
FEDERAL UNIVERSITY OF RIO DE JANEIRO
INSTITUTE OF MATHEMATICS

BACHELOR DEGREE IN COMPUTER SCIENCE

LETICIA F. DE FIGUEIREDO

PyCoptimizer
A framework to optimize codes

RIO DE JANEIRO
2019

LETICIA F. DE FIGUEIREDO

PyCoptimizer
A framework to optimize codes

Final project of an undergraduate degree pa-
per presented to the Computer Science De-
partment of the Federal University of Rio de
Janeiro as part of the requirements to ob-
tain a Bachelor of Science degree in Compu-
ter Science.

Supervisor: Prof. João C. P. da Silva, D. Sc.
Co-supervisor: Daniel Hugo Cámpora Pérez, PhD
Co-supervisor: Fabrício Firmino de Faria, M. Sc.

RIO DE JANEIRO
2019

 Figueiredo, Leticia Freire de

F475p PyCoptimizer: a framework to optimize codes / Leticia Freire de

Figueiredo. – 2019.

 41 f.

 Orientador: João Carlos Pereira da Silva.

 Coorientador: Daniel Hugo Cámpora Pérez.

 Coorientador: Fabrício Firmino de Faria.

Trabalho de Conclusão de Curso (Bacharelado em Ciência da

Computação) - Universidade Federal do Rio de Janeiro, Instituto de

Matemática, Bacharel em Ciência da Computação, 2019.

 1. Flags de otimização. 2. Algoritmo genético. 3. Algoritmos

evolucionários. I. Silva, João Carlos Pereira da (Orient.). II. Cámpora

Pérez, Daniel Hugo (Coorient.). III. Faria, Fabrício Firmino de

(Coorient.). IV. Universidade Federal do Rio de Janeiro, Instituto de

Matemática. V. Título.

LETICIA F. DE FIGI EIREDO

PyCopt lIflIZCf

A framework to opti nize codes

Final project of an undergraduate degree pa
per presented to the Computer Science De
partment of the Federal University of Rio de
Janeiro as part of the requirements to ob
tain a Bachelor of Science degree in Compu
ter Science.

Approved in December, 11th 2019
.

EXAMINATION COMMITTEE:

‘iR. ü<\
Prof. Joao C. P. da Silva

D. Sc. (UFRJ)

Danic1t{ttgo-Ciiira Perez
PhD (Universidad de Sevilla and CERN)

?*..Lir

Fabricio Firmino do Faria
M. Sc. (UFRJ)

4.
Pt4, Luziane Ferrpifa de Meudonça

D. Sc. (UNICAMP)

Prof. .ioto AHLOILkO Paixao
U. Sc. (PUG-RIO)

RESUMO

Possuindo um código, desejamos otimizá-lo. Isso pode ser feito de diversas maneiras.
Uma dessas maneiras é no momento da compilação, passar comandos, indicando como
queremos compilar o código. Esses comandos incluem as flags de otimização. Mas não é
fácil encontrar as flags que melhor otimizam o código. Uma solução para esse problema
é usar o algoritmo genético, procurando o melhor conjunto de flags de otimização. No
nosso trabalho, propomos um framework, chamado PyCoptimizer, no qual busca o melhor
conjunto de flags para um determinado código. Comparamos nossos resultados com flags
de otimização genéricos, como a flag -O1 em C ++, e mostramos que o framework alcança
um resultado melhor.

Palavras-chave: flags de otimização. algoritmo genético. algoritmos evolucionários.

ABSTRACT

When having a code, we wish to optimize it. It can be done in many ways. One of
these ways is in the compilation moment, passing commands, indicating how we want to
compile the code. These commands include the optimization flags. But, finding the flags
which best optimizes the code is not easy. One solution to this problem is to use the
genetic algorithm, searching for the best set of optimization flags. In ou work, we propose
a framework, called PyCoptimizer, in which searches the best set of flags for a given code.
We compare our results with generic optimization flags, as -O1 flag in C++, and shown
the framework reach a better result.

Keywords: optimization flags. genetic algorithm. evolutionary algorithm.

LIST OF FIGURES

Figure 1 – Example of the genetic algorithm . 12
Figure 2 – Example of one individual . 13
Figure 3 – Example of the tournament selection with q = 3 individuals 14
Figure 4 – Example of the exponential crossover 15
Figure 5 – Mutation example . 15
Figure 6 – Bit inversion example . 16
Figure 7 – Example of command to install PyCoptimizer 17
Figure 8 – Example of command to run the Python code 20
Figure 9 – PyCoptimizer schema . 20
Figure 10 – Running with default parameters of genetic algorithms 24
Figure 11 – Experiments changing the genetic algorithm parameters 25
Figure 12 – Changing mutation rate using the same population 27
Figure 13 – Changing crossover rate using the same population 28
Figure 14 – Decreasing crossover rate with constant mutation rate 29
Figure 15 – Increasing crossover rate with a constant mutation rate 30
Figure 16 – Decreasing mutation rate with a constant crossover rate 31
Figure 17 – Increasing mutation rate with a constant crossover rate 32
Figure 18 – Results to Cross Kalman code using PyCoptimizer 32
Figure 19 – Frequency of 20 flags with mutation rate equals to 0.01 39
Figure 20 – Frequency of 20 flags with mutation rate equals to 0.001 39
Figure 21 – Frequency of 20 flags with crossover rate equals to 0.8 40
Figure 22 – Frequency of 20 flags with crossover rate equals to 0.6 40
Figure 23 – Frequency of 20 flags about the case study using 30 generations 41

LIST OF CODES

3.1 Python code example . 19
4.1 Genetic algorithm of Pygmo taken from Pygmo - Simple Ge-

netic Algorithm in 06/18/2019 26

https://esa.github.io/pagmo2/docs/python/algorithms/py_algorithms.html#pygmo.sga
https://esa.github.io/pagmo2/docs/python/algorithms/py_algorithms.html#pygmo.sga

