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a b s t r a c t

Pennes’ equation is the most frequently employed model to describe heat transfer processes within
living tissues, with numerous applications in clinical diagnostics and thermal treatments. A number of
analytical solutions were provided in the literature that represent the temperature distribution across
tissue structures, but considering simplifying assumptions such as uniform and linear thermophysical
properties and blood perfusion rates. The present work thus advances such analysis path by considering
a heterogeneous medium formulation that allows for spatially variable parameters across the tissue
thickness. Besides, the eventual variation of blood perfusion rates with temperature is also accounted for
in the proposed model. The Generalized Integral Transform Technique (GITT) is employed to yield
a hybrid numericaleanalytical solution of the bioheat model in heterogeneous media, which reduces to
the exact solution obtained via the Classical Integral Transform Method for a linear formulation with
uniform coefficients. The open source UNIT code (“UNified Integral Transforms”) is utilized to obtain
numerical results for a set of typical values of the governing parameters, in order to illustrate the
convergence behavior of the proposed eigenfunction expansions and inspect the importance of
accounting for spatially variable properties in predicting the thermal response of living tissues to
external stimulus.

� 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

The accurate prediction of temperature distributions within
living tissues has been a major research topic in the thermal
sciences field, in connection with applications such as cryopreser-
vation, thermography for clinical diagnostics, hyperthermia cancer
treatments, burn injuries evaluation, and cryosurgery [1]. Pennes’
bioheat model has been the most frequently employed equation for
the quantitative simulation of the physiological thermal response
of living tissues [2], which accounts for the effects of blood circu-
lation and local metabolism in the heat transfer between the more
internal tissues and the external environment. A number of tradi-
tional analytical and numerical approaches in heat conduction have
been applied to the analysis of the bioheat equation, aimed at
interpreting the thermal response of tissues, with or without
tumors, due to an external stimulation [3e8], but also towards the
identification of biological tissues thermophysical properties and

blood perfusion rates in the form of an inverse problem formulation
[9e13].

Most available studies are however restricted to situations with
uniform effective thermophysical properties across the tissue
thickness, which can be fairly heterogeneous in the form of strati-
fied structures. Such simplifications are in part due to the difficulty
in analytically handling diffusion problems with space variable
coefficients, but also to the additional cumbersome task of esti-
mating the local behavior of the related thermophysical properties.
Nevertheless, a few works have addressed the numerical solution
of the bioheat equation with space variable coefficients, either due
to local histological variations [5] or to the presence of tumor
structures embedded within the healthy tissue [13].

Regarding the solution of the direct heat conduction problem for
a heterogeneous medium in transient state, a fairly general
procedure has been recently advanced [14], based on the Classical
Integral Transform Technique (CITT) [15,16]. Ref. [14] dealt with
a linear heat conduction problem with space variable coefficients,
thus the integral transformation process results into a decoupled
transformed ordinary differential system, capable of being analyt-
ically solved. Nevertheless, the solution of the corresponding
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auxiliary eigenvalue problem [14] demands the use of computa-
tional methodologies, such as the Generalized Integral Transform
Technique (GITT) [16e20]. In the present work we also make use of
the GITT, which has already been successfully applied to the solu-
tion of bioheat problems with constant coefficients under Pennes’
model [21]. However, a hybrid numericaleanalytical solution
variant is here exploited so as to automatically handle any general
functional form of the space variable coefficients, besides the
possible nonlinear variation of the blood perfusion rates with
temperature, especially during hyperthermia treatments. The
analytical nature of the proposed approach permits all manipula-
tions and derivations to be performed exactly in symbolic
computation platforms [22].

The methodology here employed was implemented within the
mixed symbolic-numerical computational code called UNIT
(“UNified Integral Transforms”) [23]. The open source UNIT code is
a development platform for researchers and engineers interested
on hybrid integral transform solutions of convectionediffusion
problems, readily available for download from the site http://
2009unit.vndv.com. Two novel aspects in this approach were
here implemented and critically examined, related to the automatic
linear filtering and to the semi-analytical evaluation of the integral
transformation coefficients.

