside a mixture of ten other appliances 

(displayed in scale in Figure 77) over samples on the x axis.  

 

 

 

Figure 76 – Support Vector Machine predictions zoom for a Desktop PC 

 

 

 

Figure 77 - Support Vector Machine predictions for a Desktop PC inside a mixture 
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5.3.3. Deep Learning architecture 

 

The proposed classifier was built on TensorFlow v1.5 API (GOOGLE, 2018) and 

KERAS high-level neural networks API (Chollet, et al., 2015). Actual Deep Leaning 

development exhibits advanced layers such as Convolutional Neural Networks (CNN) 

and Recurrent Neural Networks (RNN). These layers constitute an advantage, when the 

input data is not randomly presented, but is organized in order, such as in a sliding 

window approach, or as a ‘curriculum learning’ strategy (Zaremba, et al., 2014). 

However, the evaluated implementations of Logistic Regression and SVM 

classifiers were not able to scale the massive amounts of windowed data to fit their 

models. Therefore, the input data for all the classifiers were standardized to reduce the 

input to one random sample of a feature set at a time: simultaneously reducing the 

improvements of those advanced layers. Thus, the proposed architecture of Deep 

Learning used only ‘Dense’ fully connected layers, to seek a fair comparison of the 

algorithm’s performance. 

As previously stated in Section 3.6, no scientific method exists to describe the “how 

to” for managing the size of each layer, or the number of required layers, not which 

activations, initializers and optimizers or regularization methods your Deep Neural 

Network will require. For this reason our developed model was designed heuristically 

by validating related architectures, by comparing similar complexity problems, and 

thereafter, by recursively verifying the networks’ convergence to a subsample of 

datasets. The developed architecture is listed in Table 25. 

Figure 78, shows a Deep Learning model prediction. It is possible to identify the 

algorithm’s predictions of active power (P), on the y axis, inside a mixture of ten other 

appliances (displayed in scale in Figure 79) over samples on the x axis. 

The presented parameterization of selected models was tested on mixture datasets in 

order to compare the performance of each algorithm over the feature extraction rate 

periods and between themselves. 
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Table 25 – Architecture used by proposed Deep Learning classifier 

Layer Description Size 

Dense Input Size of feature set 

Dense Linear 128 

Batch Normalization Used only during training. 128 

Dense ReLU 256 

Dense ReLU 512 

Dropout Used only during training 0.5 

Dense ReLU 512 

Dense ReLU 256 

Dense ReLU 128 

Dense Softmax Size of quantization clusters 

 

The results of the simulations are presented in Chapter 6. 

 

 

Figure 78 – Deep learning classifier predictions zoom for a Desktop PC 

 

 

Figure 79 – Deep learning classifier predictions for a Desktop PC inside a mixture 
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6. Simulations and Results 

This Section presents the practical results of this study. As mentioned earlier (in 

Chapter 3), huge combinations of datasets, features, feature extraction rates, metrics, 

and classifier tests repeated to be able to understand the problem completely. 

The simulation process generated more than 300GB of data, including the clustering 

results, the feature selection sets, a range of feature extraction rates, the ground truth 

data, all trained models and multiple mixture streams. The synthetic mixtures used an 

HDF5 file format (THE HDF GROUP, 1997) as their default file format for this study, 

which performs well for Big Data storage and for data compression. 

A summary of the evaluated simulations gives: ninety-four appliances; three NILM 

classification methods; four feature sets, used for feature selection; seventy-one 

different feature extraction rates, ten distinctive mixtures per appliance, including the 

combination of ten non-repeated appliances, and eight distinct metrics scores. These are 

all illustrated in Figure 80. 

 

Figure 80 – Numbers involved in simulations 

As previously described, the metrics selected for evaluation NILM performance 

were: 

I. Accuracy (A) 

II. F-measure / F-score (F1) 

III. Precision (P) 

IV. Recall (R) 

V. Total energy correctly assigned (TECA)  

VI. Normalized error in assigned power (NEAP) 

VII. Fit Time (training) 

VIII. Predict Time 

The appliances’ ground truth data used 6,656 quantized active power (P) single 

files, containing the information from each of the ninety-four appliances over the 



 

107 

 

seventy-one feature extraction rate ranges. For the mixture files, 66,030 individual pairs 

of appliance-mixture files were created, containing mixture and ground truth data for all 

seventy-one unique feature extraction rates to be tested. Each one of the three NILM 

algorithms computed training and predictions four times; once for each appliance-

mixture pair, which resulted in 762,360 total training and predictions steps, with eight 

computed metrics. 

As part of the first analysis of the proposed methodology, we opted to study a subset 

of the appliances’ universe, containing fifteen devices, and to evaluate metrics in only 

three of those ten generated mixture files, in order to present results. The appliances 

were chosen from the set, empirically, with the aim of selecting each one from a 

different category, including: (1) an X-Box One; (2) an LCD monitor; (3) a notebook; 

(4) an air conditioner; (5) a fridge; (6) a washing machine; (7) a microwave oven; (8) a 

hair dryer; (9) a 60W halogen bulb; (10) a 23W fluorescent bulb; (11) a 10W LED bulb; 

(12) a 50 inch plasma TV; (13) a ceiling fan with three speeds; (14) a desktop computer; 

and (15) a clothes iron. 

This produced 115,020 training-predictions steps, which evaluated the selected eight 

metrics, and represented about 15.1% of the full training steps, as illustrated in Figure 

81. Nevertheless, the time for training and prediction phases took more than three 

months of 100% workload (when possible) to complete the tasks in our machine 

learning computer (MLC). 

 

Figure 81 – Selected subset of data for simulations 

The MLC configuration was a Dual Intel Xeon E5-2698v4 CPU (forty processors 

with eighty total threads); 128GB of RAM; 6TB RAID Storage, including 2TB of 

RAID SDD and 4x NVidia GTX-1080 with 8GB of RAM each (total of 32GB). The 

results for each appliance’s simulations are presented in the next Section. 
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6.1. Detailed analysis of one appliance 

The first analysis to be evaluated is the sensitivity of each one of the eight analyzed 

metrics, over the feature extraction rates. Figure 22 has already illustrated this as a 

scheme to find the minimum feature extraction rate, and Section 3.4, described how the 

proposed method used the full set of thirty features, to train and predict load 

disaggregation with the three available synthetic mixture datasets. For each best metric 

score, which we expected to be at the maximum feature extraction rate (defined as a 

number of 60Hz cycles), we proposed to establish an acceptable metric score value as a 

5% set point below the maximum, whereas the feature extraction period (displayed in 

cycles) advanced. We chose the X-Box One as the appliance to examine for this 

detailed analysis. The graphs and tables from the analysis of the other fourteen 

appliances are displayed in Appendix C.  

Therefore, for the appliance, the X-Box One, the evaluated metrics, which were 

obtained from the models, over the feature extraction rate, are illustrated in Figure 82. 

They perfectly fit the predictions of Figure 22, which displays a drop in performance 

whereas the number of feature extraction rates (in cycles) rises. Each prediction used 

three different mixture datasets; so, for each evaluated model, three curves were 

adjusted to show the spread of metrics scores, using error bar graphs. The filled curves, 

one for each NILM classifier, in Figure 82, show the worst case prediction results.  

In the first step of the analysis, this study extracted useful information from Figure 

82, and created a summary for the X-Box’s metric scores. Table 26 summarizes all the 

extracted information, for each trained model (Deep Learning, SVM and Logistic 

Regression), and for each metric, using the following column headers: 

(I) - “max%” - This column represents the best metric score, which was 

expected (but not required) to be at the maximum feature extraction rate. 

This column displays the highest score (higher is better) value (between 0 

and 100%) for each metric; 

(II)  - “min%” - This column shows the best metric score, which was expected 

(but not required) to be at the maximum feature extraction rate. This column 

displays the lowest score (lower is better) value (between 0 and 100%) for 

each metric; 
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(III)  - “-5%” - This column shows the desired metric score, defined as the 5% 

cut-off point below the highest best metric score (displayed in “max%”). 

This column shows the minimum desired metric value (between 1 and 

95%) of each metric for each trained model and feature set. It is used in the 

metrics: Accuracy (A), F-measure (F1), Precision (P), Recall (R), and 

Total energy correctly assigned (TECA). 

