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Abstract

This work reports improved lumped-parameter models for transient heat conduction in a slab with temperature-depen-
dent thermal conductivity. The improved lumped models are obtained through two point Hermite approximations for inte-
grals. For linearly temperature-dependent thermal conductivity, it is shown by comparison with numerical solution of the
original distributed parameter model that the higher order lumped model (H 1;1=H 0;0 approximation) yields significant
improvement of average temperature prediction over the classical lumped model. A unified Biot number limit depending
on a single dimensionless parameter b is given both for cooling and heating processes.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Accurate and comprehensive computational techniques such as finite difference, finite volume, and finite
element methods can be applied to solve partial differential equations that model transport phenomena by dis-
tributed parameter formulations. However, in the analysis of complex industrial processes or systems, engi-
neers sometimes rather prefer to predict and control the system behaviour using a simpler or simplified
model that approximates accurately the original distributed parameter formulation but involves fewer state
variables and consequently less equations to be solved. Model reduction techniques have received increasing
attention in recent years, both in the applied mathematics community and in various application areas such as
thermal systems, chemical engineering, electronic systems, and building simulation [1–9].

In the analysis of complex thermal systems, the lumped parameter formulation is a powerful engineering
tool when a simplified model of the transient heat conduction is sought. As a rule of thumb, the classical
lumped parameter approach, where uniform temperature is assumed within the region, is in general
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restricted to problems with Biot number less than 0.1. In most engineering applications, however, the Biot
number is much higher [10]. In other words, the moderate to low temperature gradient assumption is not
reasonable in such applications, thus more accurate approach should be adopted. Improved lumped models
have been developed by different approaches [11–19]. Nonlinear boundary conditions have been also inves-
tigated [20,21,16]. Cotta and Mikhailov [13] presented a systematic formalism to provide improved lumped
parameter formulations for steady and transient heat conduction problems based on Hermite approxima-
tions for integrals that define averaged temperatures and heat fluxes. This approach has been shown to
be efficient in a variety of practical applications [11,12,14,22–24]. Recently, Alhama and Zueco [25] applied
for the first time a lumped model to nonlinear heat conduction problem of a slab with linearly temperature-
dependent thermal conductivity. They studied both the cooling and heating processes and presented solu-
tions as a function of the Biot number and a dimensionless parameter representing the heating or cooling
process.

In this work, we present improved lumped models for transient heat conduction in a slab with cubically
temperature-dependent thermal conductivity and subject to convective cooling or heating. The situation of
simultaneous specific heat variation with temperature is not addressed in this work as a different technique
is required for the development of improved lumped formulations [26]. The proposed lumped models are
obtained through two point Hermite approximations for integrals [27,13]. The boundary temperature is
related to the average temperature through fourth-order linear equations which are solved readily to close
the ordinary differential equations for the average temperature. For linearly temperature-dependent thermal
conductivity, the influence of the Biot number and the linearly temperature-dependent coefficient thermal con-
ductivity on the accuracy of the classical and improved lumped models is investigated by comparison with
finite difference solution of the original distributed parameter formulation. A unified Biot number limit is
obtained as a function of the linear dependence coefficient b.

Nomenclature

b temperature-dependent coefficient of thermal conductivity
Bi Biot number (¼ hL=k)
cp specific heat
h convective heat transfer coefficient
k thermal conductivity
L thickness of the slab
T temperature
T i initial temperature
T1 environmental fluid temperature
T 0 reference temperature
t time

Greek Letters

a0 reference thermal diffusivity (¼ k0=qcp)
b dimensionless temperature-dependent coefficient of thermal conductivity
k dimensionless thermal conductivity
g dimensionless spatial coordinate
q density
s dimensionless time (¼ a0t=L2)
h dimensionless temperature (¼ ðT � T1Þ=ðT i � T1Þ)

Subscripts

0 reference
av average
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2. The mathematical formulation

