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a b s t r a c t

Improved lumped parameter models are developed for the transient heat conduction of a wall subjected
to combined convective and radiative cooling. The improved lumped models are obtained through two
point Hermite approximations for integrals. It is shown by comparison with numerical solution of the ori-
ginal distributed parameter model that the higher order lumped model (H1;1=H0;0 approximation) yields
significant improvement of average temperature prediction over the classical lumped model.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Transient heat conduction in a solid body with combined con-
vective and radiative cooling or heating on the surface has been
studied due to its relevance in various technological applications
such as dynamical thermal behaviour of walls, aerodynamic heat-
ing of spaceships and satellites, nuclear reactor thermohydraulics
and glass manufacture [1–6].

In one of the earliest work on the subject, Haji-Sheikh and Spar-
row [7] used the Monte Carlo technique to obtain solutions for a
plate subjected to simultaneous boundary convection and radia-
tion. Crosbie and Viskanta [8] analysed transient cooling and heat-
ing of a plate by combined convection and radiation. The transient
heat conduction equation and the boundary conditions are trans-
formed to a non-linear Volterra integral equation of the second
kind for the surface temperature. Davies [9] applied the heat bal-
ance integral technique to obtain an approximate solution for the
general conditions of plate in a non-zero temperature environ-
ment. Sundén [10] presented numerical solutions based on finite
difference method of the thermal response of a composite slab sub-
jected to a time-varying incident heat flux on one side and com-
bined convective and radiative cooling on the other side. Later,
Sundén [11] applied the same technique to assess the thermal re-
sponse of a circular cylindrical shell due to a time-varying incident
surface heat flux while cooled by combined convection and radia-
tion. Parang et al. [5] solved the problem of inward solidification of

a liquid in cylindrical and spherical geometries due to combined
convective and radiative cooling by the regular perturbation meth-
od. Recently, Liao et al. [12] obtained an explicit series solution of a
non-linear model of combined convective and radiative cooling of
a spherical body with temperature-dependent thermal conductiv-
ity using the homotopy analysis approach.

The lumped parameter approach has been widely used in the
analysis of the dynamical thermal behaviour of buildings [13–
16,3,17]. As in the analysis of other complex thermal systems, this
classical approach is extremely useful and sometimes even manda-
tory when a simplified formulation of the transient heat conduc-
tion is sought. As an inherent limitation of the lumped parameter
approach, moderate to low temperature gradient within the region
is assumed, which, through the associated problem parameters,
governs the accuracy of such approximate formulations. As a rule
of thumb, the classical lumped parameter approach, where uni-
form temperature is assumed within the region, is in general re-
stricted to problems with Biot number less than 0.1. In most
building energy simulation problems, the Biot number is much
higher [3]. In other words, the moderate to low temperature gradi-
ent assumption is not reasonable in such applications, thus more
accurate approach should be adopted. To overcome the limitations
of the classical lumped model, improved lumped models have been
developed by different approaches [18–23]. Cotta and Mikhailov
[18] proposed a systematic formalism to provide improved lumped
parameter formulation for steady and transient heat conduction
problems based on Hermite approximations for integrals that de-
fine averaged temperatures and heat fluxes. This approach has
been shown to be efficient in a great variety of practical applica-
tions [24–26].
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In this work, we present improved lumped models for transient
combined convective and radiative cooling of a wall, extending
previous works on the particular cases of asymmetric convective
cooling [19] and radiative cooling [20]. The proposed lumped mod-
els are obtained through two point Hermite approximations for
integrals [27,18]. By comparing with numerical solution of the ori-
ginal distributed parameter formulation, it is shown that the high-
er order improved lumped model (H1;1=H0;0 approximation) yields
significant improvement of average temperature prediction over
the classical lumped model.

2. The mathematical formulation

Let us consider the dynamical thermal behaviour of a wall sub-
jected to convective heat transfer at one side and combined con-
vective and radiative heat transfer at the other side. The wall is
modeled as a one dimensional slab of finite thickness L, initially
at a uniform temperature Ti. It is assumed that the thermophysical
properties of the wall are homogeneous, isotropic and independent
of the temperature. At t ¼ 0, the wall is exposed to an environment
of a constant fluid temperature Tm with a constant convective heat
transfer coefficient h1 at the left-side, and an environment of a con-
stant fluid temperature Tf with a constant heat transfer coefficient
h2 and a constant radiation sink temperature Ts at the right-side.