LIST OF TABLES

Table 1 – Genetic algorithm parameters . 22
Table 2 – List of experiments . 23
Table 3 – Comparison time . 24
Table 4 – Results of each experiment . 26
Table 5 – Problemming flags . 29
Table 6 – Results to case study . 30
Table 7 – Duration of each running per experiment 33

LIST OF SYMBOLS

∀ For all∑
Sum

∈ Belongs to

TABLE OF CONTENTS

1 INTRODUCTION . 10

2 BASIC CONCEPTS . 12
2.1 Genetic Algorithm . 12

2.1.1 Selection . 13
2.1.2 Crossover and Mutation . 14

3 IMPLEMENTATION . 17

4 EXPERIMENTS . 22
4.1 Experiment 1 - Minimizing Execution Time 22

4.2 Analysis of the resulting flags 27

4.3 Experiment 2 - Cross-Kalman 28

5 CONCLUSION . 33

REFERENCES . 35

APPENDIX A – FLAGS USED IN THE EXPERIMENTS 37

APPENDIX B – FREQUENCY OF FLAGS 39

APPENDIX C – FREQUENCY OF FLAGS - CASE STUDY . . . 40

10

1 INTRODUCTION

A code is a sequence of instructions that need to be compiled to be interpreted by
the computer. When compiling, the instructions are translated into a language called
machine language, transforming code, written in a language better understood by humans,
in machine language. For the compilation to be performed a compiler is used.

Many commands can be passed to the compilers when compiling. One possible com-
mand is the name we wish to give to our file after the compilation. Other commands
which can be passed are the optimization flags. The optimization flags potentially make
the generated executable more efficient. Different optimization flags have different objec-
tives, being some of them: reduce the execution time in a compiled code and reduce the
occupied memory space.

A code written in C/C++ allows many optimization flags being used. Each flag
will apply a different optimization in the code. Optimization flags affect each other in
an unpredictable manner that varies across compilers, compiler versions, and programs.
Therefore, one possible way to identify the best set of optimization flags is to automatize
the search process.

The problem to find the best set of optimization flags is a subject already discussed.
In (HOSTE; EECKHOUT, 2008), the COLE: Compiler Optimization Level Exploration
was presented which objective is to automate the search for optimal levels of compilation
using multi-objective search. The compilation levels are sets of optimization flags and
their optimal levels indicated whose flags of each level are active or not. This work
uses the SPEA2 algorithm, which is an “elitist evolutionary algorithm that is inspired by
genetic algorithms”.

(PAN; EIGENMANN, 2006) also searches automatically the best combination of op-
timization techniques or optimization flags. To reach their objective, they construct an
algorithm called Combined Elimination (CE).

In (COOPER; SCHIELKE; SUBRAMANIAN, 1999), the authors search the best set
of optimization flags to reduce the space used when generating the executable program.
They used a genetic algorithm to reach the solution but focusing only on reducing the
used space by the code in the final of the compilation. In (ALMAGOR et al., 2004), the
authors reached the conclusion that one sequence of optimization flags specifics to each
code can optimize better in the compilation than a generic sequence. During the project,
they aim to discover if it is effective to search for the best sequence of optimization flags
for each case. They use some algorithms to find the solution and one of them is the
genetic algorithm.

In (COOPER; SUBRAMANIAN; TORCZON, 2002), the authors constructed a sys-
tem to find the best set of optimization flags. The flags are chosen with the intention

11

of minimizing one optimization goal, inherent in the code being used. An example of an
optimization goal is the execution time of the program generated by the compilation. In
this case, the system aims to find the flags that minimize the execution time. Another
example is to minimize the code size produced by the compilation.

A way to automate this choice is by using a genetic algorithm. The genetic algorithm
searches, in a field of feasible solutions, the best solution for the presented problem using
the natural process of selection and generation of individuals. It can be used in many
cases, where you want to find parameters that optimize the problem (TANG et al., 1996).
This type of solution was already discussed by others researchers (ALMAGOR et al.,
2004), (COOPER; SCHIELKE; SUBRAMANIAN, 1999), (HANEDA; KNIJNENBURG;
WIJSHOFF, 2005).

In this work, a Python framework was built where, given the code in any language, a
set of optimization flags and other parameters, using the genetic algorithm tries to achieve
the best solution for the problem, inside the field of feasible solutions. The problem is
defined by stating what you want to optimize in the resulting code. Two experiments will
be made throughout the work, each one having a different purpose. These experiments
will show us if the genetic algorithm really finds the best solution for each case.

This work is organized as follows: in chapter 2, we explain important concepts for the
course of the project; in chapter 3, we give an overview of the framework and how it was
constructed; in chapter 4, we show the experiments carried out and the reached results
and in the chapters 5, we give our conclusion about the project described here and the
next steps to improve the project.

12

2 BASIC CONCEPTS

Optimization, according to Google 1, is "the creation of more favorable conditions for
the development of something, or, the process by which the best value of a quantity is
obtained." In computing, optimization is more similar to the second definition: given an
optimization problem, we look for a solution that will generate the best possible result
for the problem. An example of an optimization problem is the traveling salesman. In
this problem, we want the traveling salesman to pass by various cities, passing by once by
each of them and making the traveled distance the smallest possible. One of the ways to
find the best solution for this problem is using evolutionary optimization (FOGEL, 1988),
with evolutionary algorithms.

2.1 GENETIC ALGORITHM

Evolutionary algorithms use computational models based on the natural evolution with
the finality to find the solution for the optimization problems. One type of evolutionary
algorithm is the genetic algorithm (LINDEN, 2008) and it describes how the natural
evolution works. In Figure 1, we have a schema about the genetic algorithm flow, with
all its steps.

Figure 1 – Example of the genetic algorithm

Given an optimization problem, we adapt it to one language where the genetic algo-
rithm can understand. One example of the problem is the minimization of the sum of
1 https://www.google.com/search?q=otimiza%C3%A7%C3%A3o+significadooq=otimiza%C3%A7%C3%A3o

+significadoaqs=chrome..69i57j0l5.6253j1j9sourceid=chromeie=UTF-8. Accessed on 09/07/2019.