2. Problem formulation

We consider a one-dimensional special case of the general
formulation on nonlinear transient diffusion presented and solved
in [16,19] by the Generalized Integral Transform Technique (GITT),
for the temperature field T(x,t), in the region x˛½0; L�. The formu-
lation includes the space variable thermal conductivity and heat
capacity of the tissue, as shown in problem (1) below, besides the
temperature dependent dissipation term and source function. The
coefficients w(x),d(x,T) and k(x), are thus responsible for the infor-
mation related to the heterogeneity of the medium. The heat
conduction equation with the corresponding initial and boundary
conditions are given by:

wðxÞvTðx; tÞ
vt

¼ v

vx

�
kðxÞvTðx; tÞ

vx

�
� dðx; TÞTðx; tÞ

þ Pðx; t; TÞ; 0 < x < L; t > 0 ð1aÞ

Tðx;0Þ ¼ TpðxÞ; 0<x<L

�kð0ÞvTðx;tÞ
vx

����x¼0
¼ q0ðtÞþh½TNðtÞ�Tð0;tÞ�; t>0

vTðx;tÞ
vx

����x¼L
¼ 0; t>0 ð1bedÞ

where,

wðxÞ ¼ rðxÞcpðxÞ; dðx; TÞ ¼ uðx; TÞrbcb;
Pðx; t; TÞ ¼ qmðx; tÞ þ uðx; TÞrbcbTa (1e eg)

Problem (1) covers a typical one-dimensional transient bio-
heat problem, such as the one depicted in Fig. 1, based on variable
thermophysical properties and blood perfusion rates across the
tissue thickness, which can vary more or less abruptly through
the transitions of each tissue layer depending on the specific
structure. The time variation of the temperature distribution is
then promoted by the variation of the applied heat flux at the
external tissue surface, q0(t), and eventually also of the external
environment temperature, TN(t). The exposition of the external
tissue face is desirable so as to allow for non-intrusive temper-
ature measurements acquisition such as in infrared thermog-
raphy. The initial condition, Tp(x), may for instance be obtained
from the steady-state solution for the situation without external
stimulus, i.e., q0 ¼ 0 and constant external environment
temperature.

q0(t) 

T∞ (t) 0 x

epidermis 
dermis 

subcutaneous
inner tissue 

Fig. 1. Schematic diagram of the heterogeneous tissue.

Nomenclature

cp(x) space variable specific heat of tissue, eq. (1a)
d(x,T) nonlinear dissipation operator coefficient, eq. (1a)
h effective heat transfer coefficient, eq. (1a)
k(x) space variable thermal conductivity of tissue, eq. (1a)
Lk individual tissue layer nominal thickness
L total sample thickness
N truncation order in temperature expansion
M number of sub-regions in semi-analytical integration
Ni normalization integrals in eigenvalue problem
P(x,t) source term, eq. (1a)
q0(t) applied wall heat flux, eq. (1a)
qm(x,t) metabolic heat generation
t time variable
T(x,t) temperature distribution
TN(t) external environment temperature
w(x) thermal capacity of tissue, eq. (1a)

Tf(x;t) filter for temperature field
x space coordinate

Greek letters
g parameter in property variation function
d coefficient in property variation function
m eigenvalues of the auxiliary problem, eqs. (5)
f (x) property variation function, eqs. (11)
j eigenfunction of the auxiliary problem
r(x) space variable specific mass of tissue

Subscripts and superscripts
i,j order of eigenquantities
k index for tissue layer
_ integral transforme normalized eigenfunction
m index for sub-region in semi-analytical integration
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3. Integral transform solution

Before providing the integral transform solution of problem (1),
a simple filtering solution is employed for improved convergence
behavior of the eigenfunction expansions [16,17], in the form:

Tðx; tÞ ¼ Tf ðx; tÞ þ T*ðx; tÞ (2a)

The simplest possible filtering solution is here adopted, written
as a linear function in the space variable that simultaneously
satisfies both boundary conditions (1c,d),

