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a b s t r a c t

We present a theory for the behavior of a solid undergoing two interdependent

processes, a macroscopic or mechanical process due to the deformation of the solid and

a microscopic or chemical process due to the migration of a chemical species through

the solid. The principle of virtual power is invoked to deduce the basic balances of the

theory, namely the mechanical force balance and the transport balance for the chemical

species. In combination with thermodynamically consistent constitutive relations, these

balances generate the basic equations of the theory. Keeping in mind applications

involving the swelling of polymer networks by liquids, a specialization of the theory is

presented and applied to study the influences of mechanical and chemical interactions

on equilibrium states and diffusive dynamical processes. It is shown that the possibility

of a mechanically induced phase transition is governed by two parameters: the Flory

interaction parameter and a parameter given by the product between the number of

cross-linked units per unit reference volume and the molecular volume of the liquid

molecule. As for diffusion, it is shown that the theory is able to describe the pressure-

induced diffusion in swollen membranes.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In his famous treatise on thermodynamics, Gibbs (1878) advanced a treatment for the equilibrium of elastic solids
capable of absorbing fluids. Gibbs showed that the notion of chemical potential for a fluid absorbed in a solid is definable
and may include the effect of the state of strain in the solid. Along with the recognition of the gradient of chemical
potential as the driving force for diffusion, this breakthrough formed a basis for subsequent works on the interaction
between mechanics and chemistry in solids capable of absorbing chemical species, a subject of great importance to many
applications. Most notably, in metallurgy, Gibbs’ approach led to the development of modern theories for solid solutions
under stress (see Larché and Cahn, 1985 and the references cited therein).

Gibbs’ approach is also relevant to polymer science, where a rich variety of challenging problems arise in connection
with the swelling of polymer networks. These problems include phase transitions and pattern formation in gels (Onuki,
1993; Tanaka et al., 1987) and anomalous diffusion (Crank, 1990). In this context, Gibbs’ approach was basic for the
development of the classical theory of swelling equilibria (Flory, 1953; Treloar, 1975). However, contrary to the
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developments in metallurgy, most non-equilibrium theories do not follow Gibbs’ idea of a multi-component solid but rely
on alternative conceptual pictures. One exception is Neogi et al. (1986) who considered a small-strain theory of diffusion in
polymers based on the theory for chemomechanical diffusion introduced by Larché and Cahn (1982). So many dynamical
theories of swelling-related problems have been proposed that mentioning, let alone comparing, all different approaches is
a formidable task that is beyond the scope of this work. Notwithstanding this, it is worth mentioning the works by Durning
and Morman (1993), Barriere and Leibler (2003), and Doi (2009) on swelling dynamics, and Rajagopal (2003) for a review
of diffusion. It is important to emphasize that the notion of multi-component body introduced by Gibbs corresponds to the
notion of a solid with microstructure, as Fried and Gurtin (1999) note.

The purpose of this work is two-fold: (i) to develop a general finite-strain theory for the mutual interaction between
mechanics and chemistry for solids capable of absorbing fluid-like chemical species, following Gibbs’ idea of solid with
microstructure; (ii) to investigate the influence of mechanics on the existence of multiphase equilibria in polymeric gels
and on the diffusion of liquids through polymer networks.

The general theory is developed along the lines presented by Fried and Gurtin (1999) except for the treatment of the
basic balance laws, that are here deduced by adopting the virtual-power format proposed by Podio-Guidugli (2009).
Accordingly, in choosing the forms of the internal and external power expenditures, mechanical and chemical aspects are
considered on the same footing. Specifically, the chemical potential is viewed as a generalized velocity conjugate to
generalized chemical forces; mechanical and chemical external forces are split into their inertial and non-inertial parts. We
also introduce a mechanical version of the second law of thermodynamics that involves the total energy and the applied
external power associated with mechanical and chemical interactions. With appropriate prescriptions for the inertial
forces, we arrive at final expressions for the basic laws identical to those used by Fried and Gurtin. These are standard force
balance, a conservation equation for the fluid-like component, and a dissipation inequality. In particular, the conservation
law for the fluid-like component follows from the chemical force balance.

Our approach to the constitutive theory begins by the multiplicative decomposition of the deformation gradient into its
mechanical and chemical parts, in which the latter provides a link between the mechanical (macro) and chemical (micro)
structures (Duda and Souza, 2002). After using the procedure of Coleman and Noll (1963), we show that the constitutive
response is specified by functions determining the chemical strain, the free-energy density, and the fluid mobility. For a
special mechanochemical environment, we introduce the canonical free-energy and show that its critical points
correspond to equilibrium states. A particular specialization of the general theory, which employs the constitutive
assumptions for the chemical strain and free-energy density adopted by Treloar (1975), is then presented. This theory,
which for a special environment reduces to Treloar’s equilibrium theory, is singled out for detailed study. Specifically, we
illustrate the application of the theory through the analysis of the swelling equilibria of and the diffusion of liquids through
polymer networks in one dimension. In particular, we obtain a necessary condition, which involves the constitutive
parameters, for stress-induced phase coexistence, a condition which turns out to be also a necessary condition for uphill
(or backward) diffusion. In addition, we show that the predictions of the theory are in very good agreement with an
experimental result concerning the pressure-induced steady-state diffusion of a liquid through a polymeric membrane.

The finite-strain theories of fluid diffusion in elastic solids presented by Durning and Morman (1993), Baek and
Srinivasa (2004), and Hong et al. (2008) share our view of a fluid–solid mixture as a single continuum body but adopt
different approaches to deriving governing equations. Most importantly, these works are based on the assumption that the
body is fully immersed in a fluid bath. This limits the range of applicable loading conditions. In particular, the theory of
Durning and Morman (1993) is developed for bodies loaded exclusively by the pressure exerted by an encompassing fluid
bath, while the theories of Baek and Srinivasa (2004) and Hong et al. (2008) treat the body comprised by the solid–fluid
mixture and the surrounding fluid bath as a system and allow for an extra traction at the interface between the body and
the bath. Here, the body is not required to be totally immersed in a fluid bath. This allows for the consideration of more
general classes of mechanochemical environments. Boundary conditions aside, the bulk equations used by Durning and
Morman (1993) and Hong et al. (2008) can also be obtained from the theory presented here.

