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a b s t r a c t

This paper presents a formal exact solution of the linear advection–diffusion transport equation with con-
stant coefficients for both transient and steady-state regimes. A classical mathematical substitution
transforms the original advection–diffusion equation into an exclusively diffusive equation. The new dif-
fusive problem is solved analytically using the classic version of Generalized Integral Transform Tech-
nique (GITT), resulting in an explicit formal solution. The new solution is shown to converge faster
than a hybrid analytical–numerical solution previously obtained by applying the GITT directly to the
advection–diffusion transport equation.

Published by Elsevier Ltd.

1. Introduction

Analytical solutions of advective–diffusive transport problems
continue to be of interest in many areas of science and engineering,
such as heat and mass transfer and pollutant dispersion in air, soils,
and water. They are useful for a variety of applications [1–5], such
as providing initial or approximate analyses of alternative pollu-
tion scenarios, conducting sensitivity analyses to investigate the
effects of various parameters or processes on contaminant trans-
port, extrapolation over large times and distances where numerical
solutions may be impractical, serving as screening models or
benchmark solutions for more complex transport processes that
cannot be solved exactly, and for validating more comprehensive
numerical solutions of the governing transport equations.

The literature presents several methods to analytically solve the
partial differential equations governing transport phenomena
[6–10]. For example, the method of separation-of-variables is one
of the oldest and most widely used techniques. Similarly, the clas-
sical Green’s function method can be applied to problems with
source terms and inhomogeneous boundary conditions on finite,
semi-infinite, and infinite regions [10,11].

Integral transform techniques, such as the Laplace and Fourier
transform methods, employ a mathematical operator that pro-
duces a new function by integrating the product of an existing
function and a kernel function between suitable limits. The kernel
of an integral transform, along with the integration limits, distin-

guishes one integral transform from another. Exact solutions of lin-
ear diffusion problems by classical integral transform techniques
were reviewed and classified by Mikhailov and Ozisik [12]. They
identified and unified seven classes of problems and demonstrated
many applications in heat and mass diffusion. Cotta [13] general-
ized and extended the classical integral transform method pre-
sented by Mikhailov and Ozisik [12], thereby creating a new
systematic procedure referred to as the Generalized Integral Trans-
form Technique (GITT).

The literature also features the use of mathematical substitu-
tions in obtaining analytical solutions to partial differential equa-
tions. Mathematical substitutions can simplify the structure of an
equation, thereby facilitating more flexible applications of certain
solution methods. Compilations of transformations and substitu-
tions are presented by Zwillinger [14] and Polyanin [15]. Most
existing analytical solutions for advection–diffusion transport
problems [3,16–18], including problems with growth and decay
terms, are for semi-infinite or infinite regions, with solutions for
finite domains being mostly limited to one-dimensional problems.

The aim of this paper is to present an analytical methodology to
solve advection–diffusion transport problems in a finite domain for
both transient and steady-state regimes. The proposed methodol-
ogy uses change-of-variables in combination with the classic ver-
sion of the Generalized Integral Transform Technique (GITT).

2. Problem formulation

We study transport in a finite domain and consider a three-
dimensional linear problem with decay and source terms. The
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boundary conditions can be any combination of the first, second, or
third kinds. We begin with formal mathematical definitions for
both transient and steady-state problems.

2.1. Transient problem

The transient transport equation for a scalar quantity T(x,y,z, t)
undergoing constant advection (or convection) and dispersion (or
diffusion) is given by:

R
@Tðx; y; z; tÞ

@t
þ LTðx; y; z; tÞ þ Sðx; y; z; tÞ ¼ r2Tðx; y; z; tÞ ð1Þ

where the operators L and r2 are defined by:

L � u
@

@x
þ v @

@y
þw

@

@z
þ kR ð2Þ

r2 � Dx
@2

@x2
þ Dy

@2

@y2
þ Dz

@2

@z2
ð3Þ

in which the parameters u, v, and w are constant velocity coeffi-
cients, k is a constant decay term, Dx, Dy, and Dz are constant disper-
sion (or diffusion) coefficients, and S(x,y,z, t) is a source term. The
coefficient R in Eq. (1) is also a constant parameter (e.g., the retar-
dation factor in many subsurface contaminant transport problems).

A general initial condition can be established as:

Tðx; y; z;0Þ ¼ qðx; y; zÞ ð4Þ

2.2. Steady-state problem

The transport equation for a steady-state transport regime inde-
pendent of time, t, follows from Eq. (1) as:

r2Tðx; y; zÞ ¼ LTðx; y; zÞ þ Sðx; y; zÞ ð5Þ

3. Mathematical analysis

3.1. Generalized Integral Transform Technique (GITT)

The transient and steady-state problems given by Eqs. (1) and
(5), respectively, can be solved using integral transform methods

as systematized by Cotta [13]. In this technique, termed the Gener-
alized Integral Transform Technique (GITT), the unknown function
is represented in terms of an eigenfunction series expansion. Basi-
cally, the GITT has the following steps:

(a) Choose an appropriate auxiliary eigenvalue problem and
find the associated eigenvalues, eigenfunctions, norm, and
orthogonalization property.