The mathematical formulation of the problem is given by

qcp
@T
@t

¼ k
@2T
@x2

; in 0 < x < L; for t > 0; ð1Þ

with initial and boundary conditions taken as

Tðx;0Þ ¼ Ti; in 0 < x < L; at t ¼ 0; ð2Þ

� k
@T
@x

¼ h1ðTm � TÞ; at x ¼ 0; for t > 0; ð3Þ

� k
@T
@x

¼ h2ðT � Tf Þ þ �rðT4 � T4
s Þ; at x ¼ L; for t > 0; ð4Þ

where T is the temperature, t the time, x the spatial coordinate,
að¼ k=qcpÞ the thermal diffusivity of the wall, k the thermal conduc-
tivity, � the surface emissivity, andr the Stefan–Boltzmann constant.

It should be noted that in general the environmental fluid tem-
perature Tf differs from the radiation sink temperature. It is conve-
nient to introduce the adiabatic surface temperature Ta, defined by

h2ðTa � Tf Þ þ �rðT4
a � T4

s Þ ¼ 0 ð5Þ

The boundary condition Eq. (4) can be rewritten with use of the
adiabatic surface temperature

�k
@T
@x

¼ h2ðT � TaÞ þ �rðT4 � T4
aÞ; at x ¼ L; for t > 0; ð6Þ

The mathematical formulation (1)–(6) can now be rewritten in
dimensionless form as follows:

@h
@s ¼ @2h

@g2 ; in 0 < g < 1; for s > 0; ð7Þ

hðg;0Þ ¼ 1; in 0 < g < 1; at s ¼ 0; ð8Þ

� @h
@g

¼ Bi1ðhm � hÞ; at g ¼ 0; for s > 0; ð9Þ

� @h
@g

¼ Bi2ðh� haÞ þ Nrcðh4 � h4aÞ; at g ¼ 1; for s > 0; ð10Þ

where the dimensionless parameters are defined by

h ¼ T
Ti
; g ¼ x

L
; s ¼ at

L2

Bi1 ¼ h1L
k

; Bi2 ¼ h2L
k

; Nrc ¼
�rLT3

i

k
:

It can be seen that the problem is governed by five dimension-
less parameters, hm, ha, Bi1, Bi2 and Nrc . The radiation–conduction
parameter, Nrc that governs the radiative cooling, is conceptually
analog to the Biot number, Bi, which is the governing parameter
for an equivalent transient convective cooling.

3. Lumped models

Let us introduce the spatially averaged dimensionless tempera-
ture as follows:

havðsÞ ¼
Z 1

0
hðg; sÞdg: ð11Þ

Operating Eq. (7) by
R 1
0 dg and using the definition of average

temperature, Eq. (11), we get

dhavðsÞ
ds

¼ @h
@g

����
g¼1

� @h
@g

����
g¼0

: ð12Þ

Now, when the boundary conditions Eqs. (9) and (10) are used,
we have

dhavðsÞ
ds

¼ �Bi1½hð0; sÞ � hm� � Bi2½hð1; sÞ � ha� � Nrc½hð1; sÞ4 � h4a �:

ð13Þ

Eq. (13) is an equivalent integro-differential formulation of the
mathematical model, Eq. (7), with no approximation involved.

Supposing that the temperature gradient is sufficiently smooth
over the whole spatial solution domain, the classical lumped sys-
tem analysis (CLSA) is based on the assumption that the boundary
temperatures can be reasonably well approximated by the average
temperature, as

Nomenclature

cp specific heat
h convective heat transfer coefficient
k thermal conductivity
L thickness of the wall
Nrc the radiation–conduction parameter
T temperature
Ta adiabatic temperature
Tf right-side fluid temperature
Ti initial temperature
Tm left-side fluid temperature
Ts radiation sink temperature
t time

Greek symbols
a thermal diffusivity
g dimensionless spatial coordinate
� surface emissivity
q density
r Stefan–Boltzmann constant
s dimensionless time
h dimensionless temperature

Subscripts
1 left-side surface
2 right-side surface
av average
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hð0; sÞ ffi hð1; sÞ ffi havðsÞ;

which leads to the classical lumped model,

dhavðsÞ
ds

¼ �Bi1ðhavðsÞ � hmÞ � Bi2ðhavðsÞ � haÞ � NrcðhavðsÞ4 � h4aÞ;