The remainder of this paper is organized as follows. In Section 2, the general theoretical framework is developed. In
Section 3, the general framework is specialized to the case of a polymer network that can absorb solvent molecules. In
Section 4, the specialized theory is applied to study the equilibria and diffusive dynamical processes in a right-circular
cylindrical specimen with lateral boundary constrained by a rigid impermeable sleeve, one end free, the other end fixed,
and with different reservoir pressures at its ends. Finally, in Section 5, a summary of our key results is presented.

2. General theory

Consider a solid B capable of absorbing a fluid-like chemical species, or simply a fluid for the sake of brevity, where B is
identified with a region of space that the solid occupies in a fixed reference configuration.

We view B as a platform for interdependent processes taking place at two different scales, a macroscopic (mechanical)
process due to the deformation of the solid and a microscopic (chemical) process due to the migration of the fluid through
the solid. The kinematics of these processes are assumed to be described by the vector field y representing the mechanical
motion and by the scalar field a representing the chemical motion. The corresponding realizable velocities are denoted by
v¼ _y and m¼ _a, with the latter being interpreted as the chemical potential. Notice that by their very definitions, these
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velocities, as functions of points in B, measure tendencies to change in the shape and composition of B. For a similar
interpretation of the chemical potential see Baierlein (2001) and Job and Herrmann (2006).

For later reference, we denote by cS and r the solid content and mass per unit reference volume, respectively, and,
granted that the solid component is conserved, observe that _cS ¼ 0 and _r ¼ 0. In addition, we denote by c the fluid content
per unit reference volume.

To deduce all relevant balance and imbalance laws, we follow an approach pioneered by Podio-Guidugli (2009) for
multiphysics theories like ours and exemplified by him in a thermomechanical context, in which the counterparts of the
quantities a and _a are the thermal displacement and temperature, respectively. It is worth mentioning that the analogy
between chemical potential and the inverse of the temperature has been recognized by many authors and is suggested by
certain basic developments of statistical mechanics.

2.1. Virtual powers

We assume that the dynamics of B are specified in terms of a pair of linear, bounded, and continuous functionals,
referred to as the internal and external power expenditures, defined for any part P of B and a given collection V ¼ ðdy; daÞ
of continuously differentiable virtual velocities. For any part P � B, the internal virtual power is defined by

WiðP; dy; daÞ :¼
Z
P
ðS � rdyþh � rdaÞdv; ð1Þ

where S and h represent internal mechanical and chemical interactions of the first order. Further, for any part P � B, the
external virtual power is defined by

WeðP; dy; daÞ :¼
Z
@P
ðs@P � dyþh@PdaÞdaþ

Z
P
ðbe

� dyþhedaÞdv; ð2Þ

where s@P and h@P represent mechanical and chemical contact interactions and be and he represent mechanical and
chemical interactions at a distance.

More specifically, external fields be and he account for interactions with all bodies external to B. This leads to
decompositions of be and he into non-inertial, or applied, and inertial parts. The non-inertial parts of be and he account for
interactions of bodies accessible to observation, whereas the inertial parts of be and he account for interactions with bodies
in the remaining universe. See the discussion provided by Truesdell (1991).

For the present purposes, we adopt the following decompositions of be and he:

be
¼ b� _p and he ¼ h�_c ; ð3Þ

where b and h are the non-inertial parts of be and he, � _p and �_c are the inertial parts of be and he, and p is the momentum

per unit reference volume. These choices for the mechanical and chemical forces of inertia can be understood as follows.
First, recall that B, which is viewed as the seat of two interdependent processes, can undergo changes in two important
attributes: its quantity of motion or momentum and its composition. Classically, the mechanical force of inertia is
associated with momentum changes. In the same way, we stipulate that the chemical force of inertia is associated with
composition changes, which here are exclusively associated with changes in the fluid content.

On substituting (3) into (2), it follows that the external power We admits the decomposition

We ¼Wni
e þWin

e ð4Þ

into a ‘‘non-inertial’’ part Wni
e and an ‘‘inertial’’ part Win

e , with

Wni
e ðP; dy; daÞ :¼

Z
P
ðb � dyþhdaÞdvþ

Z
@P
ðs@P � dyþh@PdaÞda ð5Þ

and

Win
e ðP; dy; daÞ :¼ �

Z
P
ð _p � dyþ _cdaÞdv: ð6Þ

The principle of virtual power, which is assumed to hold at each fixed time, states that, for any part P of B,
W iðP; dy; daÞ ¼WeðP; dy; daÞ ð7Þ

for each pair ðdy; daÞ in V. This principle implies the mechanical and chemical balances

DivSþb¼ _p and Divhþh¼ _c on P; ð8Þ

together with the traction conditions

Sn¼ s@P and h � n¼ h@P on @P; ð9Þ

where n is the exterior unit normal to @P.
Finally, notice that (8)1 is the local form of the balance equation for the momentum, with S and b representing the

momentum flux and supply, respectively. Likewise, (8)2 is the local form of the balance equation for the fluid content, with
h and h representing the fluid flux and supply, respectively. The standard form of the balance equation for the fluid content
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is obtained upon the identification h¼�j, an identification we shall use from now on without further remark. We refer to j
as the referential flux of the fluid relative to the solid.

