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Portfolio Management with Semi-Parametric Bootstrapping
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Abstract

Estimation risk is an important topic within the area of risk management. Uncertanties

on the parameter estimates carry on to the ¯nal statistical product, for example to the

investment strategies, and need to be estimated and accounted for. Unless the exact ex-

pressions for the estimators' variances are known, the product's variability will be assessed

through bootstrap techniques. We address this issue in this paper and propose a semi-

parametric bootstrap method for reproducing the data, a method which parametrically

takes care of all marginal characteristics of the returns data, and also takes care of the

dependence structure existing in the data in a very simple and clever non-parametric way.

The technique is applied to the problem of assessing variability of the Markowitz e±cient

frontier. Simulation experiments are conducted to assess the out-of-sample forecasting

usefulness of the semi-parametric bootstrap methodology.

Key Words: Resampling, E±cient Frontier, Portfolio Management, Estimation Risk,

Bootstrap.

1 Introduction

Markowitz1 mean-variance (MV) optimization has been the standard tool for e±-

cient portfolio allocations and diversi¯cation for the last 50 years. It is implemented
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in probably all commercial portfolio optimizers for asset allocation and equity port-

folio management. The Markowitz model, for a given level of expected return,

obtains the portfolio's composition with the lowest risk (standard deviation). It is a

quadratic optimization problem, whose inputs are just estimates of the population

mean ¹ and covariance matrix §.

However, the inputs (b¹; b§) are estimated with errors, and the optimization rou-
tines are known as errors maximization algorithms. The errors carry on to the

weights with magni¯ed variability, resulting in unstable portfolios, extreme weights,

and poor out-of-sample performance. The problem is how to assess this variability.

Unless the exact expressions for the estimators variances are known, estimates vari-

ability are typically assessed through bootstrap techniques (Efron and Tibshirani2

), which are computer intensive techniques for resampling the data at hand.

Jorion3 introduced in the ¯nance literature the basic idea of resampling the

e±cient frontier. Since then, the discussions on the topic usually take place on the

statistical validity of the resampled curves, on the role of the average resampled

portfolio (Michaud4 patented the use of the average resampled portfolios), or on

how to obtain the average portfolio, either ranks based as in Michaud4 or based on

same risk/return trade-o®.

Little e®ort has been put, however, on the appropriate selection of a resampling

methodology. The existing methods are basically two: a non-parametric and a

parametric bootstrap. The non-parametric bootstrap is the simplest one, where the

bootstrapped observations are sampled from the original data with replacement.

The parametric bootstrap assumes usually the multivariate normal distribution for

the data (more generally, an elliptical distribution), and then simulate from the

assumed distribution. Under the parametric approach, either (b¹; b§) are assumed
as being the true parameter values and a new data set is simulated, or a new set

of inputs is simulated from the distribution assumed for (b¹; b§) (see Scherer and
Martin5 ). To deal with serial dependences in the data, moving block bootstrap was

introduced by Carlstein6 and KÄunch7 .

To be faithful to the data at hand and to correctly obtain a set of replications

of the e±cient frontier containing the same information brought in by the original
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one plus the nature provided and uncontrolled variability, one must be as close as

possible to the true multivariate distribution generating the data. We address this

question in this paper and propose a semi-parametric bootstrap for reproducing the

data, a method which parametrically takes care of all marginal characteristics of the

returns data, and also takes care of the dependence structure existing in the data

in a very simple and clever non-parametric way. Our semi-parametric bootstrap

approach to risk estimation is an alternative to the con¯dence regions of Jobson8

and to the cited bootstrap methods.

In summary, the semi-parametric bootstrap methodology ¯nds the margins' dis-

tribution by ¯tting unconditional or conditional models, and ¯nds the dependence

structure linking the margins by using the data ranks. The ¯rst step may be as sim-

ple as ¯tting a Normal distribution to a return series, and the second step just uses

the empirical distribution. Alternative sophisticated univariate time series models

for the mean and volatility may be used and usually provide good ¯ts, specially for

daily returns.

In Section 2 we explain the semi-parametric bootstrap. In Section 3 we provide

a real data illustration of its usefulness when assessing the variability of the e±cient

frontier and optimal weights. In Section 4 we conduct several simulation experiments

designed to assess the forecasting ability of the semi-parametric bootstrap method.

In Section 5 we give our concluding remarks.