Tf ðx; tÞ ¼ aðtÞxþ bðtÞ (2b)

which for the present case results simply in

Tf ðx; tÞ ¼ bðtÞhTNðtÞ þ q0ðtÞ
h

(2c)

This straightforward linear filter is the default option in the UNIT
code [23] and for this reason it is here examined more closely. It
essentially homogenizes the boundary conditions in the filtered
partial differential problem to be integral transformed. A more
complete analytical filter may be preferred [16,17], that further
eliminates the source terms in the original equation, eq. (1a), but the
above choice was already quite effective in the present situation.
The filtered temperature problem formulation is then given by:

wðxÞvT
*ðx; tÞ
vt

¼ v

vx

 
kðxÞvT

*ðx; tÞ
vx

!
� dðx; TÞT*ðx; tÞ

þ P*ðx; t; TÞ; 0 < x < L; t > 0 ð3aÞ

T*ðx;0Þ ¼ f ðxÞhTpðxÞ � Tf ðx;0Þ

� kð0ÞvT
*ðx; tÞ
vx

����x¼0
þ hT*ð0; tÞ ¼ 0; t > 0

vT*ðx; tÞ
vx

����x¼L
¼ 0; t > 0 ð3bedÞ

where the filtered source term is written as

P*ðx; t; TÞ ¼ qmðx; tÞ þ uðx; TÞrbcb
h
Ta � Tf ðx; tÞ

i
�wðxÞvTf ðx; tÞ

vt
ð3eÞ

The formal solution of problem (3) is then obtained with the
Generalized Integral Transform Technique [16e19], and is written
as the inverse formula below:

T*ðx; tÞ ¼
XN
i¼1

~jiðxÞTiðtÞ (4a)

where the transformed potentials are defined with the integral
transformation operation given by

TiðtÞ ¼
ZL
0

w*ðxÞ~jiðxÞT*ðx; tÞdx (4b)

The eigenvalues mi and eigenfunctions jiðxÞ, are obtained from
the chosen eigenvalue problem below:

d
dx

�
k*ðxÞdjiðxÞ

dx

�
þ
h
m2i w

*ðxÞ � d*ðxÞ
i
jiðxÞ ¼ 0; x˛½0; L� (5a)

with boundary conditions

�k*ð0ÞdjiðxÞ
dx

þ h*jiðxÞ ¼ 0; x ¼ 0 (5b)

djiðxÞ
dx

¼ 0; x ¼ L (5c)

where the coefficients k*(x),w*(x), and d*(x) are simpler coefficients
chosen so as to construct an eigenvalue problemof knownanalytical
solution to offer the basis for the eigenfunction expansion. For
convenience, we also require that eq. (5b) matches the homoge-
neous version of the filtered boundary condition, eq. (3c), by letting
h* ¼ hk*(0)/k(0). The other quantities that appear in the inverse
formula (4a) are computed after solving problem (5), such as:

~jiðxÞ ¼ jiðxÞffiffiffiffiffi
Ni

p ; normalized eigenfunctions (6a)

Ni ¼
ZL
0

w*ðxÞj2
i ðxÞdx; normalization integrals (6b)

Before proceeding to the integral transformation process itself, it
is of interest to avoid an implicit transformed system, and thus
eq. (5a) can be rewritten in terms of the chosenweighting function
w*(x), as follows:

w*ðxÞvT
*ðx; tÞ
vt

¼w*ðxÞ
wðxÞ

"
v

vx

 
kðxÞvT

*ðx; tÞ
vx

!
� dðx; TÞT*ðx; tÞ

þ P*ðx; t; TÞ
#
; 0 < x < L; t > 0 ð7aÞ

or simply,

w*ðxÞvT
*ðx; tÞ
vt

¼ Gðx; t; TÞ; 0 < x < L; t > 0 (7b)