Let us consider the transient heat conduction in a slab with temperature-dependent thermal conductivity
and subject to convective cooling or heating. The wall is of thickness L and initially at a uniform temperature
T i. At t ¼ 0, the wall is exposed to an environment of a constant fluid temperature T1 with a constant con-
vective heat transfer coefficient h. The opposite side of the slab is adiabatic. The mathematical formulation of
the problem is given by

qcp
oT
ot

¼ o

ox
kðT Þ oT

ox

� �
; in 0 < x < L for t > 0; ð1Þ

with initial and boundary conditions taken as

T ðx; 0Þ ¼ T i; in 0 < x < L; at t ¼ 0; ð2Þ
oT
ox

¼ 0; at x ¼ 0 for t > 0; ð3Þ

� kðT Þ oT
ox

¼ hðT � T1Þ; at x ¼ L for t > 0: ð4Þ

The thermal conductivity is given by a third-order polynomial

kðT Þ ¼ k0 1þ b1ðT � T 0Þ þ b2ðT � T 0Þ2 þ b3ðT � T 0Þ3
h i

; ð5Þ

where k0 is the thermal conductivity at a reference temperature T 0, which is taken as the same as T1 for
convenience.

The mathematical formulation (1)–(4) can now be rewritten in dimensionless form as

oh
os

¼ o

og
kðhÞ oh

og

� �
; in 0 < g < 1 for s > 0; ð6Þ

hðg; 0Þ ¼ 1; in 0 < g < 1; at s ¼ 0; ð7Þ
oh
og

¼ 0; at g ¼ 0 for s > 0; ð8Þ

� kðhÞ oh
og

¼ Bih; at g ¼ 1 for s > 0; ð9Þ

The dimensionless thermal conductivity is given by

kðhÞ ¼ 1þ b1hþ b2h
2 þ b3h

3: ð10Þ

It can be seen that the problem is governed by the Biot number, Bi, and the coefficients of the dimensionless
thermal conductivity, b1, b2, and b3.

3. Lumped models

We first introduce the spatially averaged dimensionless temperature as follows:

havðsÞ ¼
Z 1

0

hðg; sÞdg: ð11Þ

We operate Eq. (6) by
R 1

0
dg, using the definition of average temperature, Eq. (11), we get

dhavðsÞ
ds

¼ kðhÞoh
og

����
g¼1

� kðhÞoh
og

����
g¼0

: ð12Þ

276 G. Su et al. / Applied Mathematical Modelling 33 (2009) 274–283



Now, the boundary conditions Eqs. (8) and (9) are used, we have

dhavðsÞ
ds

¼ �Bihð1; sÞ: ð13Þ

Eq. (13) is an equivalent integro-differential formulation of the mathematical model, Eqs. (6)–(9), with no
approximation involved.

Supposing that the temperature gradient is sufficiently uniform over the whole spatial solution domain, the
classical lumped system analysis (CLSA) is based on the assumption that the boundary temperatures can be
reasonably well approximated by the average temperature, as

hð0; sÞ ffi hð1; sÞ ffi havðsÞ;

which leads to the classical lumped model

dhavðsÞ
ds

¼ �BihavðsÞ ð14Þ

and to be solved with the initial condition for the average temperature

havð0Þ ¼ 1: ð15Þ

It can be seen that the classical model shows no influence of the temperature-dependent thermal conductivity.
In an attempt to enhance the approximation approach of the classical lumped model, we develop improved

lumped models by providing better relations between the boundary temperature and the average temperature,
based on Hermite-type approximations for integrals that define the average temperature and the heat flux. The
general Hermite approximation for an integral, based on the values of the integrand and its derivatives at the
integration limits, is written in the following form [27]:Z b

a
yðxÞdx ¼

Xa

m¼0

CmyðmÞðaÞ þ
Xb

m¼0

DmyðmÞðbÞ;

where yðxÞ and its derivatives yðmÞðxÞ are defined for all x 2 ða; bÞ. It is assumed that the numerical values of
yðmÞðaÞ for m ¼ 0; 1; . . . ; a, and yðmÞðbÞ for m ¼ 0; 1; . . . ; b are available. The general expression for the H a;b

approximation is given byZ b

a
yðxÞdx ¼

Xa

nu¼0

Cmða; bÞhaþ1yðmÞðaÞ þ
Xb

nu¼0

Cmðb; aÞhaþ1yðmÞðbÞ þOðhaþbþ3Þ;

where h ¼ b� a, and

Cmða; bÞ ¼
ðaþ 1Þ!ðaþ bþ 1� mÞ!