13

5 integer numbers between 1 and 10. In order for the genetic algorithm can understand
this problem, we need to translate the given information for the structures that can be
understood to the algorithm. One of these structures is the individual, which is modeled
according to the possible solutions for the problem. One individual is a group of genes
and their genes take this information. In the example, the genes will be values between 1
and 10 and the individual will be the set of these genes.

Figure 2 – Example of one individual

The initial population will be formed by a group of individuals and it will be part
of the initial generation. After the formation of the population, each individual will be
evaluated from an evaluation function within the environment in which it is inserted. This
evaluation function is defined according to the problem in which we want the solution. In
the problem we are looking for, the evaluation function will be the sum of all genes of an
individual, as like in Equation 1:

f(individual) =
∑

∀ gene ∈ individual

gene (2.1)

The function in Equation 1 receives one individual as a parameter and returns the sum
of the genes of this individual. This is one way of evaluation of the individual. At the end
of the evaluation of the individuals, will be made the selection for the next generation.

2.1.1 Selection

The selection aims to select the individuals that can have the best evaluation in the
actual generation, to generate the individuals of the next generation population, after
experience the crossover and mutation operations. In the example we are using, the
prioritized individuals in the selection will be those who will have the smallest sums.

14

The selection uses a probabilistic method to choose the individuals (Back; Hammel;
Schwefel, 1997). There are many methods implemented for the selection, being one of
them the tournament selection. The tournament selection collects one random uniform
sample of the individuals from the population. This sample should be size equals to
q individuals, with q > 1. The best individual of this sample is selected for the next
generation population. That is the individual with the best evaluation. This process
is repeated until the next generation population is completed (Back; Hammel; Schwefel,
1997).

Figure 3 – Example of the tournament selection with q = 3 individuals

In figure 3, we have an example of tournament selection, using one sample with q=3
individuals. As the figure shows, within the current population, the individuals are chosen
aleatory to compose one sample. The choices are made until the sample have a number
of individual equal to q. After the choice, it is selected as the best individual within the
selected sample.

2.1.2 Crossover and Mutation

After the selection, the crossover is the next step for the genetic algorithm. The
crossover consists of constructing a new individual using parts of two individuals already
existing in the population. One method used in the crossover is the exponential. In the
exponential method, having two individuals A and B, an aleatory point P is chosen in the
individual A. The new individual that is being constructed, we will call C, receives the
genes present in the individual A. Since the point P, individual C is filled with the genes
of the individual B following one probability p_c, which can be defined. The probability
p_c is associated with the choice of each gene of B to be present in C. Generally, the
crossover probability is high to the possibility of the creation of new individuals.

In figure 4, we have the individual A and B. The point P is chosen between the third
and fourth genes in the individuals. The individual C receives the same genes from the
individual A has until the point P. After this point, the genes of C can be filled with the
genes of individual B or A, depending on the probability p_c.

15

Figure 4 – Example of the exponential crossover

Another step, after the crossover, is the mutation. In the mutation, the genes of
some individuals can be modified, assuming the value of other possible genes within the
solution. This mutation occurs according to a probability p_m. The mutation probability
is indicated to be low, since there may be a loss of interesting characteristics in the
population.

In our problem, after the individual is chosen, their genes are modified, assuming
values between 1 and 10.

Figure 5 – Mutation example

Another very common way of mutation is the bits invesion. When the individual is
constructed using only 0 and 1 in their genes, the mutation only converts their genes,
following the probability rate.

When finalized the crossover and the mutation, in some cases, the genetic algorithm
uses the elitism. The elitism passes the best individual of the current population to the
next generation population. This ensures the best individual in one generation appe-

16

Figure 6 – Bit inversion example

ars in the following generation and the higher evaluation in the population in the next
generations won’t be smaller than in the current population (ASHLOCK, 2010).

After completing all these steps, we can say that one generation was completed. One
new population was constructed to be initialized the next generation. The end of this
loop - conclusion of one generation - will be defined according to the stop criteria. The
stop criteria for the genetic algorithm can be defined in many ways, among them:

1. the genetic algorithm can finalize when a certain number of generation are reached
or

2. the end can be indicated when the difference between the best individual of the
generations (N-1) and N is very small.

The genetic algorithm is used in cases where the problem solution by classic ways is
impracticable or when there are no deterministic solutions to the problem (Fogel, 1994).
But the algorithm doesn’t guarantee the best solution will be found. The genetic algorithm
is a local search. Thus, if the global maximum or minimum is required, genetic algorithms
don’t guarantee it will be found. It is important to say the genetic algorithm doesn’t have
only one solution but a set of possible solutions (Back; Hammel; Schwefel, 1997).

17

3 IMPLEMENTATION

When compiling code, we can specify optimization flags. These flags have specifics
purposes - some flags aim to decrease the used space by the executable program, others,
decrease the total execution time - and, in the end, generate an optimized executable
program. But, given the number of optimization flags (more than 150 possible flags),
finding a set of flags that optimizes a given code can be very time consuming. In this
chapter, we present the PyCoptimizer 2, a framework that used a genetic algorithm in
order to find a set of flags that generates an optimized executable program.

PyCoptimizer uses the Pygmo 3 library which provides the genetic algorithm for our
framework. Pygmo is a python version of the Pagmo library, written in C++. The
library is constructed "around the idea of providing a unified interface to optimization
algorithms and to optimization problems and to make their deployment in massively
parallel environments easy".

After installing the framework - the example is in Figure 7 - the user must provide
information about the code to be optimized and the genetic algorithm parameters in a
file with .py extension, which will be used.

Figure 7 – Example of command to install PyCoptimizer

In this file, the user has to import the classes UserParameters and Coptimizer, provided
by the PyCoptimizer framework and any other libraries he wishes. After, the user should
define a class with the name he wishes and implements the abstract methods present in
UserParameters. One of these methods is the _init_. The following parameters should
be set: the crossover probability, the mutation probability, the number of individuals in
the population, the number of genes in each individual and if the user wants to minimize
or maximize your optimization goal. Additionally, the user must define the evaluation
function (called evaluation_function in the framework). This method must return the
value which will be optimized by the genetic algorithm.

