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Abstract A transient two-dimensional advection–diffusion
model describing the turbulent dispersion of pollutants in
the atmosphere has been solved via the Generalized Integral
Transform Technique (GITT), by two different schemes.
The first approach performs numerical integration of the
transformed system using available routines for initial value
problems with automatic error control. In spite of the time-
consuming character of such a scheme, its flexibility allows
the handling of problems involving time-dependent mete-
orological parameters such as wind speed and eddy
diffusivities. The second approach works fully analytically
being thus intrinsically more robust and economic, although
not directly applicable in dealing with time-dependent
parameters. For the test problem used in this work, both
methods agree very well with each other, as well as with a
known analytical solution for a simpler formulation used as
benchmark. The impact of the longitudinal diffusivity on
the stiffness of the ordinary differential equation (ODE)
system arising from the integral transformation has been
assessed through the processing time demanded to solve it
when the numerical approach is used. The observed CPU

times show that the analytical approach is clearly preferable
unless the problem involves time-dependent parameters.
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1 Introduction

The Generalized Integral Transform Technique (GITT) is a
well-known hybrid numerical–analytical approach that can
efficiently handle diffusion and convection–diffusion par-
tial differential formulations. It is based on expansions of
the original potentials in terms of eigenfunctions and the
solution is obtained through integral transformation in all
but one of the independent variables, thus reducing the
partial differential formulations to an ordinary differential
system for the expansion coefficients, which can be then
solved using numerical techniques or in some special cases,
analytical procedures [1, 4, 7].

The GITT has been progressively developed and
improved [4–6,] in the past two decades and mainly
applied to heat and fluid flow problems, including
nonlinear diffusion, boundary layer and Navier–Stokes
formulations of convection–diffusion. The first application
of the GITT addressing pollutant transport in the atmo-
sphere recently carried out [10], by applying a single
integral transformation to a two-dimensional transient
advection–diffusion problem. The resulting one-dimension-
al system of coupled partial differential equations was then
numerically solved. Later on, a similar problem was solved
[2] by applying a double integral transformation to the
differential formulation, previously filtered by a steady-
state diffusive filter, changing it to a system of time-
dependent ODEs which has been numerically solved as
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well. Quite recently, Moreira et al. [12] and Wortman et al.
[13] applied the GITT to a two-dimensional steady-state
advection–diffusion problem of dispersion of pollutants in
the atmosphere, solving the resulting system of ODEs by
Laplace transforms rather than employing numerical tech-
niques.

The present work addresses the solution via GITT of a
transient two-dimensional advection–diffusion formulation
describing the dispersion of pollutants in the atmosphere.
The boundary condition at x=0, where a continuous source
is located, is homogenized through a proper advective–
diffusive filter.

After the double integral transformation, the resulting
time-dependent ordinary differential equation (ODE) sys-
tem was solved by two different approaches: (a) numeri-
cally, using the routine DIVPAG from the IMSL library;
and (b) analytically, by performing the appropriate eigen-
system analysis. The first approach is more general,
because it can deal with problems involving time-depen-
dent parameters such as wind speed and eddy diffusivities,
while the second one is computationally more efficient but
cannot directly handle such more involved problems.

The results emerging from both approaches agree very
well not only with each other, but also with a known
analytical solution of the proposed test problem. The
required CPU times and the impact of the system stiffness
on the computational cost were also assessed.

2 Problem formulation

The chosen test problem refers to a transient two-dimen-
sional turbulent advection–diffusion model of an effluent in
the atmosphere which is emitted by an elevated source such
as a stack. The ground is assumed to be an impermeable
barrier while the surface boundary layer is a fully
permeable one.

An inert effluent starts suddenly to be continuously and
regularly released at the height Ze in an atmosphere where
the time-dependent parameters, wind speed, vertical and
longitudinal eddy diffusivities change with the height above
ground level. The pollutant concentration is given by the
solution of the partial differential system (1)–(6):