2 Replicating the E±cient Frontier

Let r represent a d-dimensional vector of ¯nancial returns from a distribution F with

mean ¹ and (positive de¯nite) covariance matrix §, and let w= (w1; w2; ¢ ¢ ¢ ; wd) be
a vector of portfolio weights. The MV algorithm looks for a portfolio allocation that

maximizes the expected utility w0¹¡ ¸w0§w over w2 <d, subject to w01 = 1 and

wi ¸ 0, i = 1; ¢ ¢ ¢ ; d (long only), and where ¸ represents the investor risk aversion,
the rate between portfolio return and standard deviation. The smaller the ¸, the

higher the risk aversion. For example, an extremely risk averse investor will choose

the portfolio with the smallest possible standard deviation, the so-called \minimum
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variance portfolio", which has a ¸ equal to zero.

Assuming that stock returns are jointly normally distributed implies that in-

vestors are using an expected utility given by the quadratic form. Even though

normality seldom holds for ¯nancial returns, many theoretical results are obtained

under this assumption. For instance, under normality, weights are unbiased and their

variance may be obtained (see Britten-Jones9 and Fusai and Meucci10). Michaud

and Michaud11 reviews and summarizes recent research and new developments in

estimation error and MV portfolio optimization.

Despite the method used to estimate ¹ and § when it comes to replicating the

e±cient frontier what really matters is how well the data is replicated. To this

end it is necessary to understand the data generating process (DGP). The following

picture schematically represents the returns DGP.

¾
½

»
¼(²1; ²2; ¢ ¢ ¢ ; ²d) - MICRO

STRUCTUR.

- (r1; r2; ¢ ¢ ¢ ; rd) ¡¡µ
@@R

¹

§

Suppose we are working with daily d-dimensional log-returns r = (r1; r2; ¢ ¢ ¢ ; rd),
and consider a period of length T . Every business day t, t = 1; 2; ¢ ¢ ¢ ; T , nature
generates a d-dimensional vector of errors ² = (²1; ²2; ¢ ¢ ¢ ; ²d) according to some
zero mean and unit variance marginal distributions F1; F2; ¢ ¢ ¢ ; Fd not necessarily
the same. Linking these marginal distributions there is a dependence structure

(in the picture the oval box), which creates all relationships between the marginal

errors, including the inter-relationships caused by economic, political and geographic

factors and market macro-structure. At each day t, the errors vector passes through

a black box holding information on market micro-structure, occasional (bad) news,

seasonalities, and so on. At the end of the period T , the output is the observable

return data, which may possess serial correlations, and other characteristics besides

a mean vector ¹ and a d£ d covariance matrix §.
Under our approach, in order to properly identify the models, and to obtain
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faithful replications of the data, the analyst needs to identify the squared (black)

box and the oval (black) box. He/she sees the oval box as a d-dimensional joint dis-

tribution F containing all marginal and joint information, in particular, the errors

covariance matrix of the sequence of independent and identically distributed (i.i.d.)

random vectors ²1, ²2, ¢ ¢ ¢ ,²T . To model the information provided by the squared
black box, the analyst uses the sequence of T (not i.i.d. anymore) d-dimensional

returns. He chooses and ¯ts univariate time series models, able to capture the tem-

poral dynamics in the mean and in the volatility, for example, some ARFIMA(p; q)

and FIEGARCH(r; d; s) type models.

In practice, this is done in the reverse order. The identi¯cation of the squared

box is parametric. Using available computing facilities nowadays we are able to

obtain excellent univariate (conditional or unconditional) ¯ts tailored for each series

of log-returns. We note that, in particular, the ARFIMA(p; q)-FIEGARCH(r; d; s)

models may have p = q = r = d = s = 0 and therefore we are back to unconditional

models, with just a few parameters to estimate, such as the mean, standard devi-

ation, asymmetry and kurtosis. In this case a skew-t (Hansen12 ) distribution is a

powerful and °exible option for univariate ¯tting.

From the d models ¯tted (say, M1, M2, ¢ ¢ ¢ ;Md) we obtain d series of standard-

ized (zero mean and unit variance) residuals and identify their marginal distributions

( bF1; bF2; ¢ ¢ ¢ ; bFd). The ¯ltered data still contain the information about the oval box,
and to non-parametrically get this information we substitute the T £ d matrix of
standardized residuals by their matrix of ranks R. That is, we substitute each col-

umn of residuals by their ranks, numbers between 1 and T . For example, suppose

T = 100. Row j of R may be (9; 65; 34; 78). The closer the numbers, the stronger

the dependence structure.