2.2. Dissipation inequality

Following Fried and Gurtin (1994), we now consider a mechanical version of the second law of thermodynamics by
introducing an inequality called henceforth the dissipation inequality. This inequality, which involves the additional notion
of energy, states that the energy of an arbitrary part P of B cannot increase at a rate faster that the power expended on P by
the applied forces. This statement can be written as

d

dt

Z
P
edvrWni

e ðP; v;mÞ; ð10Þ

where e is the energy density per unit reference volume. Notice that this inequality is essentially the same as presented by
Fried and Gurtin (1994) except for the fact that their energy was split into its free and kinetic parts and that only
mechanical inertia was considered. It is also interesting to note that (10) resembles the isothermal version of the extension
of the Truesdell work inequality presented by Man (1989).

On using (4), (5), and (7), it follows from (10) that

_e�m_c� _p � v�S � _Fþ j � rmr0: ð11Þ

After assuming the classical expression p¼rv for the momentum density, introducing the standard notion of specific
kinetic energy k¼ rjvj2=2, and recalling that _r ¼ 0, it follows from (11) that

_c�m_c�S � _Fþ j � rmr0; ð12Þ

where c :¼ e�k is defined as the free-energy density. This inequality is the same presented in (2.24) of Fried and Gurtin
(1999).

2.3. Constitutive theory and governing equations

We consider shape changes undergone by B as the result of two deformation processes, a mechanical process due to
stress and a chemical process induced by transport of the fluid-like component. To account for these processes, we adopt a
multiplicative decomposition

F¼ FmFd ð13Þ

of the deformation gradient F into mechanical and chemical parts Fm and Fd, with

Jd ¼ detFd40: ð14Þ

Neither Fm nor Fd is required to be a gradient and Fd can be viewed as a mapping taking vectors in the reference
configuration into vectors in a local intermediate configuration. It is interesting to note that a special version of (13)
was adopted by Flory and Rehner (1944) to rectify an incorrect conclusion they had drawn in their seminal work (Flory
and Rehner, 1943) on the swelling of polymer networks. This original use of the multiplicative decomposition, however,
seems to have been overlooked by subsequent works, including the recent paper by Lubarda (2004), which presents a
detailed survey of the multiplicative decomposition and its applications in thermoelasticity, elastoplasticity, and
biomechanics.

Keeping in mind applications related to the swelling of polymer networks, we also assume the mechanical deformation
is isochoric, so that volume changes are solely due to the fluid-induced deformation:

detFm ¼ 1; detF¼ detFd: ð15Þ

We also assume that the fluid-induced strain is defined by the constraint

Fd ¼ F̂dðcÞ; ð16Þ

which implies that

Ld :¼ _FdF
�1
d ¼ _cG and G¼

dF̂dðcÞ

dc
F̂
�1

d ðcÞ: ð17Þ

Notice that G embodies the tensorial character of the fluid-induced strain and that in the isotropic case G is spherical.
After taking (13) and (17) into account, it follows that the stress power is given by

S � _F ¼ P � _FmþðF>mP � GÞ_c ; ð18Þ

where

P¼ SF>d : ð19Þ
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Since the stress tensor P is power-conjugate to the time rate _Fm, we might view Jd
�1 P as the Piola stress with respect to the

intermediate configuration. Moreover, the tensor J�1
d F>mP is the Mandel stress and the quantity

t :¼ F>mP � G ð20Þ

in (18) may be viewed as a resolved stress.
In view of the constraint (15)1, we assume that

P¼ PRþPA; ð21Þ

where PR and PA are the reactive and active parts of P, respectively, and

PR �
_Fm ¼ 0 ð22Þ

for all _Fm compatible with (15)1. Therefore, using standard arguments, it follows that

PR ¼�qF�>
m ; ð23Þ

where q is an arbitrary, in the sense of being constitutively indeterminate, field. Using (21) and (20), we arrive at

t¼ ðF>mPA�qIÞ � G: ð24Þ

In view of (18), (23), and (24), the free-energy imbalance (12) can be rewritten as

� _cþPA �
_FmþðmþtÞ_c�j � rmZ0: ð25Þ

Guided by the inequality (25), we consider constitutive equations

c¼ ĉðFm; c;rmÞ; PA ¼ P̂ðFm; c;rmÞ; mþt¼ ĝðFm; c;rmÞ; j¼ ĵðFm; c;rmÞ; ð26Þ

giving c, PA, mþt, and j as functions of Fm, c, and rm.
Following Coleman and Noll (1963), we require that the constitutive response be such that the inequality (25) holds

identically for all choices of ð _Fm; _c ;r _mÞ and ðFm; c;rmÞ. We thereby conclude that:

1. The constitutive function ĉ must be independent of rm, i.e.,

ĉðFm; c;rmÞ ¼ ĉðFm; cÞ: ð27Þ

2. The equilibrium relations

P̂ðFm; c;rmÞ ¼
@ĉðFm; cÞ

@Fm
and ĝðFm; c;rmÞ ¼

@ĉðFm; cÞ

@c
ð28Þ

must hold.
3. The internal dissipation inequality

ĵðFm; c;rmÞ � rmr0 ð29Þ

must hold for all choices of ðFm; c;rmÞ.

Granted sufficient smoothness, it can be shown that (29) implies the representation

ĵðFm; c;rmÞ ¼�MðFm; c;rmÞrm; ð30Þ

where M is a positive semidefinite tensor-valued function related to the fluid mobility.
From now on, we suppose that M is a positive-definite tensor function whenever c does not vanish. This is tantamount

to stipulating that rm¼ 0 if and only if no dissipation occurs. Therefore, the constitutive theory is characterized by the
constitutive functions ĉ and M, with the former being independent of rm and the latter being a positive-definite tensor
function for ca0.