ðmþ 1Þ!ða� mÞ!ðaþ bþ 2Þ! :

We first employ the plain trapezoidal rule in the integrals for both average temperature and average heat flux
(H 0;0=H 0;0 approximation), in the form

havðsÞ ffi
1

2
hð0; sÞ þ hð1; sÞ½ �; ð16ÞZ 1

0

ohðg; sÞ
og

dg ¼ hð1; sÞ � hð0; sÞ ffi 1

2

"
oh
og

j
g¼0

þ oh
og

����
g¼1

#
: ð17Þ

The boundary conditions (8) and (9) are substituted into Eq. (17) to yield

hð1; sÞ � hð0; sÞ ¼ �Bi
2
hð1; sÞ: ð18Þ

The boundary temperature hð0; sÞ is solved from Eq. (16) and substituted into Eq. (18) and we obtain an equa-
tion that relates hð1; sÞ to havðsÞ
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4b3hð1;sÞ
4þ4ðb2�b3havðsÞÞhð1;sÞ

3þ4ðb1�b2havðsÞÞðhð1;sÞ
2Þþð4þBi�4b1havðsÞÞhð1;sÞ�4havðsÞ¼ 0:

ð19Þ
Then we further improve the lumped model by employing two-side corrected trapezoidal rule in the integral
for average temperature, in the form

havðsÞ ffi
1

2
hð0; sÞ þ hð1; sÞ½ � þ 1

12

"
oh
og

j
g¼0

� oh
og

����
g¼1

#
: ð20Þ

The boundary conditions (8) and (9) are substituted into Eq. (20) to yield

havðsÞ ffi
1

2
½hð0; sÞ þ hð1; sÞ� þ Bi

12
hð1; sÞ; ð21Þ

while keeping the plain trapezoidal rule in integral for heat flux (H 1;1=H 0;0 approximation).
The boundary temperature hð0; sÞ is solved from Eq. (21) and substituted into Eq. (18), we obtain an equa-

tion that relates hð1; sÞ to havðsÞ

3b3hð1;sÞ
4þ3ðb2�b3havðsÞÞhð1;sÞ

3þ3ðb1�b2havðsÞÞðhð1;sÞ
2Þþð3þBi�3b1havðsÞÞhð1;sÞ�3havðsÞ¼ 0:

ð22Þ
Although explicit analytical solutions of the fourth-order polynomial equations (19) and (22) can be found
readily by using a symbolic-numerical software such as Mathematica, we will limit the present study to the
particular case of linear dependence of thermal conductivity with temperature, that is, b2 ¼ b3 ¼ 0. In this
case, we replace b1 with b for convenience. Eq. (19) reduces to

4bhð1; sÞ2 þ ð4þ Bi� 4bhavðsÞÞhð1; sÞ � 4havðsÞ ¼ 0: ð23Þ

Analytical solution of Eq. (23) is readily obtained and then used to close the ordinary differential Eq. (13) for
the average temperature, to be solved with the initial condition Eq. (15), providing the H 0;0=H 0;0 model

dhavðsÞ
ds

¼ � Bi
8b

�4� Biþ 4bhavðsÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64bhavðsÞ þ ð4þ Bi� 4bhavðsÞÞ2

q� �
: ð24Þ

Similarly, when b2 ¼ b3 ¼ 0, Eq. (22) reduces to

3bhð1; sÞ2 þ ð3þ Bi� 3bhavðsÞÞhð1; sÞ � 3havðsÞ ¼ 0: ð25Þ
Similarly, the analytical solution of Eq. (25) is obtained and used to close the ordinary differential Eq. (13) for
the average temperature, to be solved with the initial condition Eq. (15), providing the H 1;1=H 0;0 model