with,

Gðx;t;TÞ ¼w*ðxÞ
wðxÞ

"
v

vx

 
kðxÞvT

*ðx;tÞ
vx

!
�dðx;TÞT*ðx;tÞþP*ðx;t;TÞ

#
(7c)

The integral transformation is now performed by operating
eq. (7b) on with

R L
0
~jiðxÞ�dx, to yield the following transformed

ordinary differential system:

dTiðtÞ
dt

¼ gi
�
t; Tj

	
; t > 0; i; j ¼ 1;2;. (8a)

with the transformed source terms given by

gi
�
t; Tj

	 ¼
ZL
0

Gðx; t; TÞ~jiðxÞdx (8b)

and the transformed initial conditions, after operating eq. (3b) on
with

R L
0 w

*ðxÞ~jiðxÞ � dx;

f i ¼
ZL
0

w*ðxÞf ðxÞ~jiðxÞdx (8c)

The ODE system (8) can be numerically solved to provide results
for the transformed temperatures, upon truncation to a sufficiently
large finite order N, which will be combined by the inverse formula
(4a) to provide the desired original temperature field.

4. Computational algorithm: the UNIT code

The constructed UNIT code in theMathematica 7.0 platform [23]
encompasses all of the symbolic derivations that are required in the
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above GITT formal solution, besides the numerical computations
that are required in the solution of the chosen eigenvalue problem
and the transformed ODE system. The user essentially needs to
specify the problem formulation, according to Eqs. (1), and then
choose how to present results according to the specific needs.

In order to computationally solve the problem defined by Eqs.
(1), a quite straightforward general algorithm can be described as
follows:

- The user provides the input and problem formulation module,
which includes the equation and boundary condition coeffi-
cients in eqs. (1), besides the corresponding source terms.
There is an implicit choice of eigenvalue problem when the
coefficients k*(x),w*(x), and d*(x) are specified so as to form the
auxiliary problem to be solved for.

- The automatic filtering module is then activated, which is
either the simplest possible choice of functions that essentially
satisfy the boundary conditions, to make them homogeneous
as here discussed, or the filter is provided as a problem
formulation by the user, to be handled via symbolic or
numerical computation. The option of not providing a filtering
solution is also allowed for, either because it might not be
actually necessary or as a solution strategy to be com-
plemented by an integral balance acceleration a posteriori
[16,17].

- The auxiliary eigenvalue problem of Eqs. (5) is solved for the
eigenvalues and related normalized eigenfunctions, either in
analytic explicit form, when applicable, as obtained by the
symbolic routine DSolve [22], after separation of variables in
multidimensional applications, or through the GITT itself
[14,17,20].

- The transformed initial condition is computed, either analytically
(function Integrate [22]) or with a general-purpose procedure
through adaptive numerical integration (function NIntegrate
[22]). Two additional options are provided to the user, namely,
a semi-analytical evaluation where the analytical integration of
the eigenfunction oscillatory behavior is preserved [23], and
a simplified and cost-effective numerical integration with
Gaussian quadrature, automatically exploiting the frequency of
oscillation of the eigenfunctions in the choice of intervals.
Similarly, the coefficients on the transformed O.D.E. system of
Eq. (8a), once they are not dependent on the transformed
potentials, can be evaluated in advance. For the more general
situation of nonlinear coefficients, there are some computational
savings in grouping them into a single integrand, as represented
in Eq. (8b). The coefficients in the transformed system can be
obtained by analytical integration, if feasible, or again by the
automatic Gaussian quadrature scheme that accounts for
the knowledge on the eigenfunctions oscillatory behavior. The
alternative semi-analytical integration procedure is also imple-
mented, which is particularly convenient in nonlinear formula-
tions that might require costly numerical integration. For
instance, the integral transformation of the equation source term
for homogeneous filtered boundary conditions would then be
evaluated as:

gi
�
t; Tj

	 ¼
Z
v

~jiðxÞGðx; t; TÞdv

¼
XM
m¼1

Z
vm

~jiðxÞbGmðx; t; TÞdv ð9Þ

where bGmðx; t; TÞ are simpler representations of the source
term, defined in M sub-regions Vm, for which analytical inte-
gration of the eigenfunctions is still obtainable. The simplest

choice would be the adoption of uniform values of the source
terms within the subdomains (zeroth order approximation),
but linear and quadratic representations of the source terms
behavior are also implemented [23].