Keeping in mind (16), it is convenient to define the response function ~cðF; cÞ :¼ ĉðFF�1
d ; cÞ. With this definition, it

follows that

@ ~cðF; cÞ

@F
¼

@ĉðFm; cÞ

@Fm
F�>
d ð31Þ

and that

@ ~cðF; cÞ

@c
¼

@ĉðFm; cÞ

@c
�F>m

@ĉðFm; cÞ

@Fm
� G; ð32Þ
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where G is given by (17)2. Further, using (19), (21), (23), and (28) it follows that the Piola stress tensor S and the chemical
potential m can be written as

S¼
@ ~cðF; cÞ

@F
�qF�> and m¼

@ ~cðF; cÞ

@c
þq trG: ð33Þ

It is also convenient to define the response function M̂ by the expression M̂ðF; c;rmÞ :¼ MðFF�1
d ; c;rmÞ. With this, the fluid

flow j can be written as

j¼�M̂ðF; c;rmÞrm; ð34Þ

where m is given by (77)2.
The governing equations are obtained through the combination of the aforementioned basic balances (see (8)) and

constitutive relations (see (13), (15), (16), (33), and (34)). The corresponding field equations can be written as

detF¼ det F̂dðcÞ;

Div
@ ~cðF; cÞ

@F
�qF�>

 !
þb¼ r _v;

_c ¼DivðM̂ðF; c;rmÞrmÞþh;

9>>>>>=
>>>>>;

ð35Þ

where F¼ry.
The treatment of boundary conditions is standard. Boundary conditions for (35)2 involve the prescription of either y or

Sn, whereas boundary conditions for (35)3 involve the prescription of either a or j � n¼�M̂ðF; c;rmÞrm � n.

2.4. Mechanochemical environment

We suppose that B is immersed in a chemical environment wherein the chemical potential of the fluid-like component
is constant and equal to ma. We also suppose that the fluid-component supply-rate h vanishes. One portion of @B, say @IB, is
impermeable, whereas chemical equilibrium with the environment prevails on the complementary portion, say @EB, of the
boundary. Therefore, the following boundary conditions hold:

mðX; tÞ ¼ ma; X 2 @EB; jðX; tÞ � nðXÞ ¼ 0; X 2 @IB; ð36Þ

Notice that (36)1 is equivalent to the prescription aðX; tÞ ¼ mat. For later reference, we mention that for the case in which
the environment is constituted by a pure and incompressible liquid solution, the chemical potential ma is given by

ma ¼ m0þpau; ð37Þ

where m0 is a reference chemical potential, pa is the hydrostatic pressure of the liquid, and u the molecular volume of a
liquid molecule.

As for the mechanical environment, we suppose that

yðX; tÞ ¼ dðXÞ; X 2 @dB; SðX; tÞnðXÞ ¼ sðX; tÞ; X 2 @sB; ð38Þ

where the prescribed ‘‘displacement’’ d and the prescribed traction s are given functions on @dB and @sB, which are two
disjoint complementary sets of @B, respectively. We also require that the loading environment be conservative, i.e., we
require that there exists a potential energy L½y�, which for every motion y compatible with (38)1 satisfies

_L½y� ¼ �

Z
B
b � _y dv�

Z
@sB

s � _y da: ð39Þ

One important class of loading environments of the type described above is defined by the following expression for L:

L½y� ¼
Z
B
~jðFÞdv; ~jðFÞ ¼ �R � FþK � F�þ$detF; ð40Þ

where R, K, and $ are constants, and where

F� ¼ ðdetFÞF�>
ð41Þ

is the adjugate of F. Important examples include the dead-load environment for which K¼ 0 and $¼ 0, and the spatially
dependent pressure loading for which K¼ 0 and R¼ 0.

Now let us suppose that @EB is non-empty and define the canonical free-energy functional F by the expression

F ½y; c� ¼

Z
B
ð ~cðF; cÞ�macÞdvþL½y�: ð42Þ

It is worth noticing that F enters the Liapunov relation

_
F ½y; c�þ

Z
B

1

2
rjvj2 dv

� �
r0; ð43Þ
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a relation which is easily obtained using (10). Moreover, the critical points of F correspond to equilibrium solutions of (35)
for the specific environment under consideration, as will be discussed below.

We turn our attention now to equilibrium solutions of (35) compatible with the environment described previously.
These solutions are time-independent and do not involve dissipation. The latter observation implies, after bearing in mind
that M is positive-definite, along with (29) and (30), that j vanishes. Therefore, (36)2 is trivially satisfied and the chemical
potential is constant and, from (36)1, equal to ma. On using (33)2, we arrive at

m¼
@ ~cðF; cÞ

@c
þq trG¼ ma: ð44Þ

Therefore, it is easy to see that an equilibrium solution can be obtained by solving (35)1, (35)2 with a null right-hand side,
and (44). Notice that (35)3 is trivially satisfied.

We now delineate a procedure to show that the problem of finding equilibrium solutions is equivalent to the problem of
determining the critical points of F subject to the constraint (35)1 or, equivalently, to determining the critical points of the
functional F̂ defined by

F̂ ½y; c; q� ¼F ½y; c��

Z
B
q

detF

detFd
�1

� �
dv; ð45Þ

where q is a Lagrange multiplier. In fact, the critical points of F̂ satisfy

dF̂ ½y; c; q�ðdy; dc; dqÞ ¼ 0 ð46Þ

for every variation dy, dc, and dq, where given a functional G of [y, c, q],

dG½y; c; q�ðdy; dc; qÞ :¼ d

deG½yþedy; cþedc; qþedq�je ¼ 0 ð47Þ

defines its first variation. Observe that

dF ½y; c�ðdy; dcÞ ¼
Z
B

@ ~cðF; cÞ

@F
� rdyþ

@ ~cðF; cÞ

@c
�ma

 !
dc

 !
dvþdL½y�ðdyÞ; ð48Þ

with

dL½y�ðdyÞ ¼�

Z
B
b � dy dv�

Z
@B
s � dy da; ð49Þ

and that the first variation of the second term of the right hand side of (45) is given by

�

Z
B
ðqF� � rdyþqdetF trGdcþdqðdetF�detFdÞÞ

dv

detFd
: ð50Þ

Finally, the conclusion that the critical points of F̂ are equilibrium solutions of (35) follows by using (46), (48)–(50), along
with integration by parts, the divergence theorem, and the fundamental lemma of the calculus of variations.