@C X ;Z; τð Þ
@τ

þ:U Z; τð Þ @C X ; Z; τð Þ
@X

¼ @

@Z
Kzz Z; τð Þ @C X ;Z; τð Þ

@Z

� �

þ:Kxx Z; τð Þ @
2C X ;Z; τð Þ

@X 2
; 0 < Z < H ; 0 < X < Xm; τ > 0

ð1Þ

C X ; Z; tð Þjτ¼0¼ 0 ð2Þ

@C X ; Z; tð Þ
@Z

����
Z¼0

¼ 0 ð3Þ

C X ; Z; tð ÞjZ¼H¼ 0 ð4Þ

C X ; Z; tð ÞjX¼0¼
Q

u Zeð Þ δ Z � Zeð Þ ð5Þ

@C X ; Z; tð Þ
@X

����
X¼Xm

¼ 0 ð6Þ

where C is the effluent concentration, τ is the time elapsed,
X is the downwind distance, U(Z,τ) is the wind speed, Z is
the height above the ground, Kzz(Z,τ) is the vertical eddy
diffusivity, Kxx(Z,τ) is the longitudinal eddy diffusivity, Ze
is the emission height, δ is Dirac delta function, H is the
vertical domain, and Xm is the longitudinal domain.

The system (1)–(6) can be rewritten in dimensionless
form as:

@c x; z; tð Þ
@t

þ A:u z; tð Þ @c x; z; tð Þ
@x

¼ @

@z
kzz z; tð Þ @c x; z; tð Þ

@z

� �

þB:kxx z; tð Þ @
2c x; z; tð Þ
@x2

; 0 < z < 1; 0 < x < 1; t > 0

ð7Þ

c x; z; tð Þjt¼0¼ 0 ð8Þ

@c x; z; tð Þ
@z

����
z¼0

¼ 0 ð9Þ

c x; z; tð Þjz¼1¼ 0 ð10Þ

c x; z; tð Þjx¼0¼
1

u zeð Þ d z� zeð Þ ð11Þ

@c x; z; tð Þ
@x

����
x¼1

¼ 0 ð12Þ

using the groups

x ¼ X

Xm
ð13Þ

z ¼ Z

H
ð14Þ

54 Environ Model Assess (2008) 13:53–65



t ¼ Kzz Hð Þ
H2

t ð15Þ

ze ¼ Ze
H

ð16Þ

c x; z; tð Þ ¼ U Hð Þ:H
Q

C X ; Z; tð Þ ð17Þ

kzz z; tð Þ ¼ Kzz Z; tð Þ
Kzz H ; tð Þ ð18Þ

kxx z; tð Þ ¼ Kxx Z; tð Þ
Kxx H ; tð Þ ð19Þ

u z; tð Þ ¼ U Z; tð Þ
U H ; tð Þ ð20Þ

A ¼ H2X�1
m U H ; tð ÞK�1

zz H ; tð Þ ð21Þ

B ¼ H2X�2
m Kxx H ; tð ÞK�1

zz H ; tð Þ ð22Þ

System (7–12) is solved through the GITT after proper
application of a steady-state filter F(x,z) to homogenize the
boundary condition at x=0, while maintaining the other
boundary conditions homogeneous. This approach decom-
poses the potential into a transient filtered potential and a
steady-state filter as follows:

c x; z; tð Þ ¼ c* x; z; tð Þ þ F x; zð Þ ð23Þ

Replacing equation (23) into the system (7)–(12):

@c* x; z; tð Þ
@t

þ A:u z; tð Þ @c* x; z; tð Þ
@x

¼ @

@z
kzz z; tð Þ @c* x; z; tð Þ

@z

� �

þB:kxx z; tð Þ @
2c* x; z; tð Þ

@x2
þ G x; z; tð Þ

ð24Þ

G x; z; tð Þ ¼ @

@z
kzz z; tð Þ @F x; zð Þ

@z

� �

þBkxx z; tð Þ @
2F x; zð Þ
@x2

�A:u z; tð Þ @F x; zð Þ
@x

ð25Þ

c� x; z; tð Þjt¼0¼ �F x; zð Þ ð26Þ

@c� x; z; tð Þ
@z

����
z¼0

¼ 0 ð27Þ

c� x; z; tð Þjz¼1¼ 0 ð28Þ

c� x; z; tð Þjx¼0¼ 0 ð29Þ

@c� x; z; tð Þ
@x

����
x¼1

¼ 0 ð30Þ

A filtered boundary-homogeneous system is obtained
where G(x,z,t) is a new source term incorporating operators
of the original equation which were not represented by the
filter.