(b) Develop the integral and inverse transforms.
(c) Transform the partial differential equation into a system of

ordinary differential or algebraic equations.
(d) Solve the ordinary differential or algebraic system.
(e) Use the inverse transform to obtain the unknown function.

3.2. Transient regime

Considering a more general case we assume that the boundary
conditions associated with Eq. (1) are non-homogeneous. To
homogenize the boundary conditions, we rewrite Eq. (1) using
the following filter strategy:

Tðx; y; z; tÞ ¼ Mðx; y; z; tÞ þ Fðx; y; z; tÞ ð6Þ

where F(x,y,z; t) is any function satisfying exactly the original
boundary conditions of T(x,y,z, t). Eq. (1) now becomes:

R
@Mðx; y; z; tÞ

@t
þ LMðx; y; z; tÞ ¼ r2Mðx; y; z; tÞ þ Gðx; y; z; tÞ ð7Þ

where G(x,y,z, t) is the new source term which includes the original
source term as well as terms containing the filtering function. The
filtered initial condition is given by:

Mðx; y; z;0Þ ¼ qðx; y; zÞ � Fðx; y; z; 0Þ ð8Þ

Using a change-of-variable, similar to that used by [19,20,10]
we define M(x,y,z, t) in terms of a new function, h(x,y,z, t):

Mðx; y; z; tÞ ¼ hðx; y; z; tÞ exp½p1xþ p2yþ p3zþ tðq1 þ q2 þ q3Þ� ð9Þ

where p1, p2, p3, q1, q2, and q3 are constants that need to be
determined.

A comparable substitution was used by Brenner [19] to obtain a
transient, one-dimensional solution for miscible fluid displace-

Nomenclature

a generic position on the boundary
C dimensionless solute concentration
Dx, Dy, Dz dispersion–diffusion constants
F filter function
�f i integral transform of q
G source term
�G integral transform of G
H1, H2 coefficients
i, j indices
L mathematical operator
L0 domain length
M function with homogeneous boundary conditions
Ni norm
Pe Peclet number
p1, p2, p3 constants for the algebraic substitution
q1, q2, q3 constants for the algebraic substitution
R coefficient
S source term
T scalar quantity
t time

u, v, w advection (convection) components
�v symbolic coordinates for integration
V generic finite volume
x, y, z spatial coordinates

Greek symbols
bi eigenvalue
c dimensionless coefficient
dij Kronecker delta
h function in purely diffusive equation
�hi integral transform of the function h
k generic decay constant (Eq. (2))
k* decay constant for the second test case
li eigenvalue
p number Pi
q generic initial condition
s auxiliary variable
r2 Laplacian operator
wi eigenfunction
~wi normalized eigenfucntion
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ment in finite length beds. Selim and Mansell [20] similarly pre-
sented an analytical solution for reactive solutes with linear
adsorption, a sink/source term, a finite domain, and continuous
and flux-plug type inlet conditions at the inlet boundary. Recently,
Goltz [21] used an equivalent substitution studying convective–
dispersive solute transport with constant production, first-order
decay, and equilibrium sorption in a porous medium. All of these
studies used integral transforms and changes-of-variables, but
were limited to unsteady, one-dimensional problems.

The idea of the substitution in Eq. (9) is to transform the tran-
sient advection–dispersion (or diffusion) problem into an equiva-
lent heat conduction problem involving a purely diffusive type
equation. Applying the substitution to Eq. (7) leads to:

R
@hðx; y; z; tÞ

@t
þ hðx; y; z; tÞ Rðq1 þ q2 þ q3 þ kÞ½

þp1ð�Dxp1 þ uÞ þ p2ð�Dyp2 þ vÞ þ p3ð�Dzp3 þwÞ
�

þ ð�2Dzp3 þwÞ @hðx; y; z; tÞ
@z

� Dz
@2hðx; y; z; tÞ

@z2

þ ð�2Dyp2 þ vÞ @hðx; y; z; tÞ
@y

� Dy
@2hðx; y; z; tÞ

@y2

þ ð�2Dxp1 þ uÞ @hðx; y; z; tÞ
@x

� Dx
@2hðx; y; z; tÞ

@x2

¼ Gðx; y; z; tÞ
exp½ðq1 þ q2 þ q3Þt þ p1xþ p2yþ p3z�

ð10Þ

Inspection of Eq. (10) shows that the advection terms can be
eliminated by choosing the constants p1, p2, p3, q1, q2 and q3 as
follows:

p1 ¼ u
2Dx

; p2 ¼ v
2Dy

; p3 ¼ w
2Dz

ð11a—cÞ

q1 ¼ � u2

4DxR
þ k

� �
; q2 ¼ � v2

4DyR
; q3 ¼ � w2

4DzR
ð11d—fÞ

Note that the coefficient multiplying the term h(x,y,z, t) in Eq. (10)
then reduces to zero, which allows us to write the transient trans-
port equation for h(x,y,z, t) as:

R
@hðx; y; z; tÞ

@t
¼ r2hðx; y; z; tÞ

þ Gðx; y; z; tÞ
exp½ðq1 þ q2 þ q3Þt þ p1xþ p2yþ p3z�

ð12aÞ

The new transport Eq. (12) is a diffusion equation that has a modi-
fied source term which contains all of the advection and decay
information from the original problem. Using Eqs. (8) and (9), the
modified initial condition in terms of h(x,y,z, t) is now:

hðx; y; z;0Þ ¼ qðx; y; zÞ � Fðx; y; z; 0Þ
expðp1xþ p2yþ p3zÞ

ð12bÞ

The boundary conditions must be similarly redefined in terms of
h(x,y,z, t). As a general situation, we consider three kinds of homo-
geneous boundary conditions in only the x-direction at the generic
boundary position at x = a. These conditions are summarized in
Table 1, in which g and H are coefficients. Boundary conditions
for the other directions can be obtained by inspection.

To implement the GITT, we selected an eigenvalue problem
with the same kind of boundary conditions as specified for
h(x,y,z, t).

In that case the problem is given by:

r2wðx; y; zÞ þ l2wðx; y; zÞ ¼ 0 ð13Þ

The eigenvalue problem given by Eq. (13) has nontrivial solutions
only for certain values of the parameterl � li (i = 1,2, . . . ,1), called
eigenvalues. The corresponding nontrivial solutions w(x,y,z) �
wi(x,y,z) are eigenfunctions obeying the following orthogonality
property:

Z
V
wiðx; y; zÞwjðx; y; zÞd�v ¼ Nidij ð14Þ

where Ni is the normalization integral (or the norm) and dij the Kro-
necker delta. Using this orthogonality property, the integral
transform pair is readily derived as:

�hiðtÞ ¼
Z
V

~wiðx; y; zÞhðx; y; z; tÞd�v ðTransformÞ ð15aÞ

hðx; y; z; tÞ ¼
X1
i¼1

~wiðx; y; zÞ�hiðtÞ ðInverseÞ ð15bÞ

where ~wiðx; y; zÞ are the normalized eigenfunctions defined by

~wiðx; y; zÞ ¼
wiðx; y; zÞffiffiffiffiffi

Ni
p ð16Þ

The integral transformation of Eq. (12a) can now be carried out by
applying the operator

R
V
~wiðx; y; zÞd�v and using Eq. (15a,b), leading

to an infinite system of decoupled ordinary differential equations
of the form

R
d�hiðtÞ
dt

þ l2
i
�hiðtÞ ¼ �GiðtÞ; i ¼ 1;2; . . . ð17aÞ

where

�GiðtÞ ¼
Z
V

~wiðx; y; zÞ
Gðx; y; z; tÞ

exp½ðq1 þ q2 þ q3Þt þ p1xþ p2yþ p3z�
d�v

ð17bÞ

The initial conditions in Eq. (12b) must also be transformed to give:

�hiðt ¼ 0Þ ¼ �f i ¼
Z
V

~wiðx; y; zÞ
qðx; y; zÞ � Fðx; y; z;0Þ
expðp1xþ p2yþ p3zÞ

d�v ð17cÞ

The ordinary differential system Eq. (17a,b) with initial condition
Eq. (17c) has as formal solution:

�hiðtÞ ¼ exp �l2
i

R
t

� �
�f i þ

1
R

Z t

0

�GiðsÞ exp
l2

i

R
s

� �
ds

� �
ð18Þ

The unknowns h(x,y,z, t) and T(x,y,z, t) can now be obtained by
using the inverse formula given by Eq. (15b), and Eqs. (6), (9),
respectively, to give:

hðx; y; z; tÞ

¼
X1
i¼1

~wiðx; y; zÞ exp �l2
i

R
t

� �
�f i þ

1
R

Z t

0

�GiðsÞ exp
l2

i

R
s

� �
ds

� �
ð19Þ

Tðx; y; z; tÞ ¼ hðx; y; z; tÞ exp ux
2Dx

þ vy
2Dy

þ wz
2Dz

� t
u2

4DxR
þ k

� ���

þ v2

4DyR
þ w2

4DzR

�	
þ Fðx; y; z; tÞ ð20Þ

Table 1
Boundary conditions at the generic position x = a on the boundary for transient, M �
M(a,y,z, t), and steady state, M � M(a,y,z), problems.

Boundary conditions for M Boundary conditions for h

M = 0 h = 0
@M
@x ¼ 0 @h

@x þ p1h ¼ 0
g @M

@x þ HM ¼ 0 g @h
@x þ ðH þ gp1Þh ¼ 0
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3.3. Steady-state regime

Eq. (5) defined a steady-state transport problem with non-
homogeneous boundary conditions. The boundary conditions can
again be made homogeneous using the filter strategy:

Tðx; y; zÞ ¼ Mðx; y; zÞ þ Fðx; y; zÞ ð21Þ

where F(x,y,z) satisfies exactly the original boundary conditions of
T(x,y,z). Therefore, the steady-state problem can be re-written as

LMðx; y; zÞ ¼ r2Mðx; y; zÞ þ Gðx; y; zÞ ð22Þ

where G(x,y,z) is the new source term containing information about
the original source and the filter function.