ð14Þ
to be solved with the initial condition for the average temperature,

havð0Þ ¼ 1: ð15Þ

In an attempt to enhance the approximation approach of the
classical lumped model, we develop improved lumped models by
providing better relations between the boundary temperature
and the average temperature, based on Hermite-type approxima-
tions for integrals that define the average temperature and the heat
flux. The general Hermite approximation for an integral, based on
the values of the integrand and its derivatives at the integration
limits, is written in the following form [27]:
Z b

a
yðxÞdx ¼

Xa
m¼0

CmyðmÞðaÞ þ
Xb

m¼0

DmyðmÞðbÞ;

where yðxÞ and its derivatives yðmÞðxÞ are defined for all x 2 ða; bÞ. It is
assumed that the numerical values of yðmÞðaÞ for m ¼ 0;1; . . . ;a, and
yðmÞðbÞ for m ¼ 0;1; . . . ; b are available. The general expression for
the Ha;b approximation is given by
Z b

a
yðxÞdx ¼

Xa
nu¼0

Cmða; bÞhaþ1yðmÞðaÞ þ
Xb

nu¼0

Cmðb;aÞhaþ1yðmÞðbÞ

þ Oðhaþbþ3Þ;

where h ¼ b� a, and

Cmða; bÞ ¼
ðaþ 1Þ!ðaþ bþ 1� mÞ!

ðmþ 1Þ!ða� mÞ!ðaþ bþ 2Þ! :

We first employ the plain trapezoidal rule in the integrals for
both average temperature and average heat flux (H0;0=H0;0 approx-
imation), in the form

havðsÞ ffi
1
2
½hð0; sÞ þ hð1; sÞ�; ð16Þ

Z 1

0

@hðg; sÞ
@g

dg ¼ hð1; sÞ � hð0; sÞ ffi 1
2

@h
@g

jg¼0 þ
@h
@g

jg¼1

� �
: ð17Þ

The boundary conditions (9) and (10) are substituted into Eq.
(17) to yield

hð1; sÞ � hð0; sÞ ¼ 1
2
½�Bi1ðhm � hð0; sÞÞ � Bi2ðhð1; sÞ � haÞ

þ Nrcðhð1; sÞ4 � h4aÞ�: ð18Þ

The boundary temperature hð0; sÞ is solved from Eq. (16) and
substituted into Eq. (13)

dhavðsÞ
ds

¼ �Bi1ð2hav � hð1; sÞ � hmÞ � Bi2ðhð1; sÞ � haÞ

� Nrcðhð1; sÞ4 � h4aÞ; ð19Þ

The boundary temperature hð0; sÞ is solved from Eq. (16) and
substituted into Eq. (18) and we obtain an equation that relates
hð1; sÞ to hav ðsÞ

Nrchð1; sÞ4 þ ð4þ Bi1 þ Bi2Þhð1; sÞ � ð4þ 2Bi1ÞhavðsÞ � Nrch
4
a

þ Bi1hm � Bi2ha ¼ 0: ð20Þ

Analytical solution of Eq. (20) is readily obtained by using a
symbolic computation software such as Mathematica and then
used to close the ordinary differential equation (19) for the average
temperature, to be solved with the initial condition, Eq. (15), pro-
viding the H0;0=H0;0 model.

Then we further improve the lumped model by employing two-
side corrected trapezoidal rule in the integral for average temper-
ature, in the form

havðsÞ ffi
1
2
½hð0; sÞ þ hð1; sÞ� þ 1

12
@h
@g

jg¼0 �
@h
@g

jg¼1

� �
; ð21Þ

The boundary conditions (9) and (10) are substituted into Eq.
(21) to yield

havðsÞ ffi
1
2
½hð0; sÞ þ hð1; sÞ� þ 1

12
½�Bi1ðhm � hð0; sÞÞ

þ Bi2ðhð1; sÞ � haÞ þ Nrcðhð1; sÞ4 � h4aÞ�; ð22Þ

while keeping the plain trapezoidal rule in the integral for heat flux
(H1;1=H0;0 approximation).

The boundary temperature hð0; sÞ is solved from Eq. (22)

hð0;sÞ ¼ 12hav ðsÞ� ð6þBi2Þhð1;sÞ�Nrchð1;sÞ4 þNrch
4
a þBi1hm þBi2ha

6þBi1
;

ð23Þ

Substituted Eq. (23) into Eq. (18), we obtain an equation that re-
lates hð1; sÞ to havðsÞ

ð4þ Bi1ÞNrchð1; sÞ4 þ ð12þ 4ðBi1 þ Bi2Þ þ Bi1Bi2Þhð1; sÞ
� ð12þ 2Bi1ÞhavðsÞ � ð4þ Bi1ÞNrch

4
a � ð4þ Bi1ÞBi2ha

þ 2Bi1hm ¼ 0: ð24Þ

Similarly, Eq. (23) and the analytical solution of Eq. (24) is ob-
tained and used to close the ordinary differential Eq. (13) for the
average temperature, to be solved with the initial condition Eq.
(15), providing the H1;1=H0;0 model.