(IV) - “+5%” - This column shows the desired metric score, defined as the 5% 

cut-off point above the lowest best metric score (displayed in “min%”). This 

column shows the maximum desired value (between 5 and 100%) of each 

metric for each trained model and feature set. It is used in the Normalized 

error in assigned power (NEAP) metric; 

(V) - “cycle” - This column displays a number that represents the minimum 

feature extraction rate (in number of 60Hz cycles), i.e., the point on the x 

axis where the desired metric score, shown in “+5%” or “-5%”, is 

obtained; and, 

(VI) - “feasible time cycle” – As shown in Figure 82, specifically at “Time to 

Train Model” and “Time do Predict Model” graphs, the compute time 

decreases exponentially, whereas the feature extraction rate (displayed in 

cycles) rises. Therefore, this column displays the minimum number of cycles 

for feature extraction rate`, whereas the algorithm run time presents 

scalability, that is, it is lower than 10% of the maximum compute time. It is 

used in Fit Time and Predict Time metrics. 

Table 26 – X-Box One / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 95 90 35 92 87 20 93 88 16 92 87 25 

SVM 75 70 10 70 65 3 92 87 3 65 60 4 

Logistic Regression 60 55 15 42 37 2 52 47 2 42 37 5 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 97 92 70 5 10 90 4 2 

SVM 94 89 7 5 10 90 5 10 

Logistic Regression 85 80 10 25 30 17 2 1 
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Figure 82 – X-Box One / NILM Methods comparison with full features set 
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The second step of the proposed method was to analyze the summary. In our studied 

scenario and mixtures, and using our algorithm implementations and parameterization 

as described in Chapter 5, the Deep Learning technique presented the highest scores for 

the worst case scenario, at column “cycle” in evaluated metrics: 16 cycles, against 3 

from SVM and 2 from Logistic Regression. It also presented the highest scores for the 

worst case scenario at column “-5%”, representing the desired metric score for 

classification metrics’ scores: 87% for Deep Learning, against 60% from SVM and 37% 

for Logistic Regression; The same method also gave the major score for the worst case 

scenario, at column “-5%” for metric Total Energy Correctly assigned (TECA): 

92%, against 89% from SVM and 80% from Logistic Regression. It also displayed the 

lowest score at column “+5%” for metric Normalized error in assigned power 

(NEAP): 10%, tying with SVM and bettering Logistic Regression, with 30%. Thus, 

after an evaluation of the performance of the NILM classification algorithms, it is clear 

that the Deep Learning method was the most successful classifier that was applied in 

the evaluated X-Box One scenario.  

The third step of the proposed method was to test the feature sets, using the Mutual 

Information (Ross, 2014), Multi-class AdaBoost (Zhu, et al., 2006) and, Extra-Trees 

(Geurts, et al., 2006) algorithms as previously described and parameterized in Chapter 

5. The metrics for each feature set were evaluated using the Deep Learning method, as 

shown in Figure 83. AdaBoost displayed a significant loss of performance, with high 

variance along feature extraction rates. Mutual Information and Extra-Trees displayed 

similar results over the complete set of features. In the final step of the detailed analysis, 

we compared results and created a summary for posterior feature selection and feature 

extraction rate analysis.  

The Extra-Trees algorithm evaluated 18 features, representing a data reduction of 

close to 40% (compared to the full set). Mutual Information assigned too much feature 

importance to features, and therefore displayed 28 features. AdaBoost evaluated 10 

features, which represented almost a 67% reduction. However, AdaBoost results could 

not be used because of performance loss.  

The complete list of algorithms and their detailed feature sets are shown in Table 27. 

Extra-Trees presented the lowest number of features, with acceptable scores in metrics. 

A summary of the selected solution for feature selection, using Extra-Trees, and the 
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feature extraction rates, using the results obtained from Deep Learning’s lowest “cycle” 

score (16 cycles), for the studied appliance, are summarized in Table 28. 

 

 

Table 27 – X-Box One / Summary of Feature Selection 

Deep Learning Feature List 
    

16 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
            

����    
    

����    
    

����    
    

����    
    

����    18 40% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
        

����    ����    ����    ����    ����    28 7% 

AdaBoost ����    ����    ����    
        

����    ����    ����    
                                    

����    
    

����    
    

����    
                        

����    
    10 67% 

 

 

Table 28 – X-Box One / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features F. Extraction Rate 

Deep Learning Extra-Trees 18 16 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
            

����    
    

����    
    

����    
    

����    
    

����    
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Figure 83 – X-Box One / Feature Selection methods comparison 
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Using a similar analysis, as above, over our studied universe of 15 appliances, we 

present an evaluated summary of all figures and tables in Table 29. 

Table 29 – Summary of appliances tables and figures  

Appliance 

NILM 
methods 

comparison 
figure 

Metrics 
Summary 

table 

Feature Selection 
methods 

comparison figure 

Summary 
of feature 
selection 

table 

Summary of 
complete 
solution 

table 

Notebook Figure 93 Table 36 Figure 94 Table 37 Table 38 

LCD Monitor Figure 95 Table 39 Figure 96 Table 40 Table 41 

Air Conditioner Figure 97 Table 42 Figure 98 Table 43 Table 44 

Fridge Figure 99 Table 45 Figure 100 Table 46 Table 47 

Washing machine Figure 101  Table 48 Figure 102 Table 49 Table 50 

Microwave oven Figure 103 Table 51 Figure 104 Table 52 Table 53 

Hair dryer Figure 105 Table 54 Figure 106 Table 55 Table 56 

Halogen bulb Figure 107 Table 57 Figure 108, Figure 109 Table 58 Table 59 

Fluorescent bulb Figure 110 Table 60 Figure 111 Table 61 Table 62 

LED bulb Figure 112 Table 63 Figure 113 Table 64 Table 65 

Plasma TV Figure 114 Table 66 Figure 115 Table 67 Table 68 

Ceiling fan Figure 116 Table 69 Figure 117 Table 70 Table 71 

Desktop PC Figure 118 Table 72 Figure 119 Table 73 Table 74 

Clothes Iron Figure 120 Table 75 Figure 121 Table 76 Table 77 

 

6.2. Analysis of feature extraction rate  

A general analysis of our studied sampled universe of appliances revealed important 

insights and information about NILM hardware implementations. Using the data, 

evaluated in Section 6.1, this Section focuses on an analysis related of the feature 

extraction rate. The first step we proposed is to create a summary of the minimum 

feature extraction rate (defined as a number of 60Hz cycles) found for each studied 

appliance. The resulting compilation is shown in Table 30. 
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Table 30 – Summary of feature extraction rates 

Appliance 

Feature extraction rate 

(in number of 60Hz cycles) 

;>o�����C 

Clothes Iron 27 

Desktop PC 53 

Ceiling fan 20 

Plasma TV 23 

LED bulb 52 

Fluorescent bulb 17 

Halogen bulb 35 

Hair dryer 60 

Microwave oven 25 

Washing machine 42 

Fridge 17 

Air conditioner 16 

X-Box One 16 

LCD Monitor 70 

Notebook 100 

 

The air conditioner and X-Box One displayed min �`Q@����~�� as 16. This means 

that, for each 16 sampled cycles of 60Hz, the feature extraction algorithms needed to 

evaluate feature measurements and to store the information. As previously explained in 

Chapter 3, lower values of `Q@����~�  means a higher throughput of the data and, 

consequently, a higher rate of feature measurements. 

This result (16 cycles) indicates a period of 266.67ms, or 3.75Hz, for the feature 

extraction rate. This rate is related to a minimum drop of 5% in the evaluated metric. 