dhavðsÞ
ds

¼ � Bi
6b

�3� Biþ 3bhavðsÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36bhavðsÞ þ ð3þ Bi� 3bhavðsÞÞ2

q� �
: ð26Þ

4. Discussions on cooling and heating processes

Writing kðT Þ ¼ k1 þ k2ðT Þ, Alhama and Zueco [25] identified four different kinds of problem that may
occur: (i) a heating process with a positive temperature-dependent coefficient, k2 > 0; (ii) a heating process
with k2 < 0; (iii) a cooling process with k2 > 0 and (iv) a cooling process with k2 < 0. They established that
the universal mean Biot number limit for applying the lumped model can be expressed as a function of the
dimensionless number j ¼ ðkmax � kminÞ=km, and the kind of process (cooling or heating), with km ¼
ðkmin þ kmaxÞ=2.

In what follows, we are going to show that under proper choice of dimensionless parameters, the four kinds
of problem can be reduced to two kinds of problem: (i) b > 0, representing cooling with a positive tempera-
ture-dependent coefficient b > 0 or heating with b < 0 and (ii) b < 0, representing cooling with b < 0 or heat-
ing with b > 0. The main difference between Alhama–Zueco’s analysis and ours lies in the choice of the
reference temperature. While Alhama and Zueco [25] always use the minimum temperature Tmin as the refer-
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ence temperature, we always use the surrounding fluid temperature T1 as the reference temperature whether
cooling or heating. For a linearly temperature-dependent thermal conductivity,

kðT Þ ¼ k1ð1þ bðT � T1ÞÞ;
we have for a cooling process ðT i > T1Þ with a positive temperature-dependent coefficient (b > 0)

kðhÞ ¼ kðT Þ
k1

¼ 1þ bðT i � T1Þh ¼ 1þ bh

thus b ¼ bðT i � T1Þ > 0. For a cooling process with b < 0, we have

kðhÞ ¼ 1þ bðT i � T1Þh ¼ 1þ bh;

with b ¼ bðT i � T1Þ < 0. For a heating process ðT i < T1Þ with b > 0, we have

kðhÞ ¼ 1þ bðT i � T1Þh ¼ 1þ bh

with b ¼ bðT i � T1Þ < 0. For a heating process with b < 0, we have

kðhÞ ¼ 1þ bðT i � T1Þh ¼ 1þ bh

with b ¼ bðT i � T1Þ > 0.
It can be seen that the four kinds of problem identified by Alhama and Zueco [25] can be represented con-

veniently by only one dimensionless parameter b, with b > 0 representing cooling with b > 0 or heating with
b < 0, and b < 0 representing cooling with b < 0 or heating with b > 0.

We proceed to examine the example problems given by Alhama and Zueco [25].

Problem 1. T i ¼ 1, T1 ¼ 0, kðT Þ ¼ 0:9þ 0:2T , kmin ¼ 0:9, kmax ¼ 1:1, km ¼ 1, j ¼ 0:2.
By our analysis, h ¼ T , hi ¼ 1, h1 ¼ 0, kðhÞ ¼ kðT Þ=k1 ¼ 1þ ð2=9Þh, b ¼ 2=9.

Problem 2. T i ¼ 1, T1 ¼ 0, kðT Þ ¼ 1:8þ 0:4T , kmin ¼ 1:8, kmax ¼ 2:2, km ¼ 2, j ¼ 0:2.
By our analysis, h ¼ T , hi ¼ 1, h1 ¼ 0, kðhÞ ¼ kðT Þ=k1 ¼ 1þ ð2=9Þh, b ¼ 2=9.

Problem 3. T i ¼ 10, T1 ¼ 0, kðT Þ ¼ 0:9þ 0:02T , kmin ¼ 0:9, kmax ¼ 1:1, km ¼ 1, j ¼ 0:2.
By our analysis, h ¼ T=10, hi ¼ 1, h1 ¼ 0, kðhÞ ¼ kðT Þ=k1 ¼ 1þ ð2=9Þh, b ¼ 2=9.