For the steady-state problem we use a change-of-variable sim-
ilar to Eq. (9) but without the time domain:

Mðx; y; zÞ ¼ hðx; y; zÞ expðp1xþ p2yþ p3zÞ ð23Þ

This substitution eliminates the advection terms when p1, p2, and p3
are chosen judiciously. In this case the choices are the same as for
the transient case, Eq. (11a–c). Therefore, the new formulation for
the steady transport equation in terms of h(x,y,z) is

u2

4Dx
þ v2

4Dy
þ w2

4Dz
þ kR

� �
hðx; y; zÞ

¼ r2hðx; y; zÞ þ Gðx; y; zÞ
exp u

2Dx
xþ v

2Dy
yþ w

2Dz
z


 � ð24Þ

Eq. (24) is also a diffusion equation, but with a modified source term
that contains the advection information of the original problem. The
boundary conditions in terms of h(x,y,z) are summarized in Table 1.

The eigenvalue problem in this case is the same as for the tran-
sient problem, and is given by Eq. (13). The integral transform pair
is given by:

�hi ¼
Z
V

~wiðx; y; zÞhðx; y; zÞd�v ðTransformÞ ð25aÞ

hðx; y; zÞ ¼
X1
i¼1

~wiðx; y; zÞ�hi ðInverseÞ ð25bÞ

Note that the transformed potentials �hi are constants for each value
of i.

Applying the operator
R
V
~wiðx; y; zÞd�v to Eq. (24) and using Eq.

(25a,b), results in the following transformed equation:

u2

4Dx
þ v2

4Dy
þ w2

4Dz
þ kR

� �
�hi þ l2

i
�hi ¼ �Gi; i ¼ 1;2; . . . ð26aÞ

�Gi ¼
Z
V

~wiðx; y; zÞ
Gðx; y; zÞ

exp u
2Dx

xþ v
2Dy

yþ w
2Dz

z

 � d�v ð26bÞ

The solution of this equation is:

�hi ¼
�Gi

l2
i þ u2

4Dx
þ v2

4Dy
þ w2

4Dz
þ kR


 � ð27Þ

Finally, invoking the inverse formula, Eq. (25b), and recalling Eqs.
(21), (23), we obtain:

hðx; y; zÞ ¼
X1
i¼1

~wiðx; y; zÞ
�Gi

l2
i þ u2

4Dx
þ v2

4Dy
þ w2

4Dz
þ kR


 � ð28Þ

Tðx; y; zÞ ¼ hðx; y; zÞ exp u
2Dx

xþ v
2Dy

yþ w
2Dz

z
� �

þ Fðx; y; zÞ ð29Þ

4. Test cases

4.1. First test case

As a test case for the general analytical solution, we consider the
particular problem of solving the linearized Burgers equation [13].
The partial differential equation for this test case is

R
@Tðx; tÞ

@t
þ u

@Tðx; tÞ
@x

¼ Dx
@2Tðx; tÞ

@x2
ð30aÞ

with initial and boundary conditions:

Tðx; 0Þ ¼ 1; 0 � x � 1 ð30bÞ

Tð0; tÞ ¼ 1; Tð1; tÞ ¼ 0; t > 0 ð30c;dÞ

Because Eq. (30c) is not homogeneous, it is necessary to define a
filter function to homogenize the boundary condition. A suitable
filter may be found by solving the steady-state version of Eq. (30a):

u
dFðxÞ
dx

¼ Dx
d2FðxÞ
dx2

ð31aÞ

with boundary conditions

Fð0Þ ¼ 1; Fð1Þ ¼ 0 ð31b; cÞ

This differential equation has the following analytic solution:

FðxÞ ¼
1� exp � u

Dx
ð1� xÞ


 �

1� exp � u
Dx


 � ð32Þ

Eq. (30) can be written in terms of M(x, t) by using Eq. (6):

R
@Mðx; tÞ

@t
þ u

@Mðx; tÞ
@x

¼ Dx
@2Mðx; tÞ

@x2
ð33aÞ

Mðx;0Þ ¼ 1� FðxÞ; 0 � x � 1 ð33bÞ

Mð0; tÞ ¼ 0; Mð1; tÞ ¼ 0; t > 0 ð33c;dÞ

The values of p1 and q1 that transform Eq. (33a) into an exclu-
sively diffusive equation are given by:

p1 ¼ u
2Dx

; q1 ¼ �ð u2

4DxR
Þ ð34a;bÞ

According to the general solution presented above, we need to
specify the eigenfunction and eigenvalues problem in a form such
as defined by Eq. (13). In this case the eigenvalue problem is a
Sturm–Liouville problem with the set of eigenvalues given by:

bi ¼ ip; li ¼ bi

ffiffiffiffiffiffi
Dx

p
; i ¼ 1;2; . . . ð35a;bÞ

and with the norms and the normalized eigenfunctions as:

Ni ¼
1
2
; ~wi ¼

ffiffiffi
2

p
sinðbixÞ ð36;37Þ

We note that these eigenfunctions and eigenvalues satisfy the fol-
lowing orthogonality property:
Z 1

0

~wiðxÞ~wjðxÞdx ¼ dij ð38Þ

The next step according to the general analytical solution proce-
dure is to calculate the initial coefficient �f i established in Eq. (17c),
whose analytic expression is given by

�f i ¼ �
ð�1Þi4

ffiffiffi
2

p
D2

xli expð� u
2Dx

Þ
u2 þ 4D2

xl2
i

ð39Þ

The structure of Eq. (37) implies that for specified values of u and
Dx, the absolute value of �f i decreases monotonically as the eigen-
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value order increases. Such behavior is expected in the GITT
approach.

We can now compose the analytical solution for the linearized
Burgers equation:

Tðx; tÞ ¼ exp
u

2Dx
x� u2

4DxR
t

� �X1
i¼1

~wiðxÞ exp �l2
i

R
t

� �
�f i þ FðxÞ

ð40Þ

Numerical results were obtained for the following two sets of
parameter values: t = 0.1, R = 1, Dx = 1, u = 1, k = 0 and t = 0.1, R = 1,
Dx = 1, u = 10, k = 0. These caseswere chosen to permit a comparison
with previous results presented by Cotta [13]. Cotta obtained a solu-
tion for the linearized Burgers equation using a hybrid analytical–
numerical GITT approach in which the transformed infinite system
of ordinary differential equations was truncated and solved numer-
ically using the DIVAPG subroutine from the IMSL Library [22].

Tables 2 and 3 compare the convergence of the present solution
with the hybrid solution of Cotta [13], the latter results shown in
parentheses. The parameter N in the tables is the number of terms
summed in the truncated infinite series for both the present ana-
lytic solution and the hybrid solution of [13]. Also shown are re-
sults for a fully numerical solution obtained by Cotta [13] using
the DMOLCH subroutine from the IMSL Library [22]. In both cases
(with u = 1 and u = 10) the new analytical solution required only
N = 5 terms to achieve convergence to six decimal places. In fact,
the solution for only N = 1 term already provides an excellent
approximation to the true solution. The converged analytical solu-
tion agreed excellently with the hybrid GITT and the full numerical
results reported by Cotta [13].

The faster convergence demonstrated in Tables 2 and 3 is due to
the change-of-variable used in the present analytic solution that
transformed the original advection–diffusion partial differential
equation into a pure diffusive equation. The hybrid solution of
[13] applied the GITT directly to the advection–diffusion equation.

4.2. Second test case

As a second example, we solve a transport problem that, among
other applications, has been employed to model nutrient and con-
taminant transport in soils (e.g., van Genuchten [23]). In his paper,
van Genuchten [23] used Laplace transforms to derive the analytic

solution for solute transport of up to four species involved in
sequential decay chain reactions. Here, we compare results from
the present formulation with earlier results obtained in [23] for
the first species, ammonium (NH4

+). The transport of ammonium
is of interest both as a plant nutrient and a possible groundwater
contaminant.

The dimensionless transport equation, in terms of the solute
concentration, is given by:

R
@Cðx; tÞ

@t
þ @Cðx; tÞ

@x
þ cCðx; tÞ ¼ 1

Pe
@2Cðx; tÞ

@x2
ð41aÞ

with initial condition:

Cðx;0Þ ¼ 0; t ¼ 0 ð41bÞ

and boundary conditions:

� @Cð0; tÞ
@x

þ PeCð0; tÞ ¼ Pe;
@Cð1; tÞ

@x
¼ 0 ð41c;dÞ

The dimensionless parameters Pe and c in Eq. (39) are defined by:

Pe ¼ L0u�

D�
x
; c ¼ k�RL0

u� ð42a;bÞ

Table 2
Convergence comparison of the analytical and hybrid solutions for u = 1, t = 0.1, R = 1, Dx = 1, and k = 0.

x Analytical solution (hybrid solution, Ref. [13]) Ref. [13]

N = 1 N = 5 N = 10 N = 15 N = 30

0.1 0.983264 0.981048 (0.98145) 0.981048 (0.98101) 0.981048 (0.98104) 0.981048 (0.98105) 0.9810
0.3 0.925062 0.921078 (0.92105) 0.921078 (0.92107) 0.921078 (0.92109) 0.921078 (0.92108) 0.9210
0.5 0.798233 0.798211(0.79842) 0.798211(0.79823) 0.798211(0.79821) 0.798211(0.79821) 0.7981
0.7 0.567179 0.57206 (0.57225) 0.57206 (0.57211) 0.57206 (0.57207) 0.57206 (0.57206) 0.5720
0.9 0.216888 0.220238 (0.21993) 0.220238 (0.22033) 0.220238 (0.22026) 0.220238 (0.22024) 0.2202