Given our previous premises, conservatively, this rate reduces the feature extraction 

rate by 16 times. Choosing larger values of `Q@����~�  can reduce the number of times 

each measurement needs to be evaluated and sent over telecommunication networks for 

storage and off-line computation. Therefore, as a second proposed step, it is important 

to identify the central tendency measure for the feature extraction rates of the studied 

appliances. This will indicate the value that we could potentially choose, without overly 

affecting the performance of obtained metric scores. If we apply an ascending sort to the 

`Q@����~� array, the resultant is:  

`Q@����~�
���g~u =  [16,16,17,17,20,23,25, m¢, 35,42,52,53,60,70,100] 
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Thus, the evaluated median value of the array, over the listed appliances, targets to 

a rate of 27 cycles (or a period of 450ms). The use of this median feature extraction rate 

value (27 cycles) reduced the data transfer to 68.7%, compared to the conservative 

choice (16 cycles). Thus, as the third step of the analysis, half of the listed appliances 

needed to be re-evaluated, in order to identify whether a change in feature extraction 

rate could lead to a huge and unwanted loss of metrics.  

The affected appliances were reevaluated for 450ms (from the figures shown in 

Appendix C) to verify whether a variation in the metrics scores could be significant for 

our results. After reanalyzing the appliances, shown in Table 31, it was clear that the 

majority of variations were insignificant, particularly in TECA and NEAP metrics, with 

a variation in scores of lower than 1%. These results allowed us to make a feature 

extraction rate change, inside our studied sample universe of appliances, to 27 cycles 

(450ms). 

Table 31 – Appliance variation in metrics after feature extraction rate change 

Appliance FER 
(cycles) 

Accuracy F-measure Precision Recall TECA NEAP 

Ceiling fan 

New 27 (A) 87% 81% 83% 82% 97% 2% 

Old 20 (B) 90% 85% 86% 86% 97% 2% 
Variation%  

(B-A) 3% 4% 3% 4% 0% 0% 

        

Plasma TV 

New 27 (A) 90% 85% 86% 85% 94% 8% 

Old 23 (B) 92% 90% 90% 90% 95% 7% 
Variation%  

(B-A) 2% 5% 4% 5% 1% -1% 

        
Fluorescent 

bulb 

New 27 (A) 84% 75% 80% 75% 97% 4% 

Old 17 (B) 87% 82% 83% 81% 97% 3% 
Variation%  

(B-A) 3% 7% 3% 6% 0% -1% 

        
Microwave 

oven 

New 27 (A) 95% 78% 91% 75% 98% 2% 

Old 25 (B) 95% 80% 91% 76% 98% 2% 
Variation%  

(B-A) 0% 2% 0% 1% 0% 0% 

        

Fridge 

New 27 (A) 85% 83% 84% 85% 90% 20% 

Old 17 (B) 90% 88% 87% 85% 90% 17% 
Variation%  

(B-A) 5% 5% 3% 0% 0% -3% 

        
Air 

conditioner 

New 27 (A) 95% 90% 85% 85% 95% 10% 

Old 16 (B) 96% 90% 92% 90% 95% 10% 
Variation%  

(B-A) 1% 0% 7% 5% 0% 0% 

        

X-Box One 

New 27 (A) 90% 85% 85% 85% 95% 6% 

Old 16 (B) 92% 86% 87% 87% 96% 5% 
Variation%  

(B-A) 2% 1% 2% 2% 1% -1% 



 

117 

 

6.3. Analysis of feature selection  

This section focuses on the analysis that concerns the feature selection, after 

evaluating the data in Section 6.1. As the first step, this study proposed creating a 

summary of the previous feature sets found in the simulations. This compilation is 

shown in Table 32. The results were an attempt to elucidate a feature’s importance for 

load disaggregation and for NILM problems, in general. The objective was to construct 

a Feature Ranking, based on the number of times that each appliance appears in the list. 

So, for each appliance, the features were placed in columns and, for each appearance, 

the count was increased. 

Table 32 – Features’ summary for studied appliances 

Feature List 

  Features Fourier Harmonics 

Appliance P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Clothes Iron ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
            

����    
    

����    
            

����    
                

Desktop PC ����    ����    ����    ����    ����    ����    
    

����    
    

����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    

Ceiling fan ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
                    

����    
                                        

Plasma TV ����    ����    ����    ����    
            

����    ����    
            

����    ����    
    

����    
    

����    
        

����    ����    ����    ����    ����    
                    

LED bulb ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
            

����    
    

����    
    

����    

Fluorescent bulb ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    

Halogen bulb ����    ����    ����    ����    ����    ����    
    

����    
    

����    
            

����    
                    

����    
                                        

Hair dryer ����    ����    ����    ����    ����    
        

����    
                    

����    ����    
                                                            

Microwave oven 
    

����    ����    
    

����    ����    
        

����    
                                        

����    
                    

����    
                

Washing machine ����    ����    ����    ����    ����    ����    ����    ����    
                                                                

����    
        

����    
        

Fridge ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
                                        

Air conditioner ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    ����    
    

����    ����    
    

����    
                    

����    
    

����    
    

����    

X-Box One ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
            

����    
    

����    
    

����    
    

����    
    

����    

LCD Monitor ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    ����    ����    ����    ����    
    

����    
    

����    

Notebook ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    ����    
    

����    ����    
        

����    
        

����    
                    

����    
        

Therefore, as the second step, we evaluated a Feature Ranking, based on the number 

of times (appearance score) that each individual feature appeared inside each selection. 

The ranking is shown in Table 33, and includes other columns related to the individual 

and cumulative percentages over the entire selection. Individual percentages are 

calculated by dividing the number of times the appliance appeared by the total number 

of appearances. The cumulative percentages are calculated by summing all the 

individual appliances’ percentages as the ranking decreases. 
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Little attention was given to other features, compared to active power (P) and 

reactive power (Q). The majority of previous NILM researches assumed that active 

power (P) is, by far, the most important feature for load disaggregation. It is clear that, 

when measuring each appliance individually, all necessary information about energy 

consumption and the status of the appliance could be directly obtained from P.  

However, for disaggregation purposes, could active power (P) be a less relevant 

feature than others could? According to our studied universe of sampled appliances and 

evaluated algorithms, root mean squared current (Irms) and apparent power (S) 

displayed a higher appearance score than P. Even the reactive power (Q) and 3rd 

harmonic of Fourier displayed the same score as P. Therefore, it is certainly, a relevant 

feature for measuring energy, but for disaggregation purposes, in our studied universe, it 

appeared to have similar relevance as others features. 

 

Table 33 – Feature ranking sorted by appearance in studied universe of appliances 

Feature 
Appearance 

score 
Individual % Cumulative % 

Irms 15 6,47% 6,47% 
S 15 6,47% 12,93% 

3rd 14 6,03% 18,97% 
P 14 6,03% 25,00% 
Q 14 6,03% 31,03% 

CF 13 5,60% 36,64% 
F 13 5,60% 42,24% 

9th 12 5,17% 47,41% 
5th 11 4,74% 52,16% 
7th 10 4,31% 56,47% 
15th 10 4,31% 60,78% 
11th 9 3,88% 64,66% 
13th 8 3,45% 68,10% 
17th 8 3,45% 71,55% 
21st 8 3,45% 75,00% 

--------------------------- 50% of features 

23th 8 3,45% 78,45% 
2nd 6 2,59% 81,03% 
4th 6 2,59% 83,62% 
25th 6 2,59% 86,21% 
10th 5 2,16% 88,36% 
19th 5 2,16% 90,52% 
8th 4 1,72% 92,24% 
20th 4 1,72% 93,97% 
6th 3 1,29% 95,26% 
18th 3 1,29% 96,55% 
12th 2 0,86% 97,41% 
14th 2 0,86% 98,28% 
16th 2 0,86% 99,14% 
22nd 1 0,43% 99,57% 
24th 1 0,43% 100,00% 
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Table 33 displays the 30 evaluated features in a ranking, by the appearance score, 

of our study. Therefore, if we select features using the ranking, we could adjust the data 

reduction by using these parameters as a premise. Our study defined a premise where 

50% was adequate for data reduction, for this initial analysis; however, other premises, 

reducing or increasing features, could be studied in future. If we look for the cumulative 

percentages for example, the first half of the features comprises 75% of the 

appearances in the list. Thus, using our defined feature ranking, this study proposes the 

following analysis of this specific 15 feature set, representing 50% of data reduction: 

 �¤*%¦~�g��~� =  [§�!� , �, 3�u , �, K, ¨`, `, 9g© , 5g© , 7g© , 15g© , 11g© , 13g© , 17g© , 21�g]; 

to check whether if the contained features were enough to maintain metrics at a 

predefined feature extraction rate. 