Following the GITT formalism, the potential is ex-
pressed as an expansion of normalized eigenfunctions,
<i zð Þ and 6m xð Þ, making it possible to build a transform-
inverse pair as follows:

c
�
im tð Þ ¼

Z1

0

Z1

0

c� x; z; tð Þ<i zð Þ6m xð Þdxdz ð31Þ

c� x; z; tð Þ ¼
X1
i¼1

X1
m¼1

cim tð Þ:<i zð Þ6m xð Þ ð32Þ

Next, applying the operator
R

1
0

R
1
0 <j zð Þ6n xð Þdxdz to the

system (24)–(30) and making use of the orthogonal
properties of the eigenfunctions, one obtains an infinite
system of time-dependent ODEs for the coefficients c

�
im tð Þ,

dc
�
im tð Þ
dt

þ
X1
j¼1

X1
n¼1

A:DijEmn þ Hijdmn � B:RmnPij

� �
:c

�
jn tð Þ ¼ gim tð Þ

ð33Þ
c
�
im 0ð Þ ¼ �sim ð34Þ

where

gim tð Þ ¼ g1im tð Þ þ g2im tð Þ þ g3im tð Þ ð35Þ

sim ¼
Z1

0

Z1

0

<i zð Þ6m xð ÞF x; zð Þdxdz ð36Þ

g1im tð Þ ¼ �
Z1

0

Z1

0

kzz z; tð Þ6m xð Þ @F x; zð Þ
@z

d<i zð Þ
dz

dxdz ð37Þ
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g2im tð Þ ¼
Z1

0

Z1

0

B:kxx z; tð Þ @
2F x:zð Þ
@x2

<i zð Þ6m xð Þdxdz ð38Þ

g3im tð Þ ¼ �
Z1

0

Z1

0

A:u z; tð Þ @F x; zð Þ
@x

<i zð Þ6m xð Þdxdz ð39Þ

Dij tð Þ ¼
Z1

0

u z; tð Þ<i zð Þ:<j zð Þdz; ð40Þ

Hij tð Þ ¼ �
Z1

0

kzz z; tð Þ d<i zð Þ
dz

d<j zð Þ
dz

dz ð41Þ

Pij tð Þ ¼
Z1

0

kxx z; tð Þ<j zð Þ<i zð Þdz ð42Þ

Rmn ¼
Z1

0

6n xð Þ d
26m xð Þ
dx2

dx ð43Þ

Emn ¼
Z1

0

6n xð Þ d6m

dx
dx ð44Þ

Once the system (33)–(34) is solved, the final potential is
then recovered as:

c x; z; tð Þ ¼
X1
i¼1

X1
m¼1

c*im tð Þ:<i zð Þ6m xð Þ þ F x; zð Þ ð45Þ

The above solution is exact but obviously cannot be
accomplished without reducing it to a finite system. An
approximate solution, however, can be achieved by
truncating the series to an order sufficiently large to reach
a certain prescribed accuracy.

The eigenfunctions and related eigenvalues for both
vertical and longitudinal directions come from Sturm–
Liouville auxiliary problems satisfying the related boundary
conditions:

d2<i zð Þ
dz2

þ μ2
i<i zð Þ ¼ 0 ð46Þ

d<i zð Þ
dz

����
z¼0

¼ 0 ð47Þ

<i zð Þjz¼1¼ 0 ð48Þ

d26m xð Þ
dx2

þ λ2
m6m xð Þ ¼ 0 ð49Þ

6m xð Þjx¼0¼ 0 ð50Þ

d6m xð Þ
dx

����
x¼1

¼ 0 ð51Þ

yielding respectively the eigenvalues, normalized eigen-
functions and norms,

mi ¼
2i� 1ð Þ
2

p ð52Þ

<i zð Þ ¼ cos μi:zð Þ
. ffiffiffiffiffi

Ni

p
ð53Þ

Ni ¼
Z1

0

<2
i zð Þdz ð54Þ

lm ¼ 2m� 1ð Þ
2

p ð55Þ

6m xð Þ ¼ sin λm:xð Þ
. ffiffiffiffiffiffi

Nm

p
ð56Þ

Nm ¼
Z1

0

62
m xð Þdx ð57Þ

A generalized Sturm–Liouville problem would generate
more suitable eigenfunctions and eigenvalues resulting in a
faster convergence rate, thus allowing users to reach the
prescribed accuracy at a lower truncation order. However,
its solution could become more cumbersome, requiring
most likely a numerical solution, thereby increasing the
processing time which is usually at a premium.
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The steady-state filter is obtained by solving the partial
differential equation below:

Auf
@F x; zð Þ

@x
¼ kzf

@2F x; zð Þ
@z2

þ Bkxf
@2F x; zð Þ

@x2
ð58Þ

@F x; zð Þ
@z

����
z¼0

¼ 0 ð59Þ

F x; zð Þjz¼1¼ 0 ð60Þ

F x; zð Þjx¼0¼
1

uf
d z� zeð Þ ð61Þ

@F x; zð Þ
@x

����
x¼1

¼ 0 ð62Þ

which is obtained from the original formulation and
representing the wind speed uf and the eddy diffusivities,
kzf and kxf, as constants. This choice, which is quite
convenient in order to reach an analytical solution for the
filter, does not affect the final fully converged solution, as
the difference between the filter and the original potential
emerges in the residues, gim tð Þ. Obviously, the closer the
filter to the original potential, the faster the convergence
can be, but one generally needs to compromise in the
simplicity of the filter solution. These parameters (kzf and
kxf) should have the same magnitude as those occurring at
the emission height where the source is located, in order
to accelerate the expansion convergence. Indeed, close to
the source the plume is still very narrow, and thus, the
meteorological parameters are practically constant in the
region engulfed by the pollutants.

The system (58)–(62) is readily solved through the
Classical Integral Transform Technique by assuming that
the potential can be expanded in a series of orthogonal
eigenfunctions <k . A transform-inverse pair can be built as
follows:

Fk xð Þ ¼ R1
0
<k zð Þ:F x; zð Þdz F x; zð Þ ¼ P1

k¼1
Fk xð Þ<k zð Þ

ð63Þ
where the eigenfunctions and eigenvalues are the same
assigned for the vertical direction in the original problem.
Taking the required derivatives of (63) with respect to x and
z, replacing them and (46) in (58–62), applying the
operator

Z1

0

<k zð Þdz ð64Þ

and taking into account the orthogonal properties of the
eigenfunctions <k , one obtains the system below:

Bkxf
d2Fk xð Þ
dx2

� Auf
dFk

dx
� kzfμ

2
kFk xð Þ ¼ 0;k ¼ 1; 2; . . .

ð65Þ

Fk xð Þ��
x¼0

¼ 1

u zeð Þ<k zeð Þ ð66Þ

dFk xð Þ
dx

����
x¼1

¼ 0 ð67Þ

which is readily solved, yielding

Fk xð Þ ¼ cos mkzeð Þffiffiffiffiffiffi
Nk

p
uf � qbke

qbk � qake
qak

h i qbke
qbk eq

a
kx � qake

qak eq
b
kx

h i

ð68Þ
qak ¼

1

2

Auf
Bkxf

þ $k

� �
ð69Þ

qbk ¼
1

2

Auf
Bkxf

� $k

� �
ð70Þ

$k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Auf
Bkxf

� 	2

þ 4μ2
k

kzf
Bkxf

s
ð71Þ

The exact final expression for the filter is then written as:

F x; zð Þ ¼
X1
k¼1

1ffiffiffiffiffiffi
Nk

p Fk xð Þ cos mkzð Þ ð72Þ

where Nk is the norm. A truncation of (72) at an adequate
order provides a suitable formulation for the filter. It is
worthwhile to remind that the series expansion for the filter
is utterly independent from that associated to the system of
the time-dependent differential equations. Hence, the first
one can be truncated at a much higher order without any
impact on the processing time required to solve that system.
A slight increase only occurs in the computational time
required to perform the numerical integrations involving the
source term.

Before proceeding it is convenient to rewrite system
(19)–(20) using a single sum replacing the double one and
to condense their contents in a single matrix as follows,

dc*h tð Þ
dt

þ
X1
l¼1

whlc*l tð Þ ¼ gh tð Þ;h ¼ 1; 2; 3; . . . ð73Þ

c*h 0ð Þ ¼ �sh ð74Þ
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In this condensed formulation, the eigenvalues μi and λm
are arranged in pairs denoted by the index h as [μ(h),λ(h)].
The convergence depends upon the behavior of the trans-
formed potentials c

�
h tð Þ, but they are obviously unknown for

they belong to the solution being searched. However, on the
grounds that for a homogeneous problem they would decay
exponentially with the square of the global eigenvalue, a
reasonable assumption, provided appropriate filtering is
employed [6], is to consider that even for a nonhomoge-
neous problem this behavior could serve as a guiding
pattern.