The following remark is in order. For the situations in which (35)1 can be inverted to write c as a function of detF, the
canonical free-energy functional can be rewritten solely in terms of y. Consequently, the problem of finding equilibrium
solutions can be viewed as a nonlinear elasticity problem.

3. Specialization

We now present a special theory in which the solid B is a polymer network that can absorb solvent molecules. In this
setting, it is convenient to identify B with a fixed reference configuration free of solvent molecules (i.e., with a dry polymer
network). In this case, the solid content cS per unit reference volume represents the number of cross-linked units per unit
reference volume.

The specialization is based on classical constitutive choices for F̂d, ĉ, and M̂, as discussed below. Following the approach
of Flory (1953) and Treloar (1975), we assume that the fluid-induced strain is volumetric and that both the polymer and
the solvent are ‘‘incompressible.’’ These assumptions together result in the following expression for F̂d

F̂dðcÞ ¼ ðdetFdÞ
1=3I; detFd ¼ 1þuc; ð51Þ

where u is the volume of one solvent molecule. It therefore follows from (15) and (17)2 that

detF¼ 1þuc and G¼ 1
3uð1þucÞ�1I: ð52Þ

The free-energy density ~c takes into account three contributions: the energy of the ‘‘unmixed’’ pure solvent; the elastic
energy due to network deformation; and the energy of mixing. Invoking the Frenkel–Flory–Rehner hypothesis—discussed,
for example, by Flory (1953)—we assume that the latter two contributions are additive and separable. It then follows that

~cðF; cÞ ¼ m0cþ ~ceðFÞþ
~cmðcÞ; ð53Þ
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where m0 is the chemical potential of the pure solvent, and where the elastic and mixing contributions are given by

~ceðFÞ ¼
1
2cSkBTðjFj

2�3Þ ð54Þ

and

~cmðcÞ ¼ kBTcðlnð1�fÞþwfÞ: ð55Þ

Here and throughout this paper, kB is Boltzmann’s constant, T is the absolute temperature, w is the Flory–Huggins
interaction parameter, and

f¼
1

1þuc
ð56Þ

is the polymer volume fraction. The elastic contribution corresponds to Gaussian network theory (e.g., Treloar, 1975),
whereas the mixing contribution is given by the Flory–Huggins expression (e.g., Flory, 1953). The parameter w, which
characterizes the interaction between polymer and solvent molecules, is positive for attraction and negative for repulsion.

We explore now some consequences of the preceding constitutive assumptions. First, we conclude from (33), (41), (52),
and (56), that the Piola stress S and the chemical potential m are given by

S¼ cSkBTF�qfF� ð57Þ

and

m¼ m0þkBTðlnð1�fÞþfþwf2
Þþuqf: ð58Þ

These equations, together with the expression S=TF* relating the Piola stress S to the Cauchy stress T, imply that

T¼ ðcSkBTfFF>�pIÞ�pI; ð59Þ

with

p :¼
m�m0

u
and p :¼ �

kBT

u
ðlnð1�fÞþfþwf2

Þ: ð60Þ

Recall that for a permeable body in equilibrium with its surroundings, the chemical potential is constant and equal to the
ambient chemical potential, which is given by (37) for an environment composed of a pure liquid solution. In this case, it is
easy to see that p is equal to the ambient pressure pa. For this reason, we interpret p as the fluid pressure. Notice also that
the first term on the right-hand side of (59) vanishes whenever f¼ 0. For this reason we refer to cSkBTfFF>�pI as the
network stress. Therefore, T may be viewed as the sum of a network stress and a fluid stress. Furthermore, the network
stress has two contributions, one elastic and one due to mixing.

It is worth relating p to the notion of osmotic pressure. To achieve this, we begin by observing that (59) implies that the
hydrostatic stress sh :¼ �trT=3 is given by

sh ¼�1
3cSkBTfjFj

2þpþp: ð61Þ

This implies that (58) can be written as

m¼ m̂ðsh; F;fÞ :¼ m0þuðsh�pþ1
3cSkBTfjFj

2Þ: ð62Þ

Following Flory (1953) (see also Onuki, 1993), we define the osmotic pressure P by the relation

uP¼ m̂ðsh;F;0Þ�m̂ðsh; F;fÞ; ð63Þ

which, by using (62), implies that

P¼ p�1
3cSkBTfjFj

2; ð64Þ

with the first and second terms representing, respectively, the mixing and elastic contributions to the osmotic pressure.
Notice that upon substituting (64) into (62), it follows that

p¼ sh�P; ð65Þ

which shows that the fluid pressure p is the difference between the total hydrostatic pressure and the osmotic pressure.
As for the mobility M̂, we content ourselves with the following constitutive assumption:

M̂ðF; c;rmÞ ¼ m̂ðcÞðF�1F�Þ>; ð66Þ

where m̂ is positive-valued function for ca0. In this case, it follows from (30) that

j¼�m̂ðcÞðF�1F�Þ>rm; ð67Þ

where m is given by (58). Observe that this choice for the mobility tensor corresponds to the standard relation

j¼�m̂ðcÞgradm ð68Þ

between the spatial flux j and spatial chemical potential gradient gradm, as can be easily seen after substituting j¼ F�>j
and rm¼ F> gradm into (67).
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In view of the relation (56), notice that the composition can be represented either by c or by f. In particular, the
governing equations in (35) can be viewed as field equations for either (y, q, c) or ðy; q;fÞ. In fact, after stipulating that b = 0
and h=0 and taking into account the aforementioned constitutive assumptions, the governing equations in (35) reduce to
the equations

fdetF¼ 1;

rðqfÞ ¼ cSkBTfF> DivF;
_f ¼ uf2 Div j;

9>=
>; ð69Þ

for y, q, and f, with j and m given by (67) and (58), respectively. It is worth emphasizing that (52)2 can be used to write c in
terms of det F.

Moreover, the specialized theory is defined in terms of the parameters cS, u, and w, and the constitutive function m.
Notice also that the parameter cS is often written as cS ¼ r=Mc , where Mc is the weight per chain (Flory, 1953; Treloar,
1975).