4. Numerical results and discussions

The solutions of classical and improved lumped models are
shown in graphical form in comparison with a reference finite dif-
ference solution of the original distributed model, Eqs. (7)–(10).
The initial boundary value problem defined by Eqs. (7)–(10) is
solved by using an implicit finite difference method, with a 201
nodes mesh in the radial direction and a dimensionless time step
of 0.00001 for all cases. Different values of the Biot numbers Bi1
and Bi2, and the radiation–conduction parameter Nrc are chosen
so as to assess the range of application of the lumped models.

Two particular cases of the problem can be identified. If
hm ¼ ha ¼ 0, Bi1 ¼ Nrc ¼ 0, the problem reduces to the classical
problem of a slab subjected to symmetric convective cooling with
Bi2 as the only dimensionless parameter. This case has been dis-
cussed by Cotta and Mikhailov [18]. If Bi1 – Bi2, hm ¼ ha ¼ 0,
Nrc ¼ 0, the case of asymmetric convective cooling was discussed
by Su [19]. In both cases, Eqs. (20) and (24) reduce to linear rela-
tions between hð1; sÞ and hav ðsÞ. A particular case of radiative cool-
ing of a spherical body was considered by Su [20]. As both
symmetric and asymmetric convective cooling has been discussed
in previous work, we consider here only cases in which Nrc – 0 and
Bi2 – 0, when one side of the slab is subjected to combined convec-
tive and radiative cooling. Without loss of generality, we take
hm ¼ 0:8 and ha ¼ 0:5 in the following examples. Fig. 1 shows that
for Bi1 ¼ Bi2 ¼ Nrc ¼ 0:1, all three lumped models, the classical, the
H0;0=H0;0 and H1;1=H0;0, predict the time evolution of the average
dimensionless temperature reasonably well, when compared with
the prediction of the distributed parameter model. However, as
shown in Figs. 2–7, the higher order lumped model (H1;1=H0;0

approximation) presents good agreement with the reference finite
difference solution for values of Biot numbers as high as 20.0 and
Nrc as high as 10.0, and the classical lumped model already devi-
ates from the reference solution at Bi1 ¼ Bi2 ¼ 1:0 and Nrc ¼ 1:0.
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It is important to observe that although the lower order improved
model (H1;1=H0;0) does not predict the average temperature accu-
rately for higher values of Biot number and the radiation–conduc-
tion parameter, it predicts the correct value of the steady-state
temperature. On the other hand, the classical lumped model gives
systematically a lower value of the steady-state average tempera-
ture of the slab.

5. Conclusions

Improved lumped parameter models are developed for the tran-
sient heat conduction of a wall subjected to combined convective
and radiative cooling. The improved lumped models are obtained
through two point Hermite approximations for integrals. It is

Fig. 1. Dimensionless temperature as a function of dimensionless time for Bi1 ¼ 0:1,
Bi2 ¼ 0:1 and Nrc ¼ 0:1.

Fig. 2. Dimensionless temperature as a function of dimensionless time for Bi1 ¼ 1:0,
Bi2 ¼ 1:0 and Nrc ¼ 1:0.

Fig. 3. Dimensionless temperature as a function of dimensionless time for Bi1 ¼ 2:0,
Bi2 ¼ 2:0 and Nrc ¼ 2:0.

Fig. 4. Dimensionless temperature as a function of dimensionless time for Bi1 ¼ 2:0,
Bi2 ¼ 5:0 and Nrc ¼ 2:0.

Fig. 5. Dimensionless temperature as a function of dimensionless time for Bi1 ¼ 5:0,
Bi2 ¼ 10:0 and Nrc ¼ 5:0.

Fig. 6. Dimensionless temperature as a function of dimensionless time for Bi1 ¼ 5:0,
Bi2 ¼ 20:0 and Nrc ¼ 5:0.
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shown by comparison with numerical solution of the original dis-
tributed parameter model that the higher order lumped model
(H1;1=H0;0 approximation) yields significant improvement of aver-
age temperature prediction over the classical lumped model. It is
concluded that the improved lumped model (H1;1=H0;0 approxima-
tion) can be used for the simulation of the dynamical thermal
behaviour of a wall subjected to combined convective and radia-
tive cooling for Biot numbers as high as 20.0 and the radiation–
conduction parameter Nrc as high as 10.0.
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