- The truncated O.D.E. system of Eqs. (8a) and (8c) is then
numerically solved through function NDSolve of the Mathe-
matica system [22]. In general, such initial value problem
solvers should work under the automatic selection of a stiff
system situation, such as with the BDF (Gear’s) method [22],
since the resulting system is likely to become stiff, especially
for increasing truncation orders. This subroutine offers an
interesting combination of accuracy control, simplicity in use,
and reliability.

- Once all the intermediate numerical tasks are accomplished
within user-prescribed accuracy, one is left with the need of
reaching convergence in the eigenfunction expansions and
controlling the truncation orderN for the requested accuracy in
the final solution. The analytic nature of the inversion formula
allows for a direct testing procedure at each specified position
within the medium where a solution is desired, and the trun-
cation order N can be decreased (or eventually increased), to fit
the user global error requirements over the entire solution
domain. The simple tolerance testing formula employed is
written as

3ðtÞ ¼ max

���������
XN

i¼N*þ1

~jiðxÞTiðtÞ

Tf ðx; tÞ þ
XN
i¼1

~jiðxÞTiðtÞ

��������� (10)

The numerator in Eq. (10) represents those terms that in
principle might be abandoned in the evaluation of the inverse
formula, without disturbing the final result to within the user-
requested accuracy target. Therefore, this testing can be
implemented by choosing the value of N* in the numerator
sum, then offering error estimations at any of the selected test
positions within the domain.

5. Results and discussion

The bioheat problem solution here illustrated involves the
analysis of fairly abrupt transitions of tissue layers, as depicted in
Fig. 1, to challenge the algorithm, which includes the epidermis, the
dermis, the subcutaneous tissue, and the inner tissue. The corre-
sponding data for the results to be presented were extracted from
ref. [5] and are reproduced in Table 1. The epidermis layer was
disregarded in light of its negligible thickness (<80 microns) and
relatively slight thermal influence in the test case to be here
considered.

For the sake of illustration, the space variable distribution for
each thermophysical property is here considered to be governed by
the parameter gk in the function below:

fðxÞ ¼
YNk

k¼1

fk�1 þ ðfk � fk�1ÞdkðxÞ (11a)

dkðxÞ ¼ 1

1þ e�gk
ðx�xkÞ

L

(11b)

with xk being the assumed reference transition position between
two adjacent tissue layers. Fig. 2a,b illustrates the behavior of the
thermophysical properties across the full tissue thickness for the
selected test case, where Fig. 2a refers to the thermal conductivity
and Fig. 2b represents the thermal capacity variation. Fig. 3a
presents the imposed external stimulus, in the form of a wall
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applied heat flux, with steep turning on and off periods, such as
achieved through the activation of flash lamps over the external
tissue surface. Fig. 3b then shows the temperature steady-state
solution achieved for the data in Table 1 when the external stimulus
is not present, which is in fact the initial condition for the present
transient problem. This direct problem solution was obtained through the General-

ized Integral Transform Technique as previously described. The
simplest possible choice of coefficients in the auxiliary eigenvalue
problem was made, with w*(x) ¼ k*(x) ¼ 1 and d*(x) ¼ 0, so as to
challenge the convergence behavior of the fairly simple set of
eigenfunctions thus adopted. Also, only the automatic linear filtering
option was activated in the code implementation, not to enhance
convergence with extra analytical information that accounts, even
though partially, for the equation source term. A thorough conver-
gence analysis was performed to illustrate the required number of
terms in the temperature expansion, aswell as the number of regions
for the semi-analytical integration. For instance, Tables 2a and b
present a set of results for the temperature distribution across the
tissue, at the time values t¼ 50 and 100 s, respectively, aswe increase
the truncation order in the eigenfunction expansion, from N¼ 10 up
to 60. Also, the last column provides some numerical results for
comparison purposes, obtained with the Method of Lines

Table 1
Parameters values used in bioheat equation simulation [5].