Therefore, as the third step of analysis, we created and trained new models for the 

Deep Leaning classifier, using the �¤*%¦~�g��~�  array as their input. Notwithstanding 

that, all the appliances were reevaluated in a comprehensive comparison over the 

models trained by the complete set of features (full set, with 30 features). The 

comparison results for the eight metric scores, using an average of three tested 

scenarios, are displayed in Figure 84. The comparison results for the worst case scenario 

are displayed in Figure 85. A more detailed view, with zoom, of the Figures 84 and 85, 

can be examined in Appendix C, at Figures 122, 123, 124, 125, 126, 127, 128 and 129. 

The appliance comparison shows that, in just a few cases for some appliances, the 

full set scored better than the chosen 15 features set. Most of metric scores were similar, 

or even better, when the feature ranking set of 15 features was used. Additionally, the 

full set required longer training and predicting times in most of the studied cases. 

Therefore, feature selection with a 50% data reduction premise, based on our defined 

feature ranking, was proven to maintain metric scores close to the maximum rates 

obtained by the Deep Learning classifier. Countless combinations of features, even 

more restrictive, based on our feature ranking, could be tested in future; however, at this 

time, it is clear that the main contribution presented for the feature selection is not our 

feature ranking, but the method to create a feature ranking based on a studied appliance 

universe. Thus, we considered the �¤*%¦~�g��~�  adequate for our analysis of feature 

selection. 
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Figure 84 – Feature selection comparison for appliances at 450ms extraction (average results) 
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Figure 85 – Feature selection comparison for appliances at 450ms extraction (worst results) 
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6.4. Analysis of a real-life dataset  

 

The final analysis that we proposed was to train models with synthetic mixture 

streams and to predict those models using a real-life sampled mixture datasets. In order 

to maintain similar levels of dataset complexity, we sampled datasets with exactly 10 

appliances being activated at random times, to simulate a home. The appliances in the 

real mixture were: (1) a 23W Fluorescent bulb; (2) a hair dryer; (3) a 9W fluorescent 

bulb; (9) a 40W halogen bulb; (5) a notebook; (6) a 42 inch LED TV; (7) a 100W 

halogen bulb; (8) an Apple MacMini computer (9) a 23 inch LED monitor; (10) an X-

Box One. 

The only appliances of which the trained model had any previous knowledge were 

the 23W fluorescent bulb, the hair dryer and the X-Box One. Therefore, the sampled 

mixture dataset presented 7 unseen appliances. The two appliances that we selected 

empirically, for an evaluation of the predictions, were (1) the 23W fluorescent bulb and 

(2) the hair dryer. Both appliances were selected because of their displayed average best 

and worst values, respectively, from the metric scores after the analysis of Section 6.3. 

As seen in Figure 86, the predictions results of disaggregation were promising for the 

23W Fluorescent bulb, and for the hair dryer, in Figure 87 . 

The 23W fluorescent bulb displayed almost flawless predictions, losing 

performance only in an on state, because of oscillations in power consumption. The hair 

dryer was more difficult to assign an active power status correctly, because of the 

quantization process. The clustering algorithm found only two clusters for this 

appliance; however, visually it contains at least five quantization steps, which 

contributed to the reduced number of visible power states.  
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Figure 86 - 23W Fluorescent bulb active power (P) predictions inside the mixture (top) and with 

zoom (bottom) 

Figure 87 – Hair dryer active power (P) predictions inside the mixture (top) and with zoom 

(bottom) 
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7. Conclusions 

 

The development of this thesis and its research involved knowledge about power 

electronics and its associated theories and practice: Some of the included elements were 

the testing of PLLs for synchronizing voltage waveform; analog and digital signal 

processing, with the development of a low-cost analog anti-aliasing filter and the 

analysis using power spectral density; Fourier harmonics to generate synthetic datasets 

and feature extraction; the hardware and firmware development of an operational, low-

cost smart meter; the machine learning implementations of NILM disaggregation 

methods, space quantization (clustering), feature selection and feature extraction rate 

analysis; and, the development of an innovative Deep Learning technique that would be 

able to disaggregate different kinds of electrical loads efficiently. 

All the simulations involved a great deal of time to carry our training and make 

predictions, because of the large number of potential combinations of the different 

machine learning methods, the feature selection methods and the comprehensive 

frequency selection range. The training and prediction time, using a fully loaded 

computing capacity of 40 Intel XEON CPUs and 4 GTX-1080 GPUs, took almost three 

months of non-stop twenty-four hour computation. 

All the models, training data, datasets and images generated more than 300GB of 

data, which was compressed, for posterior analysis. The human review of this generated 

data was a long and time-consuming step to complete. More than 10,000 graphs of 

clustering results, mixture results, training results, prediction results and feature 

selection results were generated that together took more than more six months’ work. 

This included an intensive selection of data, and models and rework on parameterization 

and architecture. In addition all the machine learning systems had to be retrained before 

any actual outcomes were achieved. 

In some ways, the results that were obtained from the developed methodology for 

feature selection broke the paradigm of using exclusively active power (P) as a main 

feature for disaggregation purposes, which is an important contribution to the field of 

NILM study. The results for feature ranking can also be considered a major result, as 
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they showed feature significance based on the number of appearances, during the 

development of our methodology.  

Our feature extraction rate analysis also revealed that 27 cycles of 60Hz are 

adequate for features measurement, and allow resolution balancing whilst maintaining 

metrics at acceptable performance levels, while also reducing the need for feature 

measurement extraction, transmission and storage by 27 times. 

Our development of a methodology for synthetic mixture generation was a relevant 

contribution for current and future NILM development and, in addition, our training 

with synthetic datasets showed great results, even when used on real-sampled mixtures 

load disaggregation tests. 

 

 

7.1. Future work 

The solutions presented in this study are merely a first initial step for NILM 

development. We believe that merging different models that have been trained on 

different datasets will certainly improve performance for unseen environments, and will 

allow the creation of an ensemble to disaggregate general homes or offices. Deep neural 

networks could also be trained, based on appliance kind and not for a specific appliance; 

thus, reducing the number of networks to be trained and creating an artificial intelligent 

architecture that is more generalist and more scalable.  

The methodology we presented, for creating synthetic datasets, does not limit the 

maximum number of appliances per mixture. Our research used a limit of ten appliances 

per mixture, merely for the purposes of controlling the environment’s complexity, and 

to provide similar levels of feature extraction. There is a still an unknown maximum 

number of appliances, that are limited by noise’s being added to mixture from each 

appliance, something that does not occur when sampling aggregated appliances at the 

same time. These noise limits could be part of future study, or, alternatively, research 

could seek a method to filter noise with signal processing.  

Finally, as concerns Deep Neural Networks; more advanced activations, such as 

SELU´s, Scaled Exponential Linear Units (Klambauer, et al., 2017), could offer 
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improvements in performance. The use of Convolutional Neural Networks, Recurrent 

Neural Networks, Spatial Transform Network, Curriculum Learn and a strategy using 

Reinforcement Leaning could potentially raise performance in metric scores and further 

reduce the real necessity for feature extraction at the defined rate. 

 However, we believe that the analysis of power consumption of the machine 

learning algorithms, for disaggregation purposes, is an important issue to evaluate. It 

remains unclear whether more power would be consumed, by computing 

training/predictions, than might potentially be saved, by using the results of those 

computations. The transfer of energy savings, from homes to cloud servers, may 

become reality, which would mean that the complexity of the algorithms required to fit 

and predict the data should not surpass the potential for saving energy. Therefore, future 

NILM research should highlight the fine-tuning of energy efficient algorithms. 
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Appendix A 

BRAD Dataset 
Overview 

One of the challenges in NILM research and development is the lack of publicly 

available data. In order to contribute to further research in NILM, the dataset generated 

during the development of this work has been made freely available. 

The Brazilian Appliance Dataset (BRAD) contains measurements from grid voltage 

and current channels of 94 individual Brazilian appliances. The data were acquired 

using Yokogawa DL850EV ScopeCorder at a sample rate of 10 kHz. 