In Code 3.1, we show an example of the file passed to COptimizer. The user made
a class called Test, which inherits from the UserParameters abstract class. The _init_

method has a dictionary with the parameters of genetic algorithm: number of generations
(50 generations), number of individuals in the population (30 individuals), number of
genes in each individuals (3 genes); crossover rate (30%) and mutation rate (10%). It’s
2 https://pypi.org/project/PyCoptimizer/. Accessed on 10/03/2019.
3 https://esa.github.io/pagmo2/index.html. Accessed on 10/03/2019.

18

also defined the path to compile and clean the executable files from the goal code. In
the example, both the compile_path and clean_path gets the current directory. The
commands to compile and clean the code are defined as make and make clean, in the
compile_command and clean_command variables, respectively.

The user must declare if he wants to minimize or maximize the evaluation function,
using the min_max variable. When the variable is defined as 1, the objective is to minimize
the evaluation function; if it’s -1, the objective is to maximize. In our example, the user
wants to minimize. Finally, the user defines the flags, using the flags_list variable,
which will be used in the optimization.

In the evaluation_function function, the user implements how to evaluate the code.
In the example, the function gets the execution time of the executable code after compiled
and returns this number.

19

Code 3.1 – Python code example
from PyCoptimizer.user_parameters import UserParameters
import os
import subprocess
import time
from PyCoptimizer.coptimizer import COptimizer

class Test(UserParameters):
""" Class to test the abstract class UserParameters """

def __init__(self):
super(Test , self).__init__ ()
self.dict_optimization = {"no_generations": 50,

"no_pop": 30,
"individual_size": 3,
"crossover_rate": 0.3,
"mutation_rate": 0.1}

self.compile_path = os.getcwd ()
self.clean_path = os.getcwd ()
self.compile_command = "make"
self.clean_command = "make clean"
self.min_max = 1 #minimize
self.flags_list = ["-falign -functions",

"-falign -jumps",
"-falign -labels",
"-falign -loops",
"-fauto -inc -dec", "-fbranch -probabilities",
"-fbranch -target -load -optimize", "-fbranch -target -load -

optimize2",
"-fbtr -bb-exclusive","-fcaller -saves"]

def arguments_to_run_code(self):
""" Implementing the method arguments_to_run_code.

This method returns the command to run the executable file """
return"./ nbody.gpp -3. gpp_run 50000000"

def evaluation_function(self):
""" Implementing the method evaluation_function.

This method returns the value to be optimized by the framework.
In this method , the user needs to run the executable file
and get the value to pass to the framework."""

def_path = os.getcwd ()
os.chdir(self.compile_path)
my_env = os.environ.copy()
my_env["PATH"] = "/usr/sbin:/sbin:" + my_env["PATH"]
my_command = self.arguments_to_run_code ()
counting time
t0 = time.time()
p = subprocess.Popen(my_command , shell=True ,

stdout=subprocess.PIPE)
out , err = p.communicate ()
finalizing
value = time.time() - t0
os.chdir(def_path)
return value

if __name__ == ’__main__ ’:
COptimizer ().main()

20

After the user builds the file teste.py, he can execute it using python teste.py type_result,
where type_result can be graphic or log.

Figure 8 – Example of command to run the Python code

This command will initialize the framework execution, collecting the present informa-
tion in the teste.py file and use it in the class COptimizer. Initially, as shown in Figure
8, the framework uses the provided information (the set of flags, the individuals and the
population sizes) to construct the initial population. The activation of the flags in the
individuals of the initial population is made using the Python method random. The in-
dividuals use binary representation, where 1 means that the flag should be used and 0
means that the flag should not.

Figure 9 – PyCoptimizer schema

Let k be the number of generations we want to consider, i = 0 and P0 be the initial
population. While i < k,

21

1. For each individual ind in the population Pi:

a) Construct the compile command referent to the individuals ind : whenever a
gene in ind has value 1, the corresponding optimization flag will be integrated
into the compilation command; otherwise, the flag will not be included.

b) Compile the code using the constructed compile command.

c) Run the compiled code to evaluate individual ind according to the defined
evaluation function.

2. The evaluated population Pi is passed to the Pygmo library to apply the genetic
operators (selection, crossover and mutation).

3. Let i = i+1 and set the next generation returned by Pygmo to Pi.

The reached results by the framework are returned in two possible ways:

1. in graphic, presenting the metric evolution which is being optimized over the gene-
rations

2. in a log, showing the best values in each generation.

In both cases, it is introduced in the terminal window, or where the PyCoptimizer
is running, the final set of optimization flags found in the last generation by the genetic
algorithm.

22

4 EXPERIMENTS

In the following section, we will present 2 experiments, using the developed framework
to find the best set of flags in each case. In Section 4.1, we wish to find a set that minimizes
the execution time of the compiled file. In Section 4.2, we used the PyCoptimizer to look
for the flags which maximize the number of events processed by the code, in a second.
In this last section, beyond the obtained results by our experiments, we will present the
results of other experiments using this same code. We ran our experiments in a Linux
Mint 64 bit with 24 cores Xeon of 3.4GHz with 64GB ram.

4.1 EXPERIMENT 1 - MINIMIZING EXECUTION TIME

The code used in our experiments came from The Computer Language Benchmarks
Game site 4. This site has a set of problems and different implementations to solve them,
with some performance measurements such as execution time and amount of used cpu. It
is possible to use the available code and reproduce the execution, using the same command
to compile and execute.

For the tests in this section, we chosen codes made in C++, instead of other languages
because C++ has an extensive list of optimization flags 5, making possible more combi-
nations. The site shows 10 problems 6 with codes in C++ and we selected a code that
creates binary trees 7 using the minimum number of allocations. Our goal is to minimize
the execution time.