Under this assumption, the pairs [μ(h),λ(h)] are ordered
under the criterion of an increasing value for an equivalent
squared-eigenvalue b2h derived from the diagonal of the
matrix whl. Such a procedure automatically incorporates the
physical domain aspect ratio and the Kxx(H)/Kzz(H) ratio,
both relevant parameters to define the ordering of those
pairs.

The system (73)–(74) can now be expressed in matrix
form as:

C0 tð Þ þW tð ÞC tð Þ ¼ G tð Þ ð75Þ

C 0ð Þ ¼ S ð76Þ

Once truncated to a finite order, the above system can be
numerically solved by using a suitable algorithm such as
the subroutine DIVPAG from the IMSL package which
works under a user prescribed accuracy.

The ordinary differential system (75)–(76) refers to the
general situation when the meteorological parameters u, kzz
and kxx change with time. However, in order to perform a
comparison with an analytical solution, checking thus the
method and its related algorithm, it is necessary to choose
time-invariant parameters with the same profiles used by
the analytical solution.

For the particular case of time-invariant parameters, W
and G become constant matrices, and the system has an
analytical solution which can be found by using some
suitable technique such as variation of parameters, for
instance, yielding:

C ¼ S�GW�1
� � � eW t þGW�1 ð77Þ

Since W is in principle a full general matrix its appearance
in a power of e precludes the prompt utilization of (77).
Fortunately, it may be transformed into a diagonal matrix,
making it thus possible to obtain decoupled solutions.
Indeed, it is well known (e.g., Froberg [8]) that when the
eigenvalues of a matrix W are different and nonnull, there
exists a regular matrix V such that V−1WV = D, where D is

the diagonal matrix formed by the eigenvalues and V is the
matrix of eigenvectors. Therefore,

eWt ¼ VeD tV�1 ð78Þ

C ¼ S�GW�1
� � � VeD tV�1 þGW�1 ð79Þ

The matrices V and D can be easily evaluated by using a
well-tested algorithm such as routine DEVCCG from the
IMSL package, while the required matrix inversions and
multiplications can be performed as well by subroutines
available in the same package. An algebraic solution of this
kind has been applied to three-dimensional steady-state
laminar forced convection inside rectangular ducts after
integral transforming along two spatial coordinates, leaving
the remaining one as the independent variable of the
transformed ODE system [3]. Later on, Almeida and Cotta
[1] applied the same approach to solve a transient two-
dimensional advection–diffusion problem in petroleum
reservoirs. Quite recently, Wortmann et al. [13] solved a
two-dimensional steady-state advection–diffusion equation
by also applying the GITT methodology, followed by a
Laplace transform to obtain the analytical solution of the
resulting ODE system.

The specific test problem treated in this work was
chosen aiming at two main goals: the first one focuses on
the comparison of the two approaches, i.e., solving system
(75)–(76) by the numerical and by the algebraic proce-
dures, seeking for their covalidation and critical analysis of
the required CPU time. The second goal is to compare such
results with a known analytical solution for a simplified
version of the test problem.

In order to accomplish these tasks, matrices W and G
should be constant, which means that wind and eddy
diffusivity profiles are taken as timely invariant. Further-
more, these profiles should match those used in the
simplified analytical formulation. Within this context, the
analytical solution developed by Huang [11] was obtained,
in the form:

C X ; Zð Þ ¼ Q0 Z:hð Þ 1�nð Þ
2

kaX
exp � a Za þ hað Þ

ka2X

� �
I�v

2a Zhð Þa2
ka2X

" #

ð80Þ

where

a ¼ 2þ g � n ð81Þ

v ¼ 1� nð Þ
a

ð82Þ
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U Zð Þ ¼ aZg ð83Þ

Kzz Zð Þ ¼ kZn ð84Þ

where C(X,Z) is the effluent concentration, Q0 is the source
intensity, X is the downwind distance from the source, Z is
the height above the ground, h is the emission height, Kzz(Z)
is the vertical eddy diffusivity, I−v is the modified Bessel
function of the first kind and order −ν, and U(Z) is the
mean wind velocity.