In the following sections, the BRAD file format and the script used to generate the 

dataset are described. More information on downloading, using and contributing to 

BRAD can be found at http://brad.caldeira.tech/. 

 

File format 

Each BRAD file contains data from one measurement of one individual appliance. 

The files are in HDF5 format (https://www.hdfgroup.org/solutions/hdf5) and contain an 

HDF5 dataset object with two dimensions: voltage and current. 

The voltage is the first dimension of the dataset (index 0) and is measured in Volts 

(V). The current is the second dimension (index 1) and is measured in Amperes (A). 

The HDF5 data type is 32-bit floating point. Besides the data from the actual samples, 

some metadata is associated with each dataset in the HDF5 file, as described in the 

Table 34. 
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Table 34 - Dataset metadata 

Key Description 

type Type of appliance 

manufacturer Manufacturer of the appliance 

model Model of the appliance 

sampling_rate Sampling rate of the meter, in Hertz 

grid_voltage Grid voltage, in Volts (rms) 

voltage_hash Hash of the elements of the voltage dimension 
concatenated* 

current_hash Hash of the elements of the current dimension 
concatenated* 

 

* The hashes are calculated using the xxHash algorithm 

(http://cyan4973.github.io/xxHash/) and written in the metadata fields in hexadecimal 

format with capital letters. 

Finally, the names of the files follow the pattern below: 

{voltage_hash}_{current_hash}.h5 

 

Sampling rate specifications 

Future contributions to the BRAD should follow the sampling specification detailed 

in Table 35. 

Table 35 – Sampling rate specifications 

Sampling rate Minimum 10 kHz 

Voltage Measured in Volts; minimum resolution of 0,1 V 

Current Measured in Amperes with values no greater than 400 A; minimum resolution of 
0,1 A 

ADC resolution Minimum 12 bits for analog to digital conversion 
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Dataset generation script 
 

Step Action 

1 Connect the meter and the appliance to the outlet 

2 Connect the voltage and current probes 

3 Turn on the appliance and the meter, but without recording 

4 Check whether the voltage and current ranges are within the meter range (scale) 

5 Check whether the voltage and current signals are in phase 

6 Check whether the current signal does not saturate in each state of the appliance 

7 Turn off the appliance 

8 Start recording 

9 Turn on the appliance 

10 Plug and unplug the appliance power source 3 times 

11 Activate all appliance power states (example for a TV appliance: change channels, increase 
and decrease volume, set standby mode) 

12 Turn off the appliance 

13 Finish recording 

14 Convert meter data to BRAD file format, as specified above 

 

 

  



 

142 

 

Appendix B 

 

A cost-effective smart meter 
 

Armel and her colleagues (Armel, et al., 2013) presented a business case that 

calculated the cost of saved kWh, using power monitoring solutions, compared to the 

cost of a kWh provided by the utilities. Even the worst case scenario showed four times 

less cost per kWh for the energy efficiency solutions, including software-based 

disaggregation, which makes it highly viable for commercialization. 

Under Armel’s premises (Armel, et al., 2013) (10% of 1064kWh per household 

saved monthly), customers can save from USD 4.79 to USD 10.11 per month. If we 

take a payback time of twenty-four months, as the premise for users’ disposition to go 

forward to an NILM platform, for energy saving, even worst case scenario (USD 4.79 

saved per month) solution could not cost more than around USD 115. 

With a price target defined, development tries to find the balance between power 

and cost. This requires presuppositions about the technical requirements of the desired 

application and platform. Thus, as prior requisite, research will evaluate energy 

distribution sector to find number of simultaneous sampling channels needed.  

In the majority of European countries, power supply is provided to homeowners as 

50Hz, 230Vrms. United States residential buildings commonly use two phases with 60Hz 

and 120Vrms. In Brazil this depends on the region and the electricity utilities: In 

southeast and southern Brazil, distribution can be up to a three-phase supply, with a 

phase offset of 120o between each other and magnitude of 127Vrms; in northern Brazil 

the power supply is 220Vrms. 

Therefore, to achieve the minimum prerequisites for a three phase NILM monitor, 

that satisfies Brazil’s requirements, the meter needs to be able to sample at least five 

channels simultaneously: two voltage channels (VAB, VBC), with the desired three 

voltage measurement (for zero sequence or neutral problem verifications), and three 

current channels (IA, IB, IC). In order to link time-stamped data, the meter would also 

require a Real Time Clock (RTC).  
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This thesis adopted a 16 bit word-length as its premise for signal resolution. Within 

the feature extraction rate and the features set, defined in Sections 6.2 and 6.3, 

respectively, in one hour, the system will generate: 

• 30 features x 2 bytes (quantization) x 8 k (number of 450ms in 1h) = 480kB 

(of raw data); 

• 8 bytes (date and time) for each epoch time (450ms) = 64kB 

Thus, 544kB of data per hour is required to store the results, for disaggregation 

purposes. Thus, for a minimum 90 days of raw data in mass storage, and without 

overwriting any previous record in memory, the system will require at least 1.175GB. 

This includes only raw information data of measurements and doesn’t evaluate space to 

program code, calibration, and configuration or parameterization.  

 

Available platforms 

In 2012, Pereira (Pereira, et al., 2012) presented the design of a platform using a 

“Netbook” as hardware for acquiring and processing data. The proposed idea was for 

more than just the purposes of NILM and included an "Eco-Feedback Research", which 

used a built-in camera and microphone to sensor human activity.  

The proposed sampling system used an audio input TRS plug to capture 2 channels, 

voltage and current, via the computer’s sound card. The platform proposal (Pereira, et 

al., 2012) also used Wi-Fi (IEEE 802.11) for communication platform, which 

outperformed desired throughput with rates up to 600Mbps in 2.4GHz spectrum (IEEE 

802.11, 2012), and, mass storage probably exceeds minimum requirement with 

nowadays hard drives sizes. Unfortunately, the sound cards that are embedded in 

“Netbooks” today, do not provides the minimum number of sampling channels for 

metering three-phase systems; they only have two sampling channels available in their 

sound cards. 

The cost of a “Netbook”, as an NILM meter platform, is also prohibitive to mass 

adoption in most of houses, especially in developing countries, such as Brazil. As stated 

by Armel (Armel, et al., 2013), payback will possibly be long enough to overtake 

consumers’ expectations. 



 

144 

 

Trung and his colleagues (Trung, et al., 2013) introduced the use of Field 

Programmable Gate Array (FPGA) to disaggregate loads. Their proposed architecture, 

with a market price estimated at €150, gathered data up to 500 kHz and processed the 

entire algorithm in parallel mode. Notwithstanding this, system is not yet commercially 

available and it is not suitable for mass adoption because of its high target price. 

In contrast, commercially available embedded platforms, such as Raspberry Pi3 

(RASPBERRY, 2016), embed a 1.2GHz quad-core ARM CPU, Wi-Fi and Bluetooth 

wireless communication technologies, with a 32GB microSD card, and cost USD 55 in 

online stores (MOMYPI, 2016). Unfortunately, the number of channels that are 

available in Raspberry soundcards do not meet the minimum requisites for a three-phase 

metering, either. 

In our quest to meet all the desired specifications and price target, we searched for a 

more embedded and customizable solution such as the System on Chip (SoC) from 

Texas Instruments (TI, 2016). The SoC CC2650 (TI CC2650, 2016), provides wireless 

communication (multi-protocol standard for Bluetooth and Zigbee) with a Cortex-M0 

dedicated processor, a main 32-bit ARM Cortex-M3 (48 MHz), an extra processor 

called Sensor Controller as auxiliary ultralow-power processing unit. This 

microcontroller also integrates an internal temperature sensor, a Real Time Clock, 8 

analog input channels with a 200 kS/s rate, SPI, I2C and UART communication ports. 

The price for a single chip, buying it directly from TI, for 1,000 units is USD 3.30 per 

unit (TI CC2650, 2016).  

In order to manufacture ten complete NILM meters (including microcontrollers, 

communication circuits, power supply, voltage and current isolated transducers, analog 

filtering, signal conditioning, circuit board, resistors, capacitors, inductors, microSD 

card holders, case, plugs, extra components, soldering and assembly services), we 

calculate that the unit cost is around USD 120, using a famous electronic parts seller 

(DIGI-KEY, 2016). It is important to mention the value of each unit decreases 

exponentially as production scale grows. 