A reader familiarized with copulas may identify the rank matrix R with the

support set for the empirical copula. Genest and Favre13 argue that among all data

functions which are invariant under monotone increasing transformations, the data

ranks in R are the statistics retaining the greatest amount of information about the

data dependence structure (Oakes14 ).

In summary, to obtain the proposed semi-parametric replications of the data one
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should:

1. Fit conditional or unconditional models (M1;M2; ¢ ¢ ¢ ;Md) to the univariate

series. In the case of conditional modeling, obtain the standardized residuals

and their estimated distributions bF1; bF2; ¢ ¢ ¢ ; bFd. Derive the rank matrix R.
2. For k = 1; ¢ ¢ ¢ ; B, B large,

2.1 Generate T i.i.d. random values from each bFi, i = 1; 2; ¢ ¢ ¢ ; d, forming
the T £ d matrix of i.i.d. innovations, Z(k).

2.2 Order each column of Z(k) according to the corresponding column in R.

2.3 Take each ordered column j as a new set of innovations and apply the

corresponding model Mj, obtaining a new T £ d data matrix X(k) in the

original scale.

Once the data replications are available, they may be used to compute any quantity

of interest. Questions related to the size B are discussed in Efron and Tibshirani2.

Each one out of the B new data sets X(k), k = 1; ¢ ¢ ¢ ; B contains the same marginal
(dynamic or not) information found in the original data, as well as their depen-

dence structure. Using the rank matrix R in step 1 to re-order the innovations

and reproducing the dependence structure in step 2.2 are the novelties. The idea of

resampling using ranks have been inspired by the work in Mendes15. The method

is amazingly simple and when ¯tting unconditional models it becomes even simpler

not requiring any sophisticated computer software.

3 Illustration

To illustrate we selected a 6-dimensional data set that could represent a moderate

risk pro¯le investor willing to invest in emerging and developed markets. The data

are 1629 contemporaneous daily log-returns from January, 2, 2002 to October, 20,

2008, on: (V1) a Brazilian Hedge Fund index, the Arsenal Composite Index (ACI);

(V2) a Brazilian index for in°ation indexed treasury bonds, the IMA-C; (V3) a

Brazilian market value weighed Stock Index, the IBrX; (V4) an index of Large World
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Companies (WLDLg, by MSCI Barra); (V5) an index of Small World Companies

(WLDSm, by MSCI Barra); (V6) a Total Return US T-Bonds Index (LBTBond, by

Lehman Bros.).

We compute the classical sample estimates and obtain the long only constraint

classical e±cient frontier. We note that any estimation method for the inputs could

have been used. We apply the proposed semi-parametric bootstrap and for each

replicated data set X(k) we compute the classical inputs (b¹(k); b§(k)) obtainning the
replications of the e±cient frontier. For the sake of comparisons we also compute

replications based on the parametric bootstrap assuming multivariate normality (as

in Scherer and Martin5 ).

When replicating the e±cient frontier what really matters is the weights stability

across replications. To investigate this issue we examine in Figure 1 the box-plots of

weights distribution for portfolios ranked numbers 2, 8 and 15 (out of 20). The orig-

inal weights for each variable are signed with arrows. The box-plots corresponding

to the parametric bootstrap based on normality are marked with a \-N". It is very

impressive how the weights distribution based on our semi-parametric approach is

much more concentrated. This is crucial to reduce portfolio rebalancing costs.

We observe that in many situations the parametric bootstrap weights distribu-

tion is shifted with respect to the original weight. For example, for portfolio 8 and

variables 1 and 2, the original weight values are approximately located at the 0.75-

and the 0.25-quantiles of the weights' distribution. For the same portfolio and vari-

ables, the arrows point to the center of the distribution provided by the new method.

This means that in the d-dimensional space, the distance between the original port-

folio's weights and the center of the distribution of weights from the replications are

smaller for the new method. It is possible to measure that.