Table 3
Convergence comparison of the analytical and hybrid solutions for u = 10, t = 0.1, R = 1, Dx = 1, and k = 0.

x Analytical solution (hybrid solution, Ref. [13]) Ref. [13]

N = 1 N = 5 N = 10 N = 15 N = 30

0.1 0.999941 0. 999939 (1.00020) 0.999939 (0.99993) 0. 999939 (0.99994) 0.999939 (0.99994) 0.9999
0.3 0.999268 0.999259 (0.99953) 0.999259 (0.99923) 0.999259 (0.99927) 0.999259 (0.99926) 0.9993
0.5 0.99376 0.99376 (0.99476) 0.99376 (0.99370) 0.99376 (0.99377) 0.99376 (0.99376) 0.9938
0.7 0.951251 0.951317 (0.95264) 0.951317 (0.95122) 0.951317 (0.95135) 0.951317 (0.95132) 0.9513
0.9 0.633182 0.633293 (0.63477) 0.633293 (0.63322) 0.633293 (0.63322) 0.633293 (0.63329) 0.6333
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Fig. 1. Distribution of the dimensionless concentration at various times
(L0 = 20 cm).
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where L0 is the length of the domain, u* is he advective velocity, D�
x

is the dispersion coefficient, k� is the first-order decay coefficient,
and R is the retardation factor. Parameter values for the transport
of ammonium were taken as [23]: u*=1 cm h�1, D�

x ¼ 0:18 cm2 h�1,
R = 2, k� ¼ 0:005 h�1.

The parameters of the general analytical solution and the vari-
ables in the present test problem correspond as:

Dx ¼
1
Pe

; u ¼ 1; k ¼ c
R

ð43a-cÞ

Therefore, parameter p1 and q1 are given by:

p1 ¼ Pe
2
; q1 ¼ �1

R
Pe
4

þ c
� �

ð44a;bÞ

The eigenfunction for this case is obtained from the following
Sturm–Liouville problem:

d2wðxÞ
dx2

þ l2wðxÞ ¼ 0 ð45aÞ

with boundary conditions:

� dwð0Þ
dx

þ Pewð0Þ ¼ 0;
dwð1Þ
dx

þ Pewð1Þ ¼ 0 ð45b; cÞ

It is interesting that, due to the change-of-variables, the boundary
condition at x = 1 is now a third-type boundary condition, similarly
as the condition at x = 0.

The analytic solution of the eigenvalue problem is [10]:

wi ¼ bicosðbixÞ þ H1sinðbixÞ ð46Þ

The norms and eigenvalues are obtained from the following
equations:

Ni ¼
ðb2

i þ H2
1Þ þ H1 þ H2

2
ð47Þ

tanðbiÞ ¼
biðH1 þ H2Þ
b2
i � H1H2

ð48Þ

respectively, where H1 ¼ Pe
2 andH2 ¼ Pe

2 .
The filter function is obtained by solving the equation:

dFðxÞ
dx

þ cFðxÞ ¼ 1
Pe

d2FðxÞ
dx2

ð49aÞ

with the boundary conditions:

�dFð0Þ
dx

þ PeFð0Þ ¼ Pe;
dFð1Þ
dx

¼ 0 ð49b; cÞ

This ordinary differential equation can be solved analytically, lead-
ing to the following expression for the filter function:

Table 4
Solution convergence for L0 = 200 cm and t = 200 h (N = number of terms summed).

X (cm) Dimensionless concentration Ref.[23]

N = 250 N = 350 N = 400

0 0.9982064510 0.9982064510 0.9982064510 0.99821
5 0.9496085026 0.9496085026 0.9496085026 0.94961
10 0.9033765583 0.9033765583 0.9033765583 0.90338
15 0.8593954286 0.8593954286 0.8593954286 0.85940
20 0.8175555319 0.8175555319 0.8175555319 0.81756
25 0.7777526219 0.7777526219 0.7777526219 0.77775
30 0.7398875272 0.7398875272 0.7398875272 0.73989
35 0.7038659047 0.7038659047 0.7038659047 0.70387
40 0.6695980046 0.6695980046 0.6695980046 0.66960
45 0.6369984464 0.6369984464 0.6369984464 0.63700
50 0.6059860065 0.6059860065 0.6059860065 0.60599
55 0.5764834154 0.5764834154 0.5764834154 0.57648
60 0.5484171659 0.5484171659 0.5484171659 0.54842
65 0.5217173284 0.5217173284 0.5217173284 0.52172
70 0.4963172806 0.4963172806 0.4963172806 0.49632
75 0.4721485541 0.4721485541 0.4721485541 0.47215
80 0.4490140056 0.4490140056 0.4490140056 0.44901
85 0.4250786668 0.4250786668 0.4250786668 0.42508
90 0.3894312160 0.3894312160 0.3894312160 0.38943
95 0.3149047564 0.3149047564 0.3149047564 0.31490
100 0.1927162768 0.1927162768 0.1927162768 0.19272
105 0.07678511830 0.07678511830 0.07678511830 0.07679
110 0.01794434192 0.01794434192 0.01794434192 0.01794
115 0.002312432594 0.002312432594 0.002312432594 0.00231
120 0.0001586398313 0.0001586398313 0.0001586398313 0.00016
125 5.675789878 � 10�6 5.675789878 � 10�6 5.675789878 � 10�6 0.00001
130 1.045824992 � 10�7 1.045824992 � 10�7 1.045824992 � 10�7 0.00000
135 9.845112917 � 10�10 9.845112917 � 10�10 9.845112917 � 10�10 0.00000
140 0.000000000 0.000000000 0.000000000 0.00000
145 �1.325484431 � 10�10 0.000000000 0.000000000 0.00000
150 0.0001250537544 0.000000000 0.000000000 0.00000
155 336.4850318 0.000000000 0.000000000 0.00000
160 3.536666357 � 108 0.000000000 0.000000000 0.00000
165 1.365890562 � 1014 0.000000000 0.000000000 0.00000
170 �2.043458682 � 1020 0.000000000 0.000000000 0.00000
175 �4.597385308 � 1026 0.000000000 0.000000000 0.00000
180 �4.459462906 � 1032 0.000000000 0.000000000 0.00000
185 �1.312702502 � 1038 0.000000000 0.000000000 0.00000
190 3.199088984 � 1044 0.000000000 0.000000000 0.00000
195 6.267155179 � 1050 0.000000000 0.000000000 0.00000
200 5.611318166 � 1056 0.000000000 0.000000000 0.00000
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where w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Peþ 4c