The difference between Alhama–Zueco’s and our analyses is shown when examining the heating processes
with a positive temperature-dependent coefficient (k2 > 0 or b > 0).

Problem 4. T i ¼ 0, T1 ¼ 1, kðT Þ ¼ 0:9þ 0:2T , kmin ¼ 0:9, kmax ¼ 1:1, km ¼ 1, j ¼ 0:2.
By our analysis, h ¼ ðT � 1Þ=ð�1Þ, hi ¼ 1, h1 ¼ 0,

kðhÞ ¼ kðT Þ
k1

¼ 0:9þ 0:2ð�hþ 1Þ
1:1

¼ 1� 2

11
h;

thus b ¼ 2=11.

Problem 5. T i ¼ 0, T1 ¼ 1, kðT Þ ¼ 1:8þ 0:4T , kmin ¼ 1:8, kmax ¼ 2:2, km ¼ 2, j ¼ 0:2.
By our analysis, h ¼ ðT � 1Þ=ð�1Þ, hi ¼ 1, h1 ¼ 0,

kðhÞ ¼ kðT Þ
k1

¼ 1:8þ 0:4ð�hþ 1Þ
2:2

¼ 1� 2

11
h;

thus b ¼ 2=11.

Problem 6. T i ¼ 0, T1 ¼ 10, kðT Þ ¼ 0:9þ 0:02T , kmin ¼ 0:9, kmax ¼ 1:1, km ¼ 1, j ¼ 0:2.
By our analysis, h ¼ ðT � 10Þ=ð�10Þ, hi ¼ 1, h1 ¼ 0,

kðhÞ ¼ kðT Þ
k1

¼ 0:9þ 0:02� 10ð�hþ 10Þ
2:2

¼ 1� 2

11
h;

thus b ¼ 2=11.
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It can be seen that Problems 1–3 reduce to a same dimensionless problem with b ¼ 2=9 and Problems 4–6
reduce to another dimensionless problem with b ¼ �2=11.

5. Numerical results and discussions

The solutions of classical and improved lumped models are shown in tabular and graphical forms in com-
parison with a reference finite difference solution of the original distributed model, Eqs. (6)–(9). The initial
boundary value problem defined by Eqs. (6)–(9) is solved by using an implicit finite difference method, with
a 201 nodes mesh in spatial discretization and a dimensionless time step of 0.00001 for all cases. Different val-
ues of the Biot number Bi and the parameter b are chosen so as to assess accuracy of the solutions given by
lumped models.

In Table 1, it is presented a comparison of the dimensionless average temperatures obtained by lumped
models and the reference finite difference solution of the original distributed parameter model at different val-
ues of time, for Bi ¼ 1:0 and b ¼ 1:0. As can be seen, the classical lumped model gives an error of 0.0681 at
s ¼ 1:0, while the H 0;0=H 0;0 model gives an error of 0.0137 at s ¼ 1:0, and the H 1;1=H 0;0 model yields a max-
imum error less than 0.005 for all time values. Fig. 1 shows the comparison of the dimensionless average tem-
peratures for Bi ¼ 2:5 and b ¼ 0:5. It can be seen that the solution give by the higher order improved lumped
model (H 1;1=H 0;0) agrees quite well with the finite difference solution.

Table 1
Comparison of lumped models against finite difference solution for dimensionless average temperature havðsÞ at different values of time

s FD Solution CLSA H 0;0=H 0;0 H1;1=H0;0

Bi ¼ 1:0 b ¼ 1:0

0.1 0.9150 0.9048 0.9157 0.9190
0.2 0.8406 0.8187 0.8389 0.8450
0.3 0.7730 0.7408 0.7689 0.7774
0.4 0.7113 0.6703 0.7050 0.7156
0.5 0.6548 0.6065 0.6466 0.6589
0.6 0.6031 0.5488 0.5934 0.6070
0.7 0.5557 0.4966 0.5447 0.5595
0.8 0.5123 0.4493 0.5002 0.5159
0.9 0.4725 0.4066 0.4595 0.4758
1.0 0.4359 0.3679 0.4222 0.4391
2.0 0.1985 0.1353 0.1838 0.1997
3.0 0.0925 0.0498 0.0813 0.0926
4.0 0.0436 0.0183 0.0363 0.0434
5.0 0.0207 0.0067 0.0163 0.0204