For any ¯xed portfolio, we measure the distance between the center of its weight

distribution and the original weights using the squared Euclidean distance. For

example consider portfolio ranked position 8, let w¤ represent the original weights,

and let ¹w 2 <d represent the distribution center, ¹w = 1
B

PB
k=1wk, where wk is the

optimal set of weights for portfolio 8 for the k-th simulation. The Euclidean distance

isD = ( ¹w¡w¤)0( ¹w¡w¤). For portfolio 8 and for the new semi-parametric bootstrap
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Figure 1: Weights distributions for portfolios ranked numbers 2 (P.2), 8 (P.8), and

15 (P.15), from the semi-parametric method and the parametric (Normal) method.

we computed D = 0:016460, whereas for the multivariate normal assumption D =

0:1009245, a distance 6.13 times greater.

The statistical equivalence between any resampled portfolios may be tested using

the Mahalanobis distance, an statistical distance based on the weights covariance

matrix. The resulting statistics is chi-squared distributed only under normality of

the weights distributions. For any ¯xed (rank) portfolio, one can visually inspect

its convex hull associated with the 90% statistically equivalent portfolios, using only

the replications for which all d-variables weights were simultaneously inside a 90%
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con¯dence interval.

As pointed out by a referee, \showing that simulations from the model ¯t have

less variability is not the same as showing that the method is more e±cient". In

order to investigate this issue we carry on simulation experiments in the next section

comparing the performance of the semi-parametric method with the parametric and

non-parametric alternatives.

4 Out-of-sample Validations

We mimic a real life situation where a trader manages three clients' optimal port-

folios and wants to forecast the portfolios' expected utilities for the next period

based on the current allocations. The portfolios are de¯ned through three ¸ values

re°ecting the clients' di®erent risk preferences, namely ¸ = 0:5; 1; 2. The manager

takes the available data along with the current allocations, and replicates the data

(500 replications) according to his/her resampling bootstrap methodology: non-

parametric (NPB), parametric (PB), or the semi-parametric (SPB). For each repli-

cation he/she computes the respective expected utilities, ¯nally taking the average

values over the 500 replications as the forecast for the next day. The aim here is

to determine which resampling methodology should be used by the manager, the

methodology resulting in a expected utility closest to the true one.

In a simulation experiment we know the true DGP (as explained in Section 2),

and thus the "true" expected utility is known, namely

EU¸;0 = w
0
0¹0 ¡ ¸w00§0w;

where (¹0;§0) are the true parameters (inputs) which provide the true weights w0.

To measure distance between the expected utilities derived from the resampling

methods | EU¸;NPB, EU¸;PB and EU¸;SPB | and the true EU¸;0 we compute the

absolute di®erences.

As in a real data example provided in Chapter 2 of Michaud4 , and used later by

other authors (Markowitz and Usmen16, Liechty, Harvey, and Liechty17), we assume

that the data could represent a collection of monthly percent returns from 8 assets (6

equity indexes and 2 bond indexes), over a period of 216 months. For simplicity, we
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also take the parameters estimates used in these references as the true parameters

values, although any other value could indi®erently be used.

The experiments run as follows.

1. Assume some multivariate distribution F and the true parameter values (¹0;§0).

2. For i = 1; ¢ ¢ ¢ ; 100

(a) Generate an 216£8 data set by independently drawing from the 8-variate
distribution assumed in 1. These are the manager's data at period i, used

to de¯ne the current allocations (three ¸-based portfolios).

(b) For each bootstrap method | NPB, PB, SPB |

i. Obtain 500 replications of the 216£ 8 data.
ii. For each sample compute the sample estimates which combined with

the current ¸-based portfolios' weights, give rise to the corresponding

expected utilities.

iii. For ¯xed ¸, return the average expected utility over the 500 sim-

ulations, denoted by EU i;¸;NPB, EU i;¸;PB and EU i;¸;SPB. They are

used to compute the absolute distances between the average expected

utilities and the true one, that is, the absolute values of EU i;¸;NPB -

EU¸;0, EU i;¸;PB - EU¸;0, and EU i;¸;SPB - EU¸;0.

The following multivariate distributions were considered in step 1: the Normal;

t-student with 5 degrees of freedom (df); a multivariate distribution with Normal

univariate margins linked by a t-copula with 5 df; and a multivariate distribution

with t-student with 5 df univariate margins linked by a Gaussian-copula.