p
.

Finally, we find the transformed initial condition coefficient:

�f i ¼
num
den

ð51aÞ

num¼8expð�w
ffiffiffiffiffi
Pe

p
ÞPeðw�

ffiffiffiffiffi
Pe

p
Þcbi�4Peðwþ

ffiffiffiffiffi
Pe

p
ÞðPeþw

ffiffiffiffiffi
Pe

p
þ2cÞbi

þ2exp �w
2

ffiffiffiffiffi
Pe

p
 �
sinðbiÞ �Pe5=2 Peþw

ffiffiffiffiffi
Pe

p
þ4c


 �h

þ4wðPeþw
ffiffiffiffiffi
Pe

p
Þb2

i

i
ð51bÞ

den¼ðwþ
ffiffiffiffiffi
Pe

p
ÞðPeþw

ffiffiffiffiffi
Pe

p
þ2c�exp �w

ffiffiffiffiffi
Pe

ph i

�ðPe�w
ffiffiffiffiffi
Pe

p
þ2cÞÞðPew2þ4b2

i Þ
ffiffiffiffiffi
Ni

p
ð51cÞ

The symbolic and numerical computations were made in the Math-
ematica platform [24]. When we used for this purpose the Mathem-
atica function FindRoot to solve the transcendental Eq. (48) and
compute the eigenvalues, it was necessary to set the Mathematica
parameter WorkingPrecision to 200.

Fig. 1 shows dimensionless concentration profiles computed for
different times with a relatively short domain length of L0 = 20 cm.
The figure shows the concentration distribution progressing to-
ward a linear, steady-state profile.

Table 4 illustrates the convergence of the solution computed for
t = 200 h,whereN is again the number of terms summed in the trun-
cated series expansion. For comparisonpurposes, all values less than
10�10werediscarded. The results showthat convergence is obtained
for the entire spatial domain of L0 = 200 cmwith N = 350 terms; the
concentration values did not change when additional (N = 400 or
more) termswereused. The convergedvalues are in complete agree-

ment with the previous results of van Genuchten [23]. Table 4 also
demonstrates that solution convergence slowly progressed towards
the end of the spatial domain as the number of terms in the series in-
creased. For example, convergence for X 6 135 cm was obtained

Table 5
Solution convergence for L0 = 140 cm and t = 200 h (N = number of terms summed).

X (cm) Dimensionless concentration

N = 100 N = 150 N = 200 N = 250

0 0.9982064510 0.9982064510 0.9982064510 0.9982064510
5 0.9496085026 0.9496085026 0.9496085026 0.9496085026
10 0.9033765583 0.9033765583 0.9033765583 0.9033765583
15 0.8593954286 0.8593954286 0.8593954286 0.8593954286
20 0.8175555319 0.8175555319 0.8175555319 0.8175555319
25 0.7777526219 0.7777526219 0.7777526219 0.7777526219
30 0.7398875272 0.7398875272 0.7398875272 0.7398875272
35 0.7038659047 0.7038659047 0.7038659047 0.7038659047
40 0.6695980046 0.6695980046 0.6695980046 0.6695980046
45 0.6369984464 0.6369984464 0.6369984464 0.6369984464
50 0.6059860065 0.6059860065 0.6059860065 0.6059860065
55 0.5764834154 0.5764834154 0.5764834154 0.5764834154
60 0.5484171659 0.5484171659 0.5484171659 0.5484171659
65 0.5217173284 0.5217173284 0.5217173284 0.5217173284
70 0.4963172806 0.4963172806 0.4963172806 0.4963172806
75 0.4721485541 0.4721485541 0.4721485541 0.4721485541
80 0.4490137609 0.4490140056 0.4490140056 0.4490140056
85 0.1320360358 0.4250786668 0.4250786668 0.4250786668
90 103148.4364 0.3894312160 0.3894312160 0.3894312160
95 3.904198455 � 1011 0.3149047564 0.3149047564 0.3149047564
100 1.109849736 � 1017 0.1927162768 0.1927162768 0.1927162768
105 �3.774497734 � 1023 0.07678511830 0.07678511830 0.07678511830
110 �3.448237131 � 1029 0.01794434192 0.01794434192 0.01794434192
115 2.298888763 � 1035 0.002312432594 0.002312432594 0.002312432594
120 5.264401526 � 1041 0.0001586227102 0.0001586398313 0.0001586398313
125 4.119631336 � 1046 0.02564681436 5.675789878 � 10�6 5.675789878 � 10�6