In the next section we illustrate the applicability of the theory developed so far by investigating the following one-
dimensional problems: the equilibrium of a swollen bar under tension and the pressure-induced diffusion of a liquid
through a polymeric membrane. General aspects that are common to both examples are discussed first.

4. Application

Consider a cylindrical body B identified with a cylindrical region

B :¼ fðX;R;YÞj0rXrL;0rRrA;0rYo2pg; ð70Þ

with length L and radius A. A point X¼ ðX;R;YÞ in B is mapped by the motion y into a point ðx; r; yÞ in yðB; tÞ. Suppose that,
after being fitted into a rigid tube of radius a, B has one of its ends (X = 0) attached to a rigid porous substrate, while the
other end (X = L) remains free. The cylinder is then placed in contact with two pure liquid solutions, one at pressure p0 on
the surface X = 0 and the other at pressure pL on the surface X = L. Chemical equilibrium is presumed to prevail on these
surfaces. Additionally, the surface X = L is subject to a normal traction s and the lateral surface R=A of the body is
presumed to be impermeable and in permanent and frictionless contact with the tube wall. Keeping in mind (37), we
express these stipulations via boundary conditions:

� On the surface X=0:

x¼ X; r¼ ZR; y¼Y; m¼ m0þp0u: ð71Þ

� On the surface X=L:

SeX ¼ ð�Z2pLþsÞeX ; m¼ m0þpLu: ð72Þ

� On the lateral surface R=A:

r¼ a; SeR � t¼ 0; j � eR ¼ 0: ð73Þ

Here and throughout the following, Z¼ a=A is the radial reduction, eX is the unit vector along the axis of the cylinder, eR is
the unit vector along the radial direction, and t is an arbitrary vector tangent to the lateral surface of the cylinder. Observe
that (71) asserts that the insertion of the cylinder into the tube causes a uniform deformation of the cross-section X = 0.
The presence of Z in (72)1 accounts for the fact that although pL is defined in the spatial configuration, a referential
description is being used. The condition involving t represents the assumption that the interface between the cylinder and
the tube is frictionless.

Our aim is to solve (69) under the conditions described above. We will consider both equilibria and diffusive dynamical
processes.

We assume that the motion y is given by

x¼ f ðX; tÞ; r¼ ZR; y¼Y; ð74Þ

where the function f obeys f(0,t)=0. Notice that this choice for y satisfies the mechanical boundary conditions (71)1,2,3 and
(73)1.

The deformation gradient F associated with (74) has the matrix representation

½F� ¼ diagfl;Z;Zg; ð75Þ

where lðX; tÞ :¼ @f ðX; tÞ=@X. This implies that

detF¼ Z2l and DivF¼
@l
@X

eX ; ð76Þ
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and, using (58), that the stress tensor S has the matrix representation

½S� ¼ diag cSkBTl�
q

l
; cSkBTZ�

q

Z
; cSkBTZ�

q

Z

� �
: ð77Þ

Notice that the boundary condition (73)2 is trivially satisfied.
We now explore the consequences that the Ansatz (74) imposes on the fields f and q satisfying (69). First, notice that by

using (69)1 and (76)1 it follows that

flZ2 ¼ 1; ð78Þ

which implies that fðX; tÞ ¼fðX; tÞ. Keeping this in mind, it follows from (69)2 that q(X,t) = q(X, t) and, by using (78) to
express l in terms of f, that

@ðqðX; tÞfðX; tÞÞ
@X

¼
@

@X

cSkBT

Z4fðX; tÞ

� �
: ð79Þ

If we integrate (79) with respect to X, we find that

qf¼
cSkBT

Z4f
þK; ð80Þ

where K is obtained by appealing to the mechanical boundary condition (72)1, which now can be written as

cSkBTlðL; tÞ�
qðL; tÞ

lðL; tÞ
¼�Z2pLðtÞþsðtÞ: ð81Þ

Together with (78) and (80), (81) yields

K ¼ pL�
s
Z2

: ð82Þ

Therefore, by (80) and (82),

qf¼
cSkBT

Z4f
þpL�

s
Z2

: ð83Þ

This expression allows us to obtain q once f is known.
We now consider the problem of determining f. First, notice that (58) and (83) imply that the chemical potential can be

viewed as a function of f, say m¼ m̂ðfÞ. This fact, (67) and (75) imply that j¼ jeXFwhich implies that the chemical
boundary condition on the lateral surface of the cylinder is satisfied identically—with j given by

j¼�
@gðfÞ
@X

; ð84Þ

where g is defined by the relation

g0ðfÞ ¼ Z4fmðfÞm̂ 0ðfÞ: ð85Þ

In (85) and henceforth, a superposed prime stands for the derivative with respect to f and, keeping (56) in mind,
mðfÞ :¼ m̂ðcÞ. In particular, (69)3 reduces to

_f ¼ uf2 @
2gðfÞ
@X2

: ð86Þ

To determine f, we must solve (86), which requires two boundary conditions. These conditions follow from the chemical
boundary conditions at X=0 and X=L. In fact, on using (58), (71)3, and (83), we conclude that

1

f0

þZ4gðlnð1�f0Þþf0þwf2
0Þ ¼

Z2

cSkBT
ððp0�pLÞZ2þsÞ; ð87Þ

where f0ðtÞ :¼ fð0; tÞ and

g¼ 1

cSu
: ð88Þ

In a similar fashion, it follows that

1

fL

þZ4gðlnð1�fLÞþfLþwf2
L Þ ¼

Z2s
cSkBT

; ð89Þ

where fLðtÞ :¼ fðL; tÞ. To find fwemust therefore solve (86) with the boundary conditions fð0; tÞ ¼f0ðtÞ and fðL; tÞ ¼fLðtÞ,
with f0 and fL being solutions of (87) and (89), respectively.