Table 1 – Genetic algorithm parameters

Individual size 190 genes
Individual representation Binary

Population size 65 individuals
Number of generations 50 generations

Crossover method Exponential
Mutation method Polynomial
Crossover rate 0.7
Mutation rate 0.005

Elitism Yes

The parameters shown in Table 1 were used in the genetic algorithm. In the experi-
ments, we modify these parameters in order to determine which are the best combination
4 https://benchmarksgame-team.pages.debian.net/benchmarksgame/. Accessed on 10/20/2019.
5 https://gcc.gnu.org/onlinedocs/gcc-3.0/gcc_3.html#SEC13. Accessed on 10/20/2019
6 https://benchmarksgame-team.pages.debian.net/benchmarksgame/measurements/gpp.html. Acces-

sed on 10/20/2019.
7 https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/binarytrees-gpp-2.html.

Accessed on 10/20/2019.

23

to be used.
One of the parameters for the genetic algorithm is the amount of genes present in the

individual, corresponding to the number of flags considered. The population size should
be a value that allows the generation of a big diversity of individuals to guarantee the
solution and, at the same time, it does not take a long time to find the solution at the final
of the generations (ASHLOCK, 2010), (LINDEN, 2008). In this case, as the individual
size is fixed and equals 190 genes, it has the possibility of 2190 different individuals. The
reasonable population size must be between [50, 100] individuals (Fogel, 1994) because
the execution time of GA increases as the population size grows - and if this number is
small, we do not have great genetic variability in our population (Fogel, 1994). So, we set
the population size equals to 65 individuals for the base experiment.

Another important parameter to the genetic algorithm is the crossover rate. The best
rates for this parameters lies between [0.6, 0.95] (Fogel, 1994), (Back; Hammel; Schwefel,
1997). A low crossover rate is only recommended for a high population size; when the
population size is equal to 200 individuals, usually the best performance is achieved with
low crossover and mutation rates (SCHAFFER et al., 1989). For this experiment, we set
the rate equals to 0.7.

Unlike the crossover rate, the mutation rate cannot be high, because the genes can lose
interesting characteristics. The most recommended values to mutation rate lies between
[0.001, 0.01] (Fogel, 1994), (Back; Hammel; Schwefel, 1997). We defined the mutation
value equals to 0.005 to be the default rate in the experiments.

In Table 2, we present all the experiments we did in this section. In each one of the
four experiments, only one parameter of the genetic algorithm was changed.

Table 2 – List of experiments
Experiment Sub-Experiment Mutation rate Crossover rate Population size Number of generations

#1 #1.1 increase rate to 0.01 x x x
#1.2 decrease rate to 0.001 x x x

#2 #2.1 x increase rate to 0.8 x x
#2.2 x decrease rate to 0.6 x x

#3 #3.1 x x increase size to 80 individuals x
#3.2 x x decrease size to 50 individuals x

#4 #4.1 x x x increase to 70 generations
#4.2 x x x decrease to 30 generations

The idea is to modify the parameters presented in Table 2 to check the impact of
each one of them in the results. For each test, we ran 4 executions using different initial
populations. The list of flags used in all strategies can be seen in Appendix A.

In the experiment, our goal is to minimize the execution time in the generated execu-
table program. Table 3 shows the running time of the compiled code without any kind of
optimization and with the -O1 optimization flag. The goal of the flag -O1 is to reduce the
compiled code size and the execution time, but these optimizations are made in a way to
not spend a lot of time in the compilation process 8.
8 https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html. Accessed on 10/20/2019

24

Table 3 – Comparison time

Time without optimization 31.574 seconds
Time optimizing with -O1 flag 28.402 seconds

Using the parameters defined in Table 1, we can see in Figure 10 that the genetic algo-
rithm provided better performance early on comparing with the compiling code without
optimization and with optimization with -O1 flags (between 14.23% and 15.21%). But
these performances did not improve much in the final population (between 15.34% and
16.65%).

Figure 10 – Running with default parameters of genetic algorithms

In the graphic, each color corresponds to one different experiment.

In Figure 11, each chart represents the result of an experiment, where we executed
PyCoptimizer with the same input source code and four different initial populations.

In all these experiments, the results are similar. As we can see in Table 4, the exe-
cution time in the initial and final populations in all experiments is a bit different but
not too much. Comparing with the compilation without optimization or with a generic
optimization, it’s clear that the genetic algorithm gives better solutions. Even the worst
final execution times in the experiments are better than the presented execution times in
Table 3. The most likely reason for this is that optimization flags like this in Table 3 do
not consider what code is being optimized neither what kind of machine is being used,
unlike when it’s used optimization flags that fit the code and the machine. These flags

25

Figure 11 – Experiments changing the genetic algorithm parameters

26

Table 4 – Results of each experiment

Experiments Start time Finish time
mean (s) standard deviation (s) mean (s) standard deviation (s)

#1.1 24.7605 0.3043 24.0108 0.1267
#1.2 24.3843 0.2149 23.8196 0.1839
#2.1 24.1288 0.1760 23.6599 0.1423
#2.2 24.5336 0.1624 23.8734 0.2619
#3.1 25.0273 0.4292 23.8953 0.1636
#3.2 24.4481 0.3322 23.7798 0.1945
#4.1 25.0176 0.3475 23.8368 0.1848
#4.2 24.9322 0.0841 23.8761 0.0763

-O1, -O2, -O3 are generic flags to optimize and not necessarily make the best optimization
in all the codes.

It can be seen from the results in Figure 11 that the convergence in all experiments
occurred around generation 30. So, we decided to repeat the experiments with 3 mo-
difications: (i) use the same initial population in all experiments; (ii) decreasing the
number of generations (from 50 to 30) and (iii) increasing the number of execution of the
PyCoptimizer (from 4 to 10).

