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INTEGRAL TRANSFORMS AND BAYESIAN INFERENCE
IN THE IDENTIFICATION OF VARIABLE THERMAL
CONDUCTIVITY IN TWO-PHASE DISPERSED SYSTEMS

Carolina P. Naveira-Cotta, Helcio R. B. Orlande, and
Renato M. Cotta
Laboratory of Transmission and Technology of Heat, Mechanical
Engineering Department, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, Brazil

This work illustrates the use of Bayesian inference in the estimation of spatially variable

thermal conductivity for one-dimensional heat conduction in heterogeneous media, such as

particle-filled composites and other two-phase dispersed systems, by employing a Markov

chain Monte Carlo (MCMC) method, through the implementation of the Metropolis-

Hastings algorithm. The direct problem solution is obtained analytically via integral trans-

forms, and the related eigenvalue problem is solved by the generalized integral transform

technique (GITT), offering a fast, precise, and robust solution for the transient temperature

field, which are desirable features for the implementation of the inverse analysis. Instead

of seeking the function estimation in the form of a sequence of local values for the thermal

conductivity, an alternative approach is proposed here, which is based on the eigenfunction

expansion of the thermal conductivity itself. Then, the unknown parameters become the

corresponding series coefficients. Simulated temperatures obtained via integral transforms

are used in the inverse analysis. From the prescription of the concentration distribution

of the dispersed phase, available correlations for the thermal conductivity are employed

to produce the simulated results with high precision in the direct problem solution, while

eigenfunction expansions with reduced number of terms are employed in the inverse analysis

itself, in order to avoid the so-called inverse crime. Both Gaussian and noninformative

uniform distributions were used as priors for comparison purposes. In addition, alternative

correlations for the thermal conductivity that yield different predictions are also employed

as Gaussian priors for the algorithm in order to test the inverse analysis robustness.

INTRODUCTION

Composite materials, consisting of a dispersed reinforcement phase embedded
in a bulk matrix phase, have been providing engineers with increased opportunities
for tailoring structures to meet a variety of property and performance requirements.
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In recent years, various applications have been requiring composites with higher
thermal conductivity. For instance, polymer composites filled with conductive metal
particles are of particular interest for heat-dissipation applications in electronics
packaging [1]. Another important application where increased thermal conductivity
is required is in polymeric heat exchangers [2] when the thermal conductivity directly
affects the performance of the exchanger. Low-cost metals may rapidly corrode
in heat exchangers in aggressive environments or working fluids, and corrosion-
resistant polymeric materials have been considered as possible alternatives to metals
in such devices. The higher thermal conductivity can be achieved by the use of
suitable fillers such as aluminum, carbon fibers, graphite, aluminum nitrides, copper,
etc. In fact, polymer composites may have thermal conductivities 10 to over 100
times higher than those of pure polymers, equal to or even higher than the thermal
conductivities of some metals [3].

The effective thermal conductivity of a composite material has a complex
dependence on the phases’ properties, the size and shape of the filler particles, their
distribution within the medium, filler–matrix interface characteristics, as well as on
the temperature field itself. Various theories have been developed to model the ther-
mal conductivity behavior in two-phase dispersed systems, and a number of second-
order models were found to provide good estimates for composites filled with low
volumetric concentrations of particles, but with increasing deviations between real

NOMENCLATURE

d(x) linear dissipation operator coefficient,

Eq. (1a)

f(x) initial condition, Eq. (1b)

kd thermal conductivity of the filler

(dispersed phase)

km thermal conductivity of the matrix

k(x) diffusion operator coefficient

(dimensionless thermal conductivity),

Eq. (1a)

kf(x) filter for thermal conductivity relation

L dimensionless domain length

M truncation order in eigenvalue problem

expansion

N truncation order in temperature

expansion

Nk truncation order in coefficients

expansion

Ni normalization integrals

Nm total number of measurements

NP number of parameters to be estimated,

Eq. (28a)

Nt number of measurements in time

Nx number of measurements along the

spatial domain

P vector of unknown parameters

P(x,t) source term, Eq. (1a)

t dimensionless time variable

T dimensionless temperature (potential)

T vector of estimated temperatures

w(x) transient operator coefficient

(dimensionless thermal capacity),

Eq. (1a)

W covariance matrix of the measurement

errors

x dimensionless longitudinal coordinate

Y vector of measurements

ak, bk boundary condition coefficients,

Eqs. (1c,d)

c parameter in filler concentration

variation

d function in filler concentration

variation

k eigenvalues of the auxiliary problem

m eigenvalues of the original problem

/(x) filler concentration distribution,

Eqs. (22)

/k(t) source term, Eqs. (1c,d