Therefore, if (74) is assumed, (69) reduces to a one-dimensional problem involving the unknowns f, q, and f. Notice
that, with the knowledge of f, f can be obtained by integrating 1=ðZ2fÞ and using the boundary condition f(0,t)=0.
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It is interesting to note that, after defining the diffusion coefficient by the relation j¼�D@c=@X, it follows from (56) and
(84) that

D¼�uZ4f3mðfÞm̂ 0ðfÞ: ð90Þ

This expression shows that the sign of the diffusion coefficient is defined by the sign of m̂ 0. A simple calculation shows that
for a good solvent, i.e., for wr 1

2, m̂
0ðfÞr0 for all f 2 ð0;1Þ, which implies that the coefficient diffusion is non-negative.

Otherwise, m̂ may be not monotonic, which indicates the possibility of a negative diffusion coefficient. For a negative
diffusion coefficient, solvent molecules move from low to high concentration regions, a phenomenon known as uphill (or
backward) diffusion. It is interesting to note that the (lack of) monotonicity of m̂ gives rise to the (lack of) monotonicity of
the stress–strain curve that will be discussed next.

For the sake of simplicity, we assume from now on that Z¼ 1.

4.1. Equilibria

Suppose that f¼fe, with fe constant, satisfies simultaneously the boundary conditions (87) and (89). In this case, it
follows immediately that (86) is satisfied and that p0 = pL = pa is a necessary condition for the existence of such solution.
The boundary conditions also give the equation to be solved for fe. This equation can be expressed as

s ¼ ŝðfeÞ; ð91Þ

where s and ŝ are given by

s :¼
s

cSkBT
; ŝðfÞ :¼ 1

f
þgðlnð1�fÞþfþwf2

Þ: ð92Þ

Notice that the environment under consideration is of the general type considered previously. In particular, the
potential energy is given by (40), in which R¼ diagfs;0;0g, K¼ 0, and $¼ pa. Therefore, it can be shown that for f
constant, the corresponding canonical free-energy, normalized by pA2LcSkBT and modulo an inconsequential additive
constant, can be written as

F sðfÞ ¼
1

2

1

f2
�2

 !
þg1�f

f
ðlnð1�fÞþwfÞ� s

fcSkBT
: ð93Þ

A direct calculation then shows that

F s
0 ðfÞ ¼

s�ŝðfÞ
f2

and F s
00 ðfÞ ¼�

ŝ0ðfÞ
f2

�2
s�ŝðfÞ

f3
: ð94Þ

As discussed earlier, (93) and (94) show that equilibrium solutions are critical points of F , which are stable (local minima
of F ) whenever the quantity ŝ defined in (92)2 obeys ŝ 0r0.

We begin by investigating the issue of existence of solutions of (91). We observe that ŝ is continuous on (0,1), that

lim
f-0

ŝðfÞ ¼ þ1 and that lim
f-1

ŝðfÞ ¼ �1:

Therefore, ŝ maps (0,1) onto the real line which implies that (91) admits a solution fe for a given s. As discussed before,
such a solution is stable if ŝ 0ðfeÞr0 and unstable otherwise. The possibility of multiple solutions, a prerequisite for phase
coexistence, is indicated by the condition ŝ 0o0 over a portion of (0,1). Hence, the behavior of ŝ is crucial for the analysis of
both stability and uniqueness of solutions.

Keeping (78) in mind, the problem under consideration is equivalent to the problem of equilibrium of a bar in a soft
device examined by Ericksen (1975). In that work, Ericksen showed that a non-monotonic stress–strain relation could be
used to describe certain aspects of stress-induced phase transitions in solids. Ericksen’s analysis was seminal to subsequent
works on the modeling of solid–solid phase transitions within the framework of continuum mechanics. The entire analysis
performed by Ericksen could be applied here. However, our main goal is to establish a condition involving the constitutive
parameters that brings about a non-monotonic stress–strain relation, whereby a necessary condition for stress-induced
phase coexistence is established. It is noteworthy that a non-monotonic stress–strain relation is equivalent to the non-
monotonicity of m̂ since ŝ0 ¼ m̂ 0. Therefore, the analysis that ensues may also be relevant for the analysis of uphill diffusion.

To investigate the influence of the parameters w and g on the behavior of ŝ 0, we begin by introducing

ŵðf; gÞ :¼ 1

2ð1�fÞ
þ

1

2gf3
; ð95Þ

and observing that a simple calculation using the definition of ŝ shows that ŝ 0ðfÞ and w�ŵðf; gÞ have the same sign.
Moreover, for each g, ŵ has the property that its minimum is attained at fc , i.e., wcðgÞ :¼ ŵðfc ; gÞr ŵðf; gÞ, where fc is
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given by

fc ¼
�eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þ4e

p

2
; e¼ 3ffiffiffigp : ð96Þ

Notice that fc belongs to (0,1), goes to 0 as e goes to 0, and goes to 1 as e goes to 1. Notice also that wcðgÞ decreases as g
increases and goes to 1

2 as g goes to 1. As a result of the previous observations, it follows that if wrwcðgÞ, then ŝ 0ðfÞr0 for
all f in ð0;1Þ, which implies that ŝ is monotonic. Otherwise, if w4wcðgÞ, then, by continuity, ŝ 0ðfÞr0 and ŝ 0ðfÞ40 over
two non-empty and complementary portions of (0,1), which implies that ŝ is not monotonic.

Additional insight can be gained through the analysis of the behavior of ŝ 0 in the ðf;wÞ�plane. Fig. 1 depicts the
ðf;wÞ�diagram for different values of g. This figure shows that for each g there are two complementary regions in which
ŝ 0o0 (stable regimes) and ŝ 040 (unstable regimes) separated by the set of points for which ŝ 0 ¼ 0. As noted before,
observe that for each g there is a special value of the mixing parameter w below of which ŝ 0o0. Furthermore, this values
decreases as g increases.