This solution is used as a benchmark after setting a=1,
n=1 and reducing it to dimensionless form as follows:

c x; zð Þ ¼ A1
1

x
exp �B1

za þ zae

 �

x

� �
I0 C1

z
a
2

x

� �
ð85Þ

A1 ¼ H :U Hð Þ
kaXm

� �
ð86Þ

B1 ¼ Ha

ka2Xm

� �
ð87Þ

C1 ¼ 2Hah
a
2

ka2Xm

� �
ð88Þ

where H is vertical length, Xm is longitudinal length, and ze
is the dimensionless emission height.

3 Results and discussions

In this section, a comparison is performed between the
results obtained through the numerical and the analytical
procedures and the required CPU times to reach them.
Moreover, these results are as well critically compared with
the known analytical solution [11] for the sake of validation
of the algorithms and related codes.

It has been usual in previous works to set the longitudinal
eddy diffusivity as a constant for two main reasons: (1) due
to a lack of knowledge regarding the behavior of this
parameter along x, y and z for the various types of
topographies and atmospheric instabilities; (2) on the
grounds that its role on the longitudinal dispersion is usually
negligible when compared to the advection component.

In this work, however, aiming at the critical comparison
with an analytical solution where the longitudinal eddy
diffusivity is not taken into account, it is assumed that Kxx

changes with the height as a fraction R of Kzz(z). Under this
assumption, slow convergence arising from very small and

constant Kxx values would be avoided, since Kxx drops
together with Kzz. In order to check the robustness of the
numerical and analytical procedures, they have been both
tested with two values of R for different orders of
magnitude: 1.0 and 0.02.

The first set of results is in fact intended to illustrate the
reason for this choice of the Kxx coefficient behavior while
attempting to reproduce the idealized situation of no
longitudinal dispersion in Huang’s model [11]. Figure 1
depicts longitudinal concentration profiles for two different
assumptions: a constant Kxx and a Kxx varying as a constant
fraction R=1 of Kzz(z). For a constant Kxx, the pollutant
would be dispersed more intensively near the ground level
than that one submitted to a Kxx proportional to Kzz(Z),
since in the latter case both diffusivities drop to zero at the
ground level. This higher longitudinal dispersion flattens
the concentration profile as imposed by mass conservation
requirements. Based on this outcome, one can conclude that
it would not possible to reproduce the analytical solution by
Huang [11] unless a variable Kxx is assigned as R.Kzz(z),
where R should be set sufficiently low.

Next, we provide a covalidation between the numerical
and analytical schemes of integral transformation here
proposed. Figure 2 shows the transient concentration profile
for the point (xref,zref) and the steady-state longitudinal and
vertical concentration profiles for R=1.0. One can observe
the excellent agreement between the numerical (dotted line)
and the analytical (solid line) techniques. As expected, the
profiles intercept at x=0.15 with the value c(xref,zref,t1).
Further numerical values of the related parameters are
found in the graph legend.

A comparison between the analytical solution by
Huang [11] and those obtained in the present work for
Kxx(z) = R.Kzz(z) and R=0.02 is shown in Fig. 3. The
analytical and numerical integral transform approaches
yield the same results, but the numerical procedure
requires a longer execution time as will be later on
discussed. When Kxx is set constant, it is not so
straightforward to perfectly match the analytical solution,
as Fig. 4 shows, for the reasons already discussed. The
value of R has been set to a low value, aiming at a closer
similarity with the model that does not incorporate the
longitudinal diffusivity component.

The convergence behavior of the longitudinal concen-
tration profile obtained with the GITT approach for a
variable Kxx and a ratio R=0.02 is depicted in Fig. 5,
while a detailed picture at the higher truncation orders
around the maximum concentration region is shown in
Fig. 6. The related numerical values are shown in Table 1.
Convergence to the fourth significant digit was achieved for
truncation orders as low as M=40, for the position
illustrated, while three significant digits are achieved at
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much lower orders. In light of the observed negligible
deviations between the obtained profiles and the analytical
solution in Huang [11], the validation of the algorithm and
the related computer program were considered fulfilled.

The required CPU time to run the numerical approach
algorithm markedly depends upon the truncation order, the
upper limit of the ODE system integration and the degree of
stiffness of the system, while for the analytical approach
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algorithm the only relevant parameter is the final required
truncation order.