130 �5.803900012 � 1053 �2020.240884 1.045824992 � 10�7 1.045824992 � 10�7

135 �3.829622487 � 1059 �2.788998787 � 1010 9.845112917 � 10�10 9.845112917 � 10�10

140 4.484729306 � 1065 2.605574947 � 1016 0 0

Table 6
Solution convergence for L0 = 20 cm and t = 20 h (N = number of terms summed).

X (cm) Dimensionless concentration Ref. [25]

N = 20 N = 50 N = 100

0 0.998206 0.998206 0.998206 0.99821
1 0.988291 0.988291 0.988291 0.98829
2 0.978469 0.978469 0.978469 0.97847
3 0.968683 0.968683 0.968683 0.96868
4 0.958554 0.958554 0.958554 0.95855
5 0.946242 0.946242 0.946242 0.94624
6 0.925461 0.925461 0.925461 0.92546
7 0.881528 0.881528 0.881528 0.88153
8 0.792957 0.792956 0.792956 0.79296
9 0.646514 0.646526 0.646526 0.64653
10 0.458117 0.457931 0.457931 0.45793
11 0.268772 0.271654 0.271654 0.27165
12 0.175886 0.131256 0.131256 0.13126
13 �0.639369 0.0506341 0.0506341 0.05063
14 10.673 0.0153803 0.0153803 0.01538
15 �164.519 0.00364344 0.00364344 0.00364
16 2538.9 0.000668586 0.000668586 0.00067
17 �39170. 0.0000945846 0.0000945846 0.00009
18 604111. 0.0000102798 0.0000102798 0.00001
19 �9.31184 � 106 8.55118 � 10�7 8.55118 � 10�7 0.00000
20 1.43399 � 108 6.81699 � 10�8 6.81699 � 10�8 0.00000

FðxÞ ¼
4c

ffiffiffiffiffi
Pe

p
exp �w

ffiffiffiffiffi
Pe

p
þ 1

2 Peþw
ffiffiffiffiffi
Pe

p
 �
x

h i
þ 2exp 1

2 Pe�w
ffiffiffiffiffi
Pe

p
 �
x

h i ffiffiffiffiffi
Pe

p
Peþw

ffiffiffiffiffi
Pe

p
þ 2c


 �

� exp �w
ffiffiffiffiffi
Pe

p
 � ffiffiffiffiffi
Pe

p
þw


 �
Pe�w

ffiffiffiffiffi
Pe

p
þ 2c


 �
þ

ffiffiffiffiffi
Pe

p
þw


 �
Peþw

ffiffiffiffiffi
Pe

p
þ 2c


 � ð50Þ
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with N = 250 terms, while N = 350 terms were required to achieve
convergence over the entire 200 cm domain.

Because in this example the concentration was zero for
X > 140 cm, the simulation could have been performedwith a short-
er domain (e.g., L0 = 140 cm). Table 5 shows that convergence for
L0 = 140 cm is faster, occurring nowwithN = 200. The faster conver-
gence is due to the fact that a smaller value of L0 corresponds to a
smaller Peclet number, which causes the transport problem to be-
come more diffusive. This faster convergence for smaller L0 can be
exploited when making early time calculations for large domains
(i.e., when the solute hasmoved in only a small fraction of the trans-
port domain). This idea is demonstrated in Table 6, which shows re-
sults for the same transport parameters as before at the early time
t = 20 h and L0 = 20 cm. Convergence was achieved now with only
N = 50 terms and verified with N = 100. We note that the converged
results duplicated exactly the earlier analytic solution [23] as imple-
mentedwithin the STANMOD computer software [25].We note also
that it was possible to obtain these same results with default values
for theWorkingPrecision parameter.

5. Conclusions

Using the Generalized Integral Transform Technique (GITT), in
its classic formulation, in combination with a simple algebraic sub-
stitution, it was possible to obtain a formal exact solution of the lin-
ear advection–dispersion (or diffusion) transport equation for both
transient and steady-state regimes. The mathematical substitution,
which transformed the original advection–diffusion problem, into
an exclusively diffusive problem, proved to be very advantageous
by improving convergence of the GITT series solution.
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