0 1 2 3 4 5
t

0

0.2

0.4

0.6

0.8

1
FD solution
Classical
H0,0/H0,0

H1,1/H0,0

Fig. 1. Dimensionless temperature as a function of dimensionless time for Bi ¼ 2:5 and b ¼ 0:5.
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The normalized error or dimensionless deviation of the average temperature is defined as follows:

e ¼ T av;lumpedðtÞ � T av;FDðtÞ
T i � T1

����
���� ¼ hav;lumpedðsÞ � hav;FDðsÞ

�� ��:
The typical error distribution of the lumped model H 1;1=H 0;0 as a function of dimensionless time is shown in
Fig. 2 for b ¼ 0:5 and three Biot numbers, Bi ¼ 1:0; 1:5, and 2.0. As can be seen, the error rises to maximum in
early times, decays to zero in intermediate times and then rises again. The influence of the sign of b on the
error distribution is shown in Fig. 3 for Bi ¼ 1:0, b ¼ 0:2 and �0.2. It can be seen that the pattern of the error
distribution is similar for positive and negative b, while the maximum error for b ¼ �0:2 is slightly higher than
that for b ¼ 0:2. The increase of the maximum error of the average temperature of the improved lumped
model H 1;1=H 0;0 with increasing Biot number can be seen clearly in Fig. 4. In this work, the criterion for
the application of the lumped model is defined as that the maximum normalized error is less than 0.01.
The Biot number limit can be thus determined from Fig. 4, as shown by the broken line. The variation of
the Biot number limit of the improved lumped model H 1;1=H 0;0 as a function of b is shown in Fig. 5. A linear
regression of the data gives the straight line Bilimit ¼ 0:523bþ 1:078 for �0:6 6 b 6 0:8. The lumped model
H 1;1=H 0;0 is expected to yield a maximum normalized error less 0.01 for Bi < BilimitðbÞ, for a given b.

0 1 2 3 4 5
0

0.004

0.008

0.012

0.016

0.02

|| 
 av

,lu
m

pe
d  - 

  a
v,

FD
||

Bi = 2.0,  = 0.5
Bi = 1.5,  = 0.5
Bi = 1.0,  = 0.5

Fig. 2. The normalized error of the average dimensionless temperature by the H 1;1=H 0;0 model as a function of time for b ¼ 0:5.

0 1 2 3 4 5
0

0.004

0.008

0.012

Bi = 1.0,  = 0.2
Bi = 1.0,  = -0.2

|| 
 av

,lu
m

pe
d  - 

  a
v,

FD
||

Fig. 3. The normalized error of the average dimensionless temperature by the H 1;1=H 0;0 model as a function of time for Bi ¼ 1:0.

G. Su et al. / Applied Mathematical Modelling 33 (2009) 274–283 281



6. Conclusions

Improved lumped parameter models are presented for transient heat conduction in a slab with cubicly tem-
perature-dependent thermal conductivity and subject to convective cooling or heating. The improved lumped
models are obtained through two point Hermite approximations for integrals. For linearly temperature-
dependent thermal conductivity, it is shown by comparison with numerical solution of the original distributed
parameter model that the higher order lumped model (H 1;1=H 0;0 approximation) yields significant improve-
ment of average temperature prediction over the classical lumped model. It is shown that the maximum rel-
ative error of the dimensionless average temperature is influenced predominantly by the Biot number. A
unified Biot number limit is obtained as a function of the linear dependence coefficient b,
Bilimit ¼ 0:523bþ 1:078 for �0:6 6 b 6 0:8. The lumped model H 1;1=H 0;0 is expected to yield maximum nor-
malized error less 0.01 for Bi < BilimitðbÞ, for a given b.
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