In the next analysis, we considered the execution time in the first (start time) and
in the last (final time) generation of each execution. Even starting with the same initial
population, in the next graphics, it is possible to observe that the start time is not the
same. This occurs because Pygmo gets the initial population and already applies the
genetic algorithm, as we can see in Code 5.1. The mean of the start time is 27.2477
seconds.

Code 4.1 – Genetic algorithm of Pygmo taken from Pygmo - Simple Genetic Algorithm
in 06/18/2019

Start from a population (pop) of dimension N
while i < gen

Selection: create a new population (pop2) with N individuals
selected from pop (with repetition allowed)

Crossover: create a new population (pop3) with N individuals
obtained applying crossover to pop2

Mutation: create a new population (pop4) with N individuals
obtained applying mutation to pop3

Evaluate all new chromosomes in pop4
Reinsertion: set pop to contain the best N individuals taken

from pop and pop4

In Figure 12, we can see that varying the mutation rate does not interfere in the
results since almost all execution times remain in the interval correspondent to 0.001
mutation rate. In Figure 13, it is possible to see that all crossover rates impact for the
results, changing the means and the variance. The crossover with rate equals to 0.6 starts
and finishes with the higher mean but obtain the best gain - 8.086%. With the smaller
crossover rate, we save 3.65% of the time, while with crossover rate equals to 0.7, we save

https://esa.github.io/pagmo2/docs/python/algorithms/py_algorithms.html#pygmo.sga

27

2.55%. Still in the crossover rate equals to 0.6, the final time shows the worst mean, with
more variance in the times. This agrees with what we already discussed previously: lower
crossover rates are only recommended for a population with big size (SCHAFFER et al.,
1989).

Figure 12 – Changing mutation rate using the same population

4.2 ANALYSIS OF THE RESULTING FLAGS

At the end of each genetic algorithm execution, we generated a list of optimization
flags corresponding to the best individual in the last generation. We can observe that the
number of resulting flags in each running is 94 flags on average, with a standard deviation
of 5 flags, which were not affected by changing crossover and mutation rates.

Comparing all resulting flags in each experiment, we can note that no optimization
flags always appears in all runnings. The -Os flag appears more frequently in the runnings
- in 37 of 40 executions. This flag optimizes the execution time and tries to reduce the
compiled code, without look to the wasted time in the compilation 8. In Appendix B, we
have all flags that were part of the population with the best performance at the end of
each execution. In each one of the flags, we calculate the frequency which appears in each
one of the runnings.

28

Figure 13 – Changing crossover rate using the same population

4.3 EXPERIMENT 2 - CROSS-KALMAN

CERN (the Conseil Européen pour la Recherche Nucléaire) has the Large Hadron
Collider (LHC) which "is the world’s largest and most powerful particle accelerator"9.
Two high-energy particle beams travel inside the LHC close to the speed of the light and
collide in four locations, corresponding to the four particle detectors 10.

One of the detectors is the LHCb - Large Hadron Collider beauty - which investigates
the difference between matter and antimatter, studying particles called beauty quark or
b quark 11. The particles leave signals in the detector and it is necessary to make a
reconstruction of the particles. For this reconstruction, the LHCb has trigger levels. In
the first level, the Kalman filter algorithm, one of the algorithms to the reconstruction of
the particles, takes 60% of the time of the reconstruction (CAMPORA-PEREZ, 2016).

To maximize the throughput (which means getting more reconstructions in a feasible
time), the idea is to find the best set of optimization flags using the genetic algorithm to
reach this objective (FIGUEIREDO, 2017). The achieved results (FIGUEIREDO, 2017)
are shown from Figure 14 until Figure 17. The genetic algorithm was executed with
individuals composed of 53 genes, represented in the same way we represent the genes
in this project, a population with 100 individuals and 50 generations. In the set of flags
we are using in the experiments, 47 of the optimization flags used to get the results are
9 https://home.cern/science/accelerators/large-hadron-collider. Accessed on 10/21/2019
10 https://home.cern/about. Accessed on 10/21/2019.
11 https://home.cern/science/experiments/lhcb. Accessed on 10/21/2019.

29

included.
In Figure 14 and Figure 15, the experiment was testing different values for the crossover

rate while the mutation rate was constant and equals to 0.1. In Figure 16 and Figure 17,
the experiment varied the mutation rate with the crossover rate equals 0.3. As we can
see, the experiments get the best value in 10 generations, maintaining the same value for
the next generations.

Figure 14 – Decreasing crossover rate with constant mutation rate

We did it using a code provided in the GitLab repository 12. We will use the flags in
Appendix A but eliminating the following flags in Table 5. These flags were eliminated
because it caused problems when compiling the code and produced corrupted executable
files.

Table 5 – Problemming flags

-flto
-fsingle-precision-constant

-fwhole-program

Table 6 shows the values when compiling without optimization and with the -O2 flags.
12 https://gitlab.cern.ch/dcampora/cross_kalman/tree/master. Accessed on 10/21/2019.

30

Figure 15 – Increasing crossover rate with a constant mutation rate

Table 6 – Results to case study

Throughput without optimization 54076.5
Optimization with -O2 flag 1.78958e+06

We ran the PyCoptimizer for the code, using the presented parameters in Table 1.
As we saw previously, in Figure 10, the resultant values converge when they reached 30
generations. We did the same for this code, even being a different code and we ran for 10
executions.

The found throughput mean value in the initial population is 2,067,806.0 (standard
deviation equals 71,703.00) and in the final population was 2,243,975.0 (standard deviation
of 24,028.98), representing an improvement of 8.52%. As we can see, both obtained
throughput mean values are larger than the one obtained when we use only the -O2
flag. Note that the variance decreases, indicating the throughput tends to converge in 30
generations.

Analyzing all the executions, we can observe in the last generation of each running,
in mean, 90 flags were used, with a standard deviation of 6 flags. No flag appears in all
executions and only 47 flags appear more frequently (50% of executions). The complete
results can be seen in Appendix 3.