Sample total thickness L ¼ 0.042 m
Metabolic heat generation qm ¼ 420 W/m3

Arterial blood properties rb ¼ 1060 kg/m3

cb ¼ 3770 J/kgC
Ta ¼ 37 �C

Dermis properties r ¼ 1200 kg/m3

cp ¼ 3300 J/kgC
k ¼ 0.45 W/mC
l ¼ 0.002 m
u ¼ 0.00125 m3/s m3 tissue

Subcutaneous tissue properties r ¼ 1000 kg/m3

cp ¼ 2500 J/kgC
k ¼ 0.19 W/mC
l ¼ 0.01 m
u ¼ 0.00125 m3/s m3 tissue

Inner tissue properties r ¼ 1000 kg/m3

cp ¼ 4000 J/kgC
k ¼ 0.5 W/mC
l ¼ 0.03 m
u ¼ 0.00125 m3/s m3 tissue

Parameters in thermal properties function gk ¼ 200
xc ¼ xk

Effective heat transfer coefficient h ¼ 10 W/m2C
Parameters in applied heat flux function gt ¼ 200

xt ¼ 10 and 110 s
q0 ¼ 1000 W/m2

Ambient temperature TN ¼ 20 �C

0.00 0.01 0.02 0.03 0.04
x, m0.0

0.1

0.2

0.3

0.4

0.5
k, W mºC

0.00 0.01 0.02 0.03 0.04
x, m2.0× 106

2.5× 106

3.0× 106

3.5× 106

4.0× 106

4.5× 106
cp , J m 3 ºC

a 

b 

Fig. 2. Spatial variation of the (a) thermal conductivity and of the (b) thermal capacity,
according to data in Table 1.
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38
Tp x , ºC
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b

Fig. 3. Adopted distributions of the (a) prescribed wall heat flux (external stimulus)
and of the (b) initial temperature condition (steady-state solution for q0 ¼ 0).

Table 2a
Illustration of convergence behavior of temperature field eigenfunction expansion
(t ¼ 50 s).

x N ¼ 10 N ¼ 20 N ¼ 30 N ¼ 40 N ¼ 50 N ¼ 60 Numer.a

0. 38.897 38.841 38.774 38.784 38.796 38.793 38.836
0.0042 35.363 35.341 35.315 35.321 35.326 35.325 35.330
0.0084 36.046 36.038 36.037 36.032 36.033 36.034 36.033
0.0126 36.603 36.626 36.619 36.6183 36.619 36.619 36.618
0.0168 36.782 36.784 36.778 36.776 36.777 36.777 36.777
0.021 36.876 36.887 36.880 36.880 36.881 36.881 36.881
0.0252 36.952 36.954 36.948 36.947 36.948 36.948 36.948
0.0294 36.986 36.996 36.990 36.990 36.991 36.991 36.991
0.0336 37.021 37.022 37.017 37.016 37.016 37.017 37.017
0.0378 37.026 37.036 37.030 37.030 37.031 37.031 37.031
0.042 37.040 37.041 37.035 37.034 37.035 37.035 37.035

a NDSolve routine of Mathematica system [22].
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implemented in the routine NDSolve of the Mathematica system,
with extra mesh refinement than in the default usage. Clearly, from
the GITT results onemay observe that in theworst situationwe have
already achieved at least four fully converged significant digits in the
temperature profile, throughout themedium and for two time values
within the applied wall heat flux variation period. Also, convergence
is apparently slightly slower at the boundary x ¼ 0. The provided
numerical solution is quite adherent to the fully converged GITT
solution, recovering the first three significant digits in the worst
situation, which is again at the points in the vicinity of the external
boundary.