To meet the specifications for mass storage, the platform will require an external 

device, using SPI communication, for recording raw data. Flash memories cards, such 

as microSD cards, are affordable solutions for embedded mass storage. Therefore, the 

complete solution, including a USD 10 32GB micro SD card (AMAZON, 2016), which 
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was bigger than need to storage 90 days of data, and had a target cost of USD 130. This 

is close to the previously established price and meets all the requirements for an NILM 

meter. 

 

Platform structure 

Internally, NILM meters are divided in five different functional blocks, as shown in 

Figure 88 – a power supply unit (A), with an embedded AC-DC converter to 3.3VDC; 

analog front-end (B) with components to do signal conditioning of voltage and current 

to meet microcontroller ADC specifications (3.3Vpp signal excursion with 1.65Voffset); 

(C) anti-aliasing filter (-30dB @ 5 kHz by Nyquist-Shannon sampling theorem for 

sampling rates of 10 kHz). Complimentary, research provided development of analog 

anti-aliasing filter. 

The platform also used a microSD as mass storage (D), implemented through SPI 

mode (SDGROUP, 2013); and used Bluetooth (E) as a wireless communication 

standard. SPI mode is a secondary communication protocol offered by Flash SD devices 

and contains a subset of the SD Memory Card protocol commands. 

The SPI implementation offered by microSD cards is capable of using an off-the-

shelf host, which allows the card to transfer data directly to embedded microcontroller 

SPI ports. A disadvantage is that SPI mode has a lower performance when compared to 

SD’s native mode. 
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Figure 88 - NILM meter main components (A) Internal power supply unit (B) Voltage and 

current transducers (C) Filtering and signal conditioning circuits (D) MicroSD mass storage (E) 

Bluetooth smart 4.1 wireless and TI CC2650 microcontroller 

 

 

SPI Bus protocol 

The SPI mode uses a four-wire serial bus to communicate with a microcontroller 

host: clock (SCK); Master-Out Slave-In (MOSI); Master-In Slave-Out (MISO); and 

Slave Select (SS). Its protocol is Master-Slave oriented and was initially developed by 

Motorola. The SPI protocol for microSD cards consists of a command, a response and, 

when necessary, the transfer of data-blocks and tokens. Command size is fixed at a 6-

byte length, and replies for each command can assume an assorted byte length, as 

described in specifications (SDGROUP, 2013). 

SPI protocol needs an initialization method. To enter into SPI mode, the card needs 

at least 74 cycles of the clock with the SS line in high (logic level 1). The procedure 

must be executed with a low frequency operation rate (usually 100 kHz as clock). After 

initialization, the card will wait for the CMD0 command to reset and will then enter into 

SPI Operation Mode. Faster clocks could now be configured to obtain higher transfer 

rates.  
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After the initialization process, the flash memory card goes into Data Transfer 

Mode. The block length for modern SDHC and SDXC cards is fixed at 512 bytes. 

Sending and receiving data blocks on SD cards can be made in a single transfer mode, 

where just 512 bytes are transferred, or, in multiple block mode, where the host defines 

the number of blocks to be transferred and sends all the data serialized. 

Modern SD cards are optimized to use multiple block transfer mode, where pre-

erase command (ACMD23) can be made in order to optimize the write throughput, and 

read process can achieve specifications of sustained data rates. 

 

Anti-aliasing filter 

It is necessary that the low-pass anti-aliasing filter precede the analog-to-digital 

converter stage, to limit the bandwidth of the signal to be digitalized; thus, avoiding 

aliasing. Theory is broadly studied in book "Digital Signal Processing: System Analysis 

and Design" (Diniz, et al., 2010).  

The analog-to-digital converter embedded hardware in the microcontroller allows a 

maximum signal excursion of 3.3Vpp, and negative voltage (from the microcontroller 

ground reference) is prohibited. The grid voltages and currents and must be measured 

by isolated transducers and signal conditioned to meet electrical specifications. 

Our initial project for an anti-aliasing filter followed the proposed methodology of 

Gao and his colleagues (Gao, et al., 2010): A low-pass filter, with stop-band frequency 

of 5kHz (attenuation of -30dB) indicated a fourth-order Butterworth filter, realized by 

Multiple-Feedback or Sallen-key circuits. However, in order to implement an \th-order 

filter, the project requires 
«

�
 stages. Thus, 2 stages were required for implementation of 

anti-aliasing filter, employing 2 operational amplifiers for each channel. 

Nevertheless, a topology from Boctor (Boctor, 1975) allowed the implementation of 

a 3rd order Inverse Chebyshev filter, with improved pass-band and similar stop-band as 

designed using 4th order Butterworth filter. Figure 89 shows that a 3rd order Boctor 

topology has similar performance of a 4th order Butterworth filter, although with 

reduced cost. 
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Figure 89 – Magnitude gain (top) and Phase response (bottom) comparison of 4th order 

Butterworth and 3rd order Inverse Chebyshev low-pass anti-aliasing filter 

 

Smart meter development 

The initial development of an NILM meter used large SMD components and 

delivered modularity for a comprehensive test environment, enabling a solely hand-

made platform without requiring a machine to do welding. Three different boards were 

designed: a main motherboard, a voltage-current measurement daughterboard, and a 

dual-current measurement daughterboard. 

The motherboard was developed to accommodate a microcontroller, a power 

supply, wireless components, general purpose input and output such as buttons and 

LED´s, an OLED display, an anti-aliasing filter, a microSD card, and up to four coupled 

daughterboards. The voltage-current daughterboard was designed to measure one 

voltage channel and one current channel, performing isolation and signal conditioning. 

The dual-current daughterboard was designed to measure 2 isolated currents with signal 

conditioning. Projected first in 3D and assembled in LEMT Laboratory, the complete 

NILM meter configuration is shown in Figure 90 (a) – with 3D CAD project and (b), 
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with the motherboard displayed in green, the voltage-current daughterboard in red and 

the dual-current in dark blue. 

 

 

Figure 90 – (a) 3D Project of smart meter and (b) version of developed prototype 

 

Our firmware development also included a Bluetooth low energy stack, using TI-

RTOS (a real-time operating system with a preemptive kernel task scheduler and drivers 

for some hardware).  

The CC2650 is a multi-core system, thus, the development used a concurrent 

computing paradigm. The main processor (Cortex-M3) was responsible for the feature 

measurements: processing the sampled data and storage of computed features on the 

microSD card, running SPI protocol, as shown in Figure 91. TI-RTOS provided a driver 

for SPI hardware using embedded µDMA (micro-direct memory access), therefore 

releasing the CPU to realize tasks and other computations while data was transferred, in 

parallel, to mass storage. 

 

Figure 91 - Multi-core processing scheme 
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The Sensor Controller CPU assumed sampling data for each individual channel, 

using a double-buffer strategy to wake up the main CPU when one buffer was entirely 

filled. Distinct memory buffers were chosen to avoid Readers-Writers problem. 

The NILM meter actually evaluated the 15 electrical features, defined by this thesis, 

using a feature extraction rate of 450ms (27 cycles). Therefore, future measurements 

from developed smart meter could be used in research and development of future NILM 

studies. A miniaturized version of the smart meter, for an automated machine welding 

process, was also developed for home and office use, and is compatible with DIN rail 

EN50022, similar to that used to mount circuit breakers, as shown in Figure 92. 