The impact of the truncation order on the CPU time
spent by a 1.8-GHz Pentium processor for both algorithms

written in Fortran is shown in Fig. 7. As an overall
impression, the analytical algorithm is about 10 times faster
than the numerical procedure. A substantial amount of CPU
time might also be consumed for large truncation orders by
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the routines carrying out the determination of the eigenval-
ues, eigenvectors and matrices inversion in the analytical
approach algorithm, and their optimization might be
considered in future implementations.

Low R ratios lead the problem towards a less diffusive
formulation making the ODE system more stiff, thus
increasing the required CPU time, as shown by the given
examples for R=1.0 and 0.02, where Kxx has been kept
proportional to Kzz(z) along the whole vertical domain.
When Kxx is kept constant as a fraction of a Kzz(z) occurring
at a chosen height zref, the system becomes less stiff even
for the very same values of R, mainly when it is low, as

shown in Fig. 8, for zref=H. This happens since near the
ground level the problem becomes highly diffusive, for the
wind speed becomes very low, while Kxx keeps its constant
value.

4 Conclusions

A general two-dimensional transient advection–diffusion
equation involving time-dependent parameters such as wind
speed and eddy diffusivities generated, after a double
integral transformation, a system of ODEs where the related
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Table 1 Convergence behavior of the concentration at the point [0.2, 0.15] for truncation orders M=7–50

M C(xref,zref) M C(xref,zref) M C(xref,zref) M C(xref,zref)

7 3.0035 18 3.4096 29 3.4028 40 3.3956
8 2.9940 19 3.4050 30 3.3955 41 3.3953
9 3.0026 20 3.4446 31 3.3962 42 3.3941
10 2.9976 21 3.4447 32 3.4031 43 3.3945
11 3.0087 22 3.4464 33 3.3928 44 3.3944
12 3.0108 23 3.4372 34 3.3995 45 3.3939
13 3.1108 24 3.4387 35 3.3985 46 3.3957
14 3.1184 25 3.4158 36 3.3993 47 3.3953
15 3.1157 26 3.4175 37 3.3931 48 3.3948
16 3.2884 27 3.4168 38 3.3985 49 3.3955
17 3.2843 28 3.3955 39 3.3932 50 3.3956
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coefficients matrices remain as well time-dependent. For this
case, a suitable numerical algorithm such as the routine
DIVPAG from the IMSL package should be used, as
successfully accomplished in the present work. However,
depending on the parameters of the original problem, the
system may become more stiff, demanding a higher
processing time to solve it. Therefore, whenever the matrices
of the transformed problem are constant, it becomes much
more efficient to apply an analytical approach to solve the
ODE system. Indeed, besides the intrinsic robustness of an
analytical method, one can directly compute the potentials
for any given elapsed time without the need to perform a
numerical integration up to that value of the time variable.
These advantages make it preferable to use the analytical
approach as a benchmarking tool for cross-checking pur-
poses of developed algorithms in more complex formula-
tions. Both approaches have been employed in the present
work for a test problem involving constant matrices, yielding
identical results, thus confirming the robustness of the
algorithms and specifically of the numerical code for the
more general case of time-dependent matrices.

Besides, the solution of a problem formulation incorpo-
rating a low longitudinal-to-vertical eddy diffusivity ratio
was provided by both approaches, and has been compared
with a known exact solution for the simplified formulation
without the longitudinal diffusion term, with excellent
overall agreement. It has been shown that to accomplish
this comparison task the longitudinal diffusivity should

have a behavior similar to the vertical one, in vanishing at
the ground boundary.

Finally, the influence of the ODE system stiffness on the
demanded CPU time to numerically solve it through the
routine DIVPAG from the IMSL library has been assessed
and analyzed by varying the longitudinal-to-vertical eddy
diffusivity ratio.

It should be recalled that the present integral transform
numerical scheme could be further optimized in terms of
computational performance by implementing the adaptive
procedure for automatic truncation order reduction and
control along the ODE system integration, as described in
Cotta [4] and Cotta and Mikhailov [6], but to allow for a
direct comparison with the analytical scheme alternative,
the truncation orders were kept constant along the integra-
tion procedure in both cases. Also, more elaborate filtering
schemes could provide a substantial enhancement in
convergence behavior to further improve the computational
performance of either of the algorithms here implemented,
such as the local instantaneous filtering strategy discussed
in Gondim et al. [9].
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