Fig. 4a,b illustrates the transient behavior of the temperature
field across the tissue thickness for (a) full tissue thickness
(0< x< L) and for (b) the detailed view of the first two layers. Here,
the increasingly long dashes correspond to decreasing values of

time (solid line e initial condition, t ¼ 0, very long dashes e

t¼ 100 s, long dashese t¼ 150 s, medium dashese t¼ 300 s, small
dashese t¼ 600 s). It is clear that the surface region responds quite
rapidly to the external stimulus, and that this information is
markedly dumpedwithin the first two layers of the tissue structure,
thus leaving the third tissue layer practically unaffected. This
behavior is more clearly observable in Fig. 5 below, for the three-
dimensional plot of the temperature field against space coordinate
and time, where the relatively small thermally affected region is
noticeable, for the present experimental conditions.

Table 2b
Illustration of convergence behavior of temperature field eigenfunction expansion
(t ¼ 100 s).

x N ¼ 10 N ¼ 20 N ¼ 30 N ¼ 40 N ¼ 50 N ¼ 60 Numer.a

0. 41.904 41.825 41.734 41.759 41.776 41.769 41.829
0.0042 36.908 36.831 36.786 36.791 36.800 36.799 36.813
0.0084 36.115 36.169 36.162 36.156 36.157 36.159 36.159
0.0126 36.645 36.633 36.621 36.620 36.621 36.621 36.621
0.0168 36.752 36.788 36.777 36.776 36.777 36.777 36.777
0.021 36.902 36.891 36.880 36.879 36.881 36.881 36.881
0.0252 36.929 36.957 36.948 36.946 36.948 36.948 36.948
0.0294 37.008 37.000 36.990 36.989 36.991 36.991 36.991
0.0336 37.000 37.026 37.017 37.015 37.017 37.017 37.017
0.0378 37.047 37.040 37.030 37.029 37.031 37.031 37.031
0.042 37.018 37.044 37.035 37.033 37.035 37.035 37.035

a NDSolve routine of Mathematica system [22].
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Fig. 4. Transient behavior of the temperature field across the tissue thickness for (a)
full tissue thickness (0 < x < L) and of the (b) detailed view of the first two layers.
(Solid line e initial condition, t ¼ 0, very long dashes e t ¼ 100 s, long dashes e

t ¼ 150 s, medium dashes e t ¼ 300 s, small dashes e t ¼ 600 s.)

Fig. 5. Converged results (N ¼ 60) obtained with GITT for the temperature field along
both the space and time variables.
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Fig. 6. Converged results (N ¼ 60) obtained with GITT for the external tissue
temperature evolution (a) for variable properties, GITT (solid) and numerical solution
via NDSolve [22] (dashed); (b) for both variable properties (solid) and averaged
uniform properties (dashed).
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Fig. 6a provides a comparison of the external tissue surface
temperature evolution, as obtained through GITTwithN¼ 60 terms
(solid line) and through the numerical method implemented in
routine NDSolve [22] (dashed line), with sufficient mesh refine-
ment. The overall agreement is indeed very good, with slightly
noticeable deviations for regions closer to the internal tissue end.
Finally, Fig. 6b again shows the fully converged results for the
external tissue temperature, but now for either variable properties
(solid line) or for uniform averaged thermophysical properties
(dashed line), as estimated from integration of the profiles in Fig. 2.
Clearly, more significant deviations are now observable in the
external temperature behavior, which may already be sensed in
a typical thermographicmeasurement system. Fig. 7 then compares
the temperature distribution across the first two layers of the tissue,
again for both the variable properties model (thick lines) and the
uniform averaged properties approximation (thin lines). The devi-
ations within the medium for the two models results is even more
significant, confirming the interest in the more accurate determi-
nation of the variable thermophysical properties functional
dependence and on the appropriate representation of the thermal
phenomena by accounting for this variability.

The results obtained in this work reveal that the proposed
approach can provide accurate estimation of the temperature
distributions in bioheat transfer problems and is robust and
capable of providing accurate results even for fairly abrupt varia-
tions of the thermophysical properties variations. Nonlinear func-
tional behavior of the perfusion rates, such as in hyperthermia
treatment, may also be directly accounted for and computed via
integral transforms.
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