From the foregoing, it follows that a necessary and sufficient condition for a non-monotonic stress–strain relation is
given by

w4wcðgÞ: ð97Þ

This inequality provides a minimum requirement that the parameters w and g must obey for phase coexistence to occur.
Recall that cS and u are properties of the polymer network and solvent, respectively. Thus, wcðgÞ takes into account the
polymer network and the solvent individually. The parameter w, in contrast, accounts for the temperature-dependent
interaction between the polymer network and the solvent. Usually, the interaction parameter decreases as the temperature
increases. Fig. 2 shows that the ðg;wÞ�plane is divided into two regions separated by the line representing the set of
points for which w¼ wcðgÞ. If a pair ðg;wÞ belongs to the upper region w4wcðgÞ, then phase coexistence is possible.
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Otherwise, phase coexistence is impossible. Keeping in mind that g¼ 1=ðcSuÞ, notice that, for w and u fixed, there exists a
value of cS above which phase transition is impossible. Put another way, a sufficiently large value of the cross-link density
cS suppresses phase coexistence.

Dusek and Patterson (1968) were the first to predict phase coexistence in a polymeric-gel bars under uniaxial loading.
In the problem studied by them, the bar is allowed to swell only transverse to the axial direction. Experimental results
related to this configuration can be found in the works of Suzuki (1993) and Suzuki and Ishii (1999). In the present work,
however, swelling is allowed only along the axial direction. This special situation has been discussed in many important
works on phase transition in gels, including those of Onuki (1988), Sekimoto and Doi (1991), Tomari and Doi (1994), and
Doi (2009). As the latter author remarks, the physical realization of the situation considered here presents the difficulty of
ensuring the necessary lubrication between the specimen and the surrounding tube wall. In addition to that, we remark
that it is also necessary to ensure that the lateral stress, which, by (77) and (83), is given by

cSkBT�
1

f
cSkBT

f
þpa�s

� �
ð98Þ

is compressive. This implies that there is a maximum admissible value for s.

4.2. Diffusion

Suppose now that s¼ 0 and Dp :¼ pL�p040. This situation corresponds to the problem of diffusion induced by the
pressure difference Dp. Of particular interest here is the relation between the scalar flux j and the pressure difference Dp in
the permanent regime.

We have that in the permanent regime the flux j is constant. Therefore, integration of (84) yields

jX ¼ gðf0Þ�gðfðXÞÞ; ð99Þ

where fð0Þ ¼f0. On using the relation fðLÞ ¼fL, this implies that

jL¼ gðf0Þ�gðfLÞ: ð100Þ

The expression above provides a relation for j in terms of f0 and fL, which in their turn are calculated by using the
boundary conditions (87) and (89). With this value of j, the corresponding f is obtained simply by solving (99).

We now compare the prediction of (100) with the experimental result provided by Paul and Ebra-Lima (1970) for a
rubber–toluene system in the permanent regime. To achieve this, it is necessary to identify the list of parameters
ðL; T; cS; u;wÞ as well as the function m̂. The list of parameters was obtained from Paul and Ebra-Lima (1970). In addition, we
assumed that m̂ is given by m̂ðcÞ ¼Mcn, with M40 and nZ1 constants. See Table 1 for a complete list of all parameter
values. The values of M and n were chosen with a view to understand their influences on the behavior of the system.

Fig. 3 depicts the relation between the volumetric flux, which is equal to �uj, and the pressure difference measured in
pounds per square inch (psi). It is difficult to overlook the excellent agreement between the results. Fig. 4 shows the
polymer fraction distribution for several values of Dp. Notice that the maximum and minimum values for the stretch are
attained at X=0 and X=L, respectively.

The problem discussed above was also analyzed by Rajagopal and collaborators (e.g., Rajagopal, 2003) using a mixture-
theoretic approach as well as for Baek and Srinivasa (2004) who used an alternative to Rajagopal’s approach. In both cases,
the results were also in very good agreement with experiments.

As for the transient regime, we content ourselves to show the evolution of polymer volume fraction profile for different
instants until the steady state is reached. It is assumed that the surfaces of the initially dry membrane reach equilibrium
instantaneously with the solution so that the boundary conditions given by (87) and (89) are adopted. The results obtained
are depicted in Fig. 5.

It is noteworthy that the lateral stress, which in this case reduces to

cSkBT�
cSkBT

f2
�pL ð101Þ

is compressive and the maximum compression is attained at X=L. This kind of stress can lead to surface buckling
instabilities (Tanaka et al., 1987).
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Table 1
Parameters used in diffusion problem.

L 0.0265 cm

cS 1:06� 10�4 mol=cc

u 106 cc/mol

w 0.425

T 30 3C

n 3

M=ðkBTun�1Þ 3:46� 10�5 cm2=s
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5. Summary

In this work we presented a theory for the behavior of a solid undergoing two interdependent processes, a macroscopic
or mechanical process due to the deformation of the solid and a microscopic or chemical process due to migration of a
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chemical species through the solid. Our approach relied on the interpretation of the chemical potential for the migrating
species as a generalized velocity associated with an extra kinematical descriptor. The principle of virtual power was then
employed to generate the two basic balances of the theory: the mechanical force balance and the chemical force balance.
The latter balance was used to deduce the transport balance for the chemical species. The governing equations were
obtained after combining the basic balances with thermodynamically consistent constitutive relations, constitutive
relations which hinged on the multiplicative decomposition of the deformation gradient into its mechanical and chemical
parts. Keeping in mind applications in the context of swelling of polymer networks by liquids, a specialization of the theory
was presented and applied to the study of the mutual interaction between mechanics and chemistry on equilibrium states
and diffusive dynamical processes in the context of a one-dimensional problem. In particular, we showed that the
possibility of a mechanically induced phase transition is governed by two parameters: the Flory interaction parameter and
a parameter given by the product between the number of cross-linked units per unit reference volume and the molecular
volume of the solvent. As for diffusion, we showed that the theory is able to describe the pressure-induced diffusion in
swollen membranes.
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