For each ¯xed ¸ we report in Table 1 the proportion of winnings for each boot-

strap method over the 100 periods. We also report the utility functions grand

mean and standard deviation, and note that the true expected utilities values are

EU0:5;0 = 0:0128581, EU1;0 = 0:0117284 EU2;0 = 0:0101549, also given in last row

of Table 1. The ¯gures in Table 1 indicate that the semi-parametric bootstrap re-

sampling methodology was able to provide better forecasts under all distributional

assumptions.
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In summary, the experiments indicate how good would be the long run forecast

of an investor that consistently assumes some resampling methodology and forecasts

his expected utility according to it. We note that most ¯nancial institutions assume

the multivariate normal distribution for parametrically resampling the data, and we

here suggest to look to the data marginal and joint structures.

Table 1: Out-of-sample one-step-ahead expected utilities, under di®erent probability dis-

tributions and for three risk aversion pro¯les, ¸ = 0.5, 1.0, and 2.0. Numbers in table are

the proportions of times the average expected utility under each method (NPB, PB, SPB)

was the closest to the true one.

¸ = 0:5 ¸ = 1 ¸ = 2

NPB PBP SPB NPB PBP SPB NPB PBP SPB

Normal 36% 17% 47% 39% 14% 47% 42% 12% 46%

EU Gr.Mean 0.01563 0.01404 0.01158 0.01750 0.01733 0.01682 0.01557 0.01399 0.01151

EU Std. Dev. 0.00367 0.00342 0.00293 0.00396 0.00399 0.00404 0.00370 0.00344 0.00293

t-student(5) 41% 12% 47% 41% 12% 47% 45% 10% 45%

EU Gr.Mean 0.01629 0.01463 0.01198 0.01814 0.01800 0.01754 0.01615 0.01448 0.01184

EU Std. Dev. 0.00378 0.00351 0.00289 0.00405 0.00412 0.00422 0.00375 0.00350 0.00291

t-cop./Norm. 40% 11% 49% 42% 6% 52% 48% 2% 50%

EU Gr.Mean 0.01624 0.01502 0.01300 0.01752 0.01746 0.01717 0.01620 0.01498 0.01297

EU Std. Dev. 0.00313 0.00299 0.00265 0.00329 0.00331 0.00340 0.00317 0.00304 0.00269

Norm-cop./t-5 33% 19% 48% 32% 20% 48% 38% 21% 41%

EU Gr.Mean 0.01568 0.01338 0.01025 0.01857 0.01820 0.01717 0.01549 0.01323 0.01012

EU Std. Dev. 0.00429 0.00386 0.00309 0.00486 0.00487 0.00483 0.00439 0.00392 0.00311

True EU 0.01286 0.01286 0.01286 0.01173 0.01173 0.01173 0.01016 0.01016 0.01016

5 Concluding Remarks

We proposed a semi-parametric bootstrap method for replicating multivariate data,

a method which parametrically takes care of all marginal characteristics of the re-

turns series, including their temporal dependences, and also captures the correlations

linking the data in a very simple non-parametric way. The method's °exibility al-

lows one to go beyond the assumption of any particular ¯xed margins multivariate
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distribution. This is very important in ¯nance, since it is well known that returns on

¯nancial assets and indexes possess possess speci¯c characteristics following di®erent

conditional and unconditional probability distributions. Therefore, no multivariate

distribution with ¯xed margins would successfully model such data sets.

The replication scheme requires the same computational e®ort required by a

parametric bootstrap. It can be implemented in any accounting oriented software,

if an unconditional distribution is ¯tted to the margins, or in any statistical software

in the case time series models are chosen for the univariate series. The two-steps

semi-parametric bootstrap may be quickly applied to any (high) dimensional data,

not su®ering from the well known problem of \curse of dimensionality".

The main reason for obtaining replications of a data set is to assess estimation

risk. This means obtaining the variability of selected statistics, for example, portfo-

lios' optimal weights or the Value-at-Risk. When constructing e±cient frontiers, the

resulting portfolios' weights distributions may be used to identify similar portfolios.

Statistical tests may be carried on to assess how far one needs to be away from the

original set of weights to obtain a statistically di®erent portfolio. This is measured

with the concept of distance applied to the resampled weights. The illustration

provided showed that the new method has the potential of providing more stable

weights distributions for any given portfolio.

We ran out-of-sample simulations to assess the performance of the semi-parametric

bootstrap method when forecasting three portfolios' expected utilities. The port-

folios re°ect the risk preferences of three clients. The experiments indicated that

the semi-parametric resampling methodology provided better expected utility fore-

casts in the long run, as measured by their distances to the true one, under all

distributional assumptions made.
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