 

 

 

Figure 92 – 3D project of miniaturized version of NILM smart-meter 

 

 

More information on downloading, using and contributing NILM meter can be 

found at http://smartmeter.caldeira.tech/. 
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Appendix C 

Appliances analysis 
 

Notebook analysis 

Table 36 – Notebook / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 99 94 135 99 94 130 99 94 140 99 94 130 

SVM 99 94 58 93 88 58 99 94 70 92 87 58 

Logistic Regression 94 89 3 53 48 3 70 65 10 50 45 3 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 97 92 300 6 11 100 10 3 

SVM 96 91 300 7 12 45 5 16 

Logistic Regression 94 89 300 17 22 230 2 1 

Table 37 – Notebook / Summary of Feature Selection 

Deep Learning Feature List 
    

90 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    ����    
    

����    ����    
        

����    
        

����    
                    

����    
        17 43% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30 0% 

AdaBoost ����    
    

����    
    

����    ����    
                                                

����    
                                            5 83% 

Table 38 – Notebook / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features F. Extraction Rate 

Deep Learning Extra-Trees 17 90 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    ����    
    

����    ����    
        

����    
        

����    
                    

����    
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Figure 93 – Notebook / NILM Methods comparison with full features set 
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Figure 94 – Notebook / Deep Learning Feature Selection methods comparison 
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LCD Monitor analysis 

Table 39 – LCD Monitor / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 97 92 250 93 88 300 97 92 250 96 91 250 

SVM 90 85 60 90 85 20 97 92 100 90 85 100 

Logistic Regression 85 80 4 50 45 3 68 63 4 45 40 6 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 99 94 300 3 8 70 30 2 

SVM 99 94 300 3 8 35 7 10 

Logistic Regression 94 89 200 20 25 20 5 1 

Table 40 – LCD Monitor / Summary of Feature Selection 

Deep Learning Feature List 
    

40 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    ����    ����    ����    ����    
    

����    
    

����    25 17% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    29 3% 

AdaBoost ����    
                

����    ����    ����    
        

����    
    

����    
    

����    ����    
            

����    
    

����    
    

����    
                        11 63% 

Table 41 – LCD Monitor / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features F. Extraction Rate 

Deep Learning Extra-Trees 25 40 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    ����    ����    ����    ����    
    

����    
    

����    
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Figure 95 – LCD Monitor / NILM Methods comparison with full features set 
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Figure 96 – LCD Monitor / Feature Selection methods comparison 



 

157 

 

Air conditioner analysis 

Table 42 – Air conditioner / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 97 92 65 95 90 25 96 91 25 95 90 16 

SVM 96 91 12 89 84 7 95 90 5 85 80 6 

Logistic Regression 80 75 5 50 45 2 65 60 2 45 40 3 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 96 91 90 8 13 90 15 7 

SVM 96 91 70 8 13 70 9 15 

Logistic Regression 93 88 5 12 17 13 3 1 

Table 43 – Air conditioner / Summary of Feature Selection 

Deep Learning Feature List 
    

16 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    ����    
    

����    ����    
    

����    
                    

����    
    

����    
    

����    19 37% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30 0% 

AdaBoost ����    ����    ����    
        

����    ����    ����    
                                                                                        6 80% 

Table 44 – Air conditioner / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features F. Extraction Rate 

Deep Learning Extra-Trees 19 16 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    ����    
    

����    ����    
    

����    
                    

����    
    

����    
    

����    
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Figure 97 – Air conditioner / NILM Methods comparison with full features set 
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Figure 98 – Air conditioner / Feature Selection methods comparison 
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Fridge analysis 

Table 45 – Fridge / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 96 91 17 90 85 22 95 90 17 90 85 23 

SVM 97 92 17 85 80 14 95 90 5 90 85 3 

Logistic Regression 80 75 4 75 70 3 80 75 2 70 65 3 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 95 90 55 10 15 17 10 5 

SVM 95 90 15 10 15 17 5 13 

Logistic Regression 80 75 5 25 30 6 3 1 

Table 46 – Fridge / Summary of Feature Selection 

Deep Learning Feature List 
    

17 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
                                        16 47% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
        

����    ����    ����    ����    ����    ����    ����    
        

����    ����    ����    ����    ����    ����    26 13% 

AdaBoost ����    
            

����    ����    ����    ����    ����    
                                

����    
    

����    
                                    

����    9 70% 

Table 47 – Fridge / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features F. Extraction Rate 

Deep Learning Extra-Trees 16 17 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
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Figure 99 – Fridge / NILM Methods comparison with full features set  
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Figure 100 – Fridge / Feature Selection methods comparison 
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Washing machine analysis 

Table 48 – Washing machine / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 97 92 120 97 92 120 97 92 120 96 91 120 

SVM 95 90 18 90 85 43 95 90 10 90 85 42 

Logistic Regression 55 50 17 45 40 10 55 50 10 45 40 8 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 94 89 60 12 17 42 5 4 

SVM 94 89 60 12 17 3 5 10 

Logistic Regression 80 75 8 40 45 2 2 1 

Table 49 – Washing machine / Summary of Feature Selection 

Deep Learning Feature List 
    

42 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    
                                        18 40% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
                                21 30% 

AdaBoost ����    ����    ����    ����    ����    ����    ����    ����    
                                                                

����    
        

����    
        10 67% 

Table 50 – Washing machine / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features 

F. Extraction 
Rate 

Deep Learning AdaBoost 10 42 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    ����    ����    ����    ����    
                                                                

����    
        

����    
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Figure 101 – Washing machine / NILM Methods comparison with full features set 
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Figure 102 – Washing machine / Feature Selection methods comparison 
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Microwave oven analysis 

Table 51 – Microwave oven / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 97 92 42 95 90 25 95 90 42 93 88 35 

SVM 94 89 42 74 69 5 85 80 15 70 65 15 

Logistic Regression 90 85 15 45 40 3 50 45 5 45 40 3 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 98 93 90 3 8 90 12 5 

SVM 98 93 90 3 8 90 5 10 

Logistic Regression 95 90 25 7 12 22 1 1 

Table 52 – Microwave oven / Summary of Feature Selection 

Deep Learning Feature List 
    

25 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    ����    ����    ����    ����    
    

����    ����    ����    ����    ����    ����    ����    
    

����    ����    ����    ����    ����    27 10% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
        

����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    28 7% 

AdaBoost     
����    ����    

    
����    ����    ����    

    
����    

                                        
����    

                    
����    

                8 73% 

Table 53 – Microwave oven / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features F. Extraction Rate 

Deep Learning AdaBoost 8 25 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

    
����    ����    

    
����    ����    ����    

    
����    

                                        
����    

                    
����    
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Figure 103 – Microwave oven / NILM Methods comparison with full features set 
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Figure 104 – Microwave oven / Feature Selection methods comparison 
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Hair dryer analysis 

Table 54 – Hair dryer / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 99 94 120 95 90 120 98 93 120 95 90 100 

SVM 99 94 40 94 89 36 99 94 37 93 88 25 

Logistic Regression 85 80 5 50 45 3 55 50 4 45 40 2 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 97 92 70 5 10 60 12 10 

SVM 97 92 70 5 10 28 5 15 

Logistic Regression 80 75 3 40 45 2 2 1 

Table 55 – Hair dryer / Summary of Feature Selection 

Deep Learning Feature List 
    

60 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    ����    ����    
    

����    25 17% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    ����    ����    
    

����    
    

����    26 13% 

AdaBoost ����    ����    ����    ����    ����    ����    
    

����    
                    

����    ����    
                                                            9 70% 

Table 56 – Hair dryer / Summary of complete solution 

Solution 
Method  Feature Selection Method Num. Features F. Extraction Rate 

Deep Learning  AdaBoost 9 60 cycles 

           
 

                    

Selected Features 

Features  Fourier Harmonics 

P I S Q CF F 2 3 4 5 
 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    ����    ����    
    

����    
        

    

            
����    ����    
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Figure 105 – Hair dryer / NILM Methods comparison with full features set 
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Figure 106 – Hair dryer / Feature Selection methods comparison 
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Halogen bulb analysis 

Table 57 – Halogen bulb / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 97 92 35 80 75 30 85 80 55 75 70 55 

SVM 97 92 35 80 75 40 85 80 50 75 70 54 

Logistic Regression 80 75 55 35 30 30 55 50 7 35 30 55 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 97 92 75 3 8 80 13 3 

SVM 97 92 75 6 11 80 15 15 

Logistic Regression 88 83 60 22 27 60 4 1 

Table 58 – Halogen bulb / Summary of Feature Selection 

SVM Feature List 
    

35 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    
    

����    
    

����    
            

����    
                    

����    
                                        10 67% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
            

����    
    

����    
    

����    
            

����    
    

����    
        16 47% 

AdaBoost     
����    ����    

        
����    

    
����    

                                                                                        4 87% 

Table 59 – Halogen bulb / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features F. Extraction Rate 