In comparison with the results in Figure 18, the results reached by PyCoptimizer were

31

Figure 16 – Decreasing mutation rate with a constant crossover rate

better. This is because there was a much larger solution space - the PyCoptimizer used
187 flags of optimization - while the report used 53 flags. Nine of 47 flags more frequent
in our executions are also present in the report (FIGUEIREDO, 2017).

32

Figure 17 – Increasing mutation rate with a constant crossover rate

Figure 18 – Results to Cross Kalman code using PyCoptimizer

33

5 CONCLUSION

In this work, we build a framework based on genetic algorithm called PyCoptimizer
that, given source code, finds a set of flags that generate an optimized compiled code.

After built the framework, we did 2 experiments. In the first, we wished to decrease the
execution time of the executable file. In the second experiment, we search for increasing
the throughput of the file. In both of them, the PyCoptimizer gave a set of optimization
flags which performed a better optimization in the code, compared with the baseline
results.

We used the Pygmo library to program the genetic algorithm. We face several library
limitations, such as the impossibility of knowing the state of the population over the
generations. In the experiments, we also had problems. Some optimization flags generated
a corrupted file, not allowing its execution, as presented throughout the work. Therefore,
we had to look for which flags could be used and which not. Each experiment took a
long time to execute and finalize. In Table 7, we can see the duration of each running in
each experiment. The spent time was long because, for all populations, the PyCoptimizer
needed to compile and execute the codes, to evaluate the individuals.

Table 7 – Duration of each running per experiment

Experiments Number of generations
30 generations 50 generations

Experiment 1 ∼3 days/running ∼5 days/running
Experiment 2 ∼one week/running -

At the end of our project, we suggest as future works the development of new methods
for genetic operators. We only developed one method for each operator, when many
methods exist. For this reason, new methods can give more possibilities for the user.
We also suggest the parallelization of the genetic algorithm, in the compilation moment
of the code. This allows a faster genetic algorithm because this is the part that takes
more time during the framework execution. We recommend being parallelized only in the
compilation moment. When running the executable programs in a parallelized way, the
programs use the machine resources at the same time. These resources are shared in the
execution of the files. The generated result, at the final of the execution of each file, does
not be trustworthy because the programs did not use all the capacity of the machine only
for their executions.

Another possible future work is the implementation of other methods, besides the
genetic algorithm, to search the solution. The availability of new methods allows the
user has more than one option of choice for the operation of the framework. Besides

34

the implementation of new methods, the framework must be changed for the user can be
capable to choose the method he wants to use.

35

REFERENCES

ALMAGOR, L. et al. Finding effective compilation sequences. SIGPLAN Not., ACM,
New York, NY, USA, v. 39, n. 7, p. 231–239, jun. 2004. ISSN 0362-1340. Disponível em:
<http://doi.acm.org/10.1145/998300.997196>.

ASHLOCK, D. Evolutionary Computation for Modeling and Optimization.
1st. ed. [S.l.]: Springer Publishing Company, Incorporated, 2010. ISBN 1441919694,
9781441919694.

Back, T.; Hammel, U.; Schwefel, H. . Evolutionary computation: comments on the
history and current state. IEEE Transactions on Evolutionary Computation, v. 1,
n. 1, p. 3–17, April 1997. ISSN 1089-778X.

CAMPORA-PEREZ, D. H. LHCb Kalman Filter cross architectures studies. Oct 2016.
Disponível em: <https://cds.cern.ch/record/2229971>.

COOPER, K. D.; SCHIELKE, P. J.; SUBRAMANIAN, D. Optimizing for
reduced code space using genetic algorithms. SIGPLAN Not., ACM, New
York, NY, USA, v. 34, n. 7, p. 1–9, maio 1999. ISSN 0362-1340. Disponível em:
<http://doi.acm.org/10.1145/315253.314414>.

COOPER, K. D.; SUBRAMANIAN, D.; TORCZON, L. Adaptive optimizing
compilers for the 21st century. J. Supercomput., Kluwer Academic Publishers,
Norwell, MA, USA, v. 23, n. 1, p. 7–22, ago. 2002. ISSN 0920-8542. Disponível em:
<https://doi.org/10.1023/A:1015729001611>.

FIGUEIREDO, L. F. d. Evolutionary Optimization Of LHCb Software
Optimization. Geneva: CERN, 2017. (Technical Report).

FOGEL, D. B. An evolutionary approach to the traveling salesman problem. Biological
Cybernetics, v. 60, n. 2, p. 139–144, Dec 1988. ISSN 1432-0770. Disponível em:
<https://doi.org/10.1007/BF00202901>.

Fogel, D. B. An introduction to simulated evolutionary optimization. IEEE
Transactions on Neural Networks, v. 5, n. 1, p. 3–14, Jan 1994. ISSN 1045-9227.

HANEDA, M.; KNIJNENBURG, P. M. W.; WIJSHOFF, H. A. G. Automatic selection
of compiler options using non-parametric inferential statistics. In: Proceedings of the
14th International Conference on Parallel Architectures and Compilation
Techniques. Washington, DC, USA: IEEE Computer Society, 2005. (PACT ’05), p. 123–
132. ISBN 0-7695-2429-X. Disponível em: <http://dx.doi.org/10.1109/PACT.2005.9>.

HOSTE, K.; EECKHOUT, L. Cole: Compiler optimization level exploration. In:
Proceedings of the 6th Annual IEEE/ACM International Symposium
on Code Generation and Optimization. New York, NY, USA: ACM,
2008. (CGO ’08), p. 165–174. ISBN 978-1-59593-978-4. Disponível em: <http:
//doi.acm.org/10.1145/1356058.1356080>.

http://doi.acm.org/10.1145/998300.997196
https://cds.cern.ch/record/2229971
http://doi.acm.org/10.1145/315253.314414
https://doi.org/10.1023/A:1015729001611
https://doi.org/10.1007/BF00202901
http://dx.doi.org/10.1109/PACT.2005.9
http://doi.acm.org/10.1145/1356058.1356080
http://doi.acm.org/10.1145/1356058.1356080

36

LINDEN, R. Algoritmos Genéticos (2a edição). BRASPORT, 2008.
ISBN 9788574523736. Disponível em: <https://books.google.com.br/books?id=
it0kv6UsEMEC>.