SVM Extra-Trees 10 35 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    ����    ����    
    

����    
    

����    
            

����    
                    

����    
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Figure 107 – Halogen bulb / NILM Methods comparison with full features set 
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Figure 108 – Halogen bulb / SVM - Feature Selection methods comparison 
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Figure 109 – Halogen bulb / Deep Learning - Feature Selection methods comparison 
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Fluorescent bulb analysis 

Table 60 – Fluorescent bulb / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 92 87 17 84 79 22 85 80 25 82 77 30 

SVM 90 85 13 75 70 15 88 83 14 70 65 18 

Logistic Regression 68 63 5 45 40 5 49 44 4 45 40 4 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 99 94 90 2 7 60 15 3 

SVM 99 94 70 2 7 35 5 11 

Logistic Regression 93 88 13 10 15 10 3 1 

Table 61 – Fluorescent bulb / Summary of Feature Selection 

Deep Learning Feature List 
    

17 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    18 40% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30 0% 

AdaBoost ����    ����    ����    
        

����    
    

����    
        

����    
            

����    ����    
            

����    ����    
    

����    ����    
                        12 60% 

Table 62 – Fluorescent bulb / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features F. Extraction Rate 

Deep Learning Extra-Trees 18 17 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
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Figure 110 - Fluorescent bulb / NILM Methods comparison with full features set 
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Figure 111 - Fluorescent bulb / Feature Selection methods comparison 
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LED bulb analysis 

Table 63 - LED bulb / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 99 94 52 70 65 52 70 65 60 70 65 55 

SVM 96 91 46 65 60 52 65 60 60 63 58 55 

Logistic Regression 85 80 5 50 45 4 55 50 13 53 48 3 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 98 93 56 2 7 60 2 2 

SVM 97 92 75 3 8 47 5 10 

Logistic Regression 89 84 6 21 26 15 2 1 

Table 64 - LED bulb / Summary of Feature Selection 

Deep Learning Feature List 
    

52 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
            

����    
    

����    
    

����    16 47% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    ����    ����    
    

����    ����    ����    ����    ����    ����    ����    ����    ����    28 7% 

AdaBoost ����    
                        

����    
                                                                                        2 93% 

Table 65 - LED bulb / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features F. Extraction Rate 

Deep Learning Extra-Trees 16 52 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
            

����    
    

����    
    

����    
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Figure 112 - LED bulb / NILM Methods comparison with full features set 
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Figure 113 - LED bulb / Feature Selection methods comparison 
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Plasma TV analysis 

Table 66 – Plasma TV / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 97 92 45 97 92 23 96 91 27 97 92 45 

SVM 96 91 23 96 91 22 95 90 22 96 91 22 

Logistic Regression 68 63 3 53 48 3 60 55 4 55 50 2 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 96 91 90 8 13 90 7 2 

SVM 96 91 90 8 13 90 5 7 

Logistic Regression 91 86 6 17 22 4 2 1 

Table 67 – Plasma TV / Summary of Feature Selection 

Deep Learning Feature List 
    

23 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    21 30% 

M. Inform. ����    ����    ����    ����    ����    ����    
    

����    
    

����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    ����    ����    27 10% 

AdaBoost ����    ����    ����    ����    
            

����    ����    
            

����    ����    
    

����    
    

����    
        

����    ����    ����    ����    ����    
                    15 50% 

Table 68 – Plasma TV / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features F. Extraction Rate 

Deep Learning AdaBoost 15 23 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    
            

����    ����    
            

����    ����    
    

����    
    

����    
        

����    ����    ����    ����    ����    
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Figure 114 – Plasma TV / NILM Methods comparison with full features set 
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Figure 115 – Plasma TV / Feature Selection methods comparison 
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Ceiling fan analysis 

Table 69 – Ceiling fan / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 93 88 20 91 86 23 92 87 24 91 86 20 

SVM 65 60 3 50 45 2 80 75 8 55 50 3 

Logistic Regression 50 45 7 45 40 2 50 45 7 45 40 2 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 99 94 80 2 7 80 6 5 

SVM 92 87 90 4 9 90 6 13 

Logistic Regression 92 87 35 17 22 15 3 1 

Table 70 – Ceiling fan / Summary of Feature Selection 

Deep Learning Feature List 
    

20 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
                    

����    
                                        11 63% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    
                    

����    
                                        13 57% 

AdaBoost ����    ����    ����    ����    
                    

����    
                                        

����    
        

����    
            

����    
        8 73% 

Table 71 – Ceiling fan / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features F. Extraction Rate 

Deep Learning Extra-Trees 11 20 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
                    

����    
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Figure 116 – Ceiling fan / NILM Methods comparison with full features set 
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Figure 117 – Ceiling fan / Feature Selection methods comparison 
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Desktop PC analysis 

Table 72 – Desktop PC / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 95 90 60 92 87 53 92 87 55 92 87 55 

SVM 93 88 40 90 85 20 90 85 41 90 85 14 

Logistic Regression 70 65 5 50 45 2 65 60 2 55 50 2 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 93 88 90 14 19 90 6 4 

SVM 93 88 90 14 19 90 3 10 

Logistic Regression 94 89 6 13 18 10 2 1 

Table 73 – Desktop PC / Summary of Feature Selection 

Deep Learning Feature List 
    

53 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    
    

����    
    

����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    28 7% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30 0% 

AdaBoost ����    ����    ����    
                                                        

����    
                                                4 87% 

Table 74 – Desktop PC / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features F. Extraction Rate 

Deep Learning Extra-Trees 28 53 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    ����    ����    
    

����    
    

����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    
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Figure 118 – Desktop PC / Feature Selection methods comparison 
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Figure 119 – Desktop PC / Feature Selection methods comparison 
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Clothes iron analysis 

Table 75 – Clothes iron / Metrics summary 

 
Accuracy F-Measure Precision Recall 

with Full Features max% -5% cycle max% -5% cycle max% -5% cycle max% -5% cycle 

Deep Learning 100 95 90 99 94 90 99 94 90 99 94 90 

SVM 100 95 90 99 94 90 99 94 90 99 94 80 

Logistic Regression 98 93 90 64 59 7 80 75 23 63 58 5 

             
 

TECA NEAP Train Time Predict Time 

with Full Features max% -5% cycle min% +5% cycle feasible time cycle feasible time cycle 

Deep Learning 98 93 90 7 12 27 5 4 

SVM 98 93 90 7 12 15 4 4 

Logistic Regression 95 90 5 20 25 90 2 1 

Table 76 – Clothes iron / Summary of Feature Selection 

Deep Learning Feature List 
    

27 cycles Features Fourier Harmonics   data 

Method P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Size % red. 

Full set ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    ����    30   

Extra-Trees ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
            

����    
    

����    
            

����    
                14 53% 

M. Inform. ����    ����    ����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
    

����    
        18 40% 

AdaBoost     
����    ����    

    
����    

                                                                                                    3 90% 

Table 77 – Clothes iron / Summary of complete solution 

Solution 
Method Feature Selection Method Num. Features F. Extraction Rate 

Deep Learning Extra-Trees 14 27 cycles 

                               

Selected Features 

Features Fourier Harmonics 

P I S Q CF F 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

����    ����    ����    ����    ����    ����    
    

����    
    

����    
    

����    
    

����    
    

����    
            

����    
    

����    
            

����    
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Figure 120 – Clothes iron / Feature Selection methods comparison 
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Figure 121 – Clothes iron / Feature Selection methods comparison 
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Zoom of Feature selection comparison 
 

 

 
Figure 122 – Zoom of Accuracy and F-Measure from Figure 84 
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Figure 123 – Zoom of Precision and Recall from Figure 84 
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Figure 124 – Zoom of TECA and NEAP from Figure 84 
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Figure 125 – Zoom of Time to Train and Time to Predict from Figure 84 
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Figure 126 – Zoom of Accuracy and F-Measure from Figure 85 
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Figure 127 – Zoom of Precision and Recall from Figure 85 
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Figure 128 – Zoom of TECA and NEAP from Figure 85 
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Figure 129 – Zoom of Time to Train and Time to Predict from Figure 85 

 