PAN, Z.; EIGENMANN, R. Fast and effective orchestration of compiler optimizations
for automatic performance tuning. In: Proceedings of the International
Symposium on Code Generation and Optimization. Washington, DC, USA: IEEE
Computer Society, 2006. (CGO ’06), p. 319–332. ISBN 0-7695-2499-0. Disponível em:
<http://dx.doi.org/10.1109/CGO.2006.38>.

SCHAFFER, J. D. et al. A study of control parameters affecting online performance
of genetic algorithms for function optimization. In: Proceedings of the Third
International Conference on Genetic Algorithms. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1989. p. 51–60. ISBN 1-55860-006-3. Disponível em:
<http://dl.acm.org/citation.cfm?id=93126.93145>.

TANG, W. K. et al. Genetic algorithms and their applications. Signal Processing
Magazine, IEEE, v. 13, p. 22 – 37, 12 1996.

https://books.google.com.br/books?id=it0kv6UsEMEC
https://books.google.com.br/books?id=it0kv6UsEMEC
http://dx.doi.org/10.1109/CGO.2006.38
http://dl.acm.org/citation.cfm?id=93126.93145

37

APÊNDICES

APPENDIX A – FLAGS USED IN THE EXPERIMENTS

-falign-functions -falign-jumps -falign-labels
falign-loops -fauto-inc-dec -fbranch-probabilities

-fbranch-target-load-optimize -fbranch-target-load-optimize2 -fbtr-bb-exclusive
-fcaller-saves -fcombine-stack-adjustments -fconserve-stack
-fcompare-elim -fcprop-registers -fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
-fcx-limited-range -fdata-sections -fdce
-fdelayed-branch fdelete-null-pointer-checks -fdevirtualize

-fdevirtualize-speculatively -fdevirtualize-at-ltrans -fdse
-fearly-inlining -fipa-sra" -fexpensive-optimizations
-ffat-lto-objects -ffast-math -ffinite-math-only

fforward-propagate -ffunction-sections -fgcse
-fgcse-after-reload -fgcse-las -fgcse-lm
-fgraphite-identity -fgcse-sm -fhoist-adjacent-loads
-fif-conversion -fif-conversion2 -findirect-inlining

-finline-functions -finline-functions-called-once -finline-small-functions
-fipa-cp -fipa-cp-clone -fipa-pta

-fipa-profile -fipa-pure-const -fipa-reference
-fipa-icf -fira-hoist-pressure -fira-loop-pressure

-fno-ira-share-save-slots -fno-ira-share-spill-slots -fisolate-erroneous-paths-dereference
-fisolate-erroneous-paths-attribute -fivopts -fkeep-inline-functions

-fkeep-static-consts -flive-range-shrinkage -floop-block
-floop-interchange -floop-strip-mine -floop-unroll-and-jam
-floop-nest-optimize -floop-parallelize-all -flra-remat

-flto -fmerge-all-constants -fmerge-constants
-fmodulo-sched -fmodulo-sched-allow-regmoves -fmove-loop-invariants

-fno-branch-count-reg -fno-defer-pop -fno-function-cse
-fno-guess-branch-probability -fno-inline -fno-math-errno

-fno-peephole -fno-peephole2 -fno-sched-interblock
-fno-sched-spec -fno-signed-zeros -fno-toplevel-reorder

fno-trapping-math -fno-zero-initialized-in-bss -fomit-frame-pointer
-foptimize-sibling-calls -fpartial-inlining fpeel-loops
-fpredictive-commoning -fprofile-correction -fprofile-use

-fprofile-values -fprofile-reorder-functions -frename-registers
-freorder-blocks -freorder-blocks-and-partition -freorder-functions

-frerun-cse-after-loop -freschedule-modulo-scheduled-loops -frounding-math
-fsched2-use-superblocks -fsched-pressure -fsched-spec-load

-fsched-spec-load-dangerous -fsched-stalled-insns-dep -fsched-stalled-insns
-fsched-group-heuristic -fsched-critical-path-heuristic -fsched-spec-insn-heuristic
-fsched-rank-heuristic -fsched-last-insn-heuristic -fsched-dep-count-heuristic

-fschedule-fusion -fschedule-insns -fselective-scheduling
-fselective-scheduling2 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
-fsemantic-interposition -fshrink-wrap -fsignaling-nans

-fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-wide-types
-fssa-phiopt -fstdarg-opt -fstrict-aliasing

38

-fthread-jumps -ftracer -ftree-bit-ccp
-ftree-builtin-call-dce -ftree-ccp -ftree-ch
ftree-coalesce-vars -ftree-copy-prop -ftree-dce

-ftree-dominator-opts -ftree-dse -ftree-forwprop
-ftree-fre -ftree-loop-if-convert -ftree-loop-im

ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-loop-vectorize -ftree-pre -ftree-partial-pre

-ftree-pta -ftree-reassoc -ftree-sink
-ftree-slsr -ftree-sra -ftree-switch-conversion

-ftree-tail-merge -ftree-ter -ftree-vectorize
-ftree-vrp -funit-at-a-time -funroll-all-loops

-funroll-loops -funsafe-math-optimizations -funswitch-loops
-fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model
-fvpt -fweb -fwhole-program

-fuse-linker-plugin -O -O0
-O1 -O2 -O3
-Os -Ofast -Og

39

APPENDIX B – FREQUENCY OF FLAGS

Figure 19 – Frequency of 20 flags with mutation rate equals to 0.01

Figure 20 – Frequency of 20 flags with mutation rate equals to 0.001

40

Figure 21 – Frequency of 20 flags with crossover rate equals to 0.8

Figure 22 – Frequency of 20 flags with crossover rate equals to 0.6

APPENDIX C – FREQUENCY OF FLAGS - CASE STUDY

41

Figure 23 – Frequency of 20 flags about the case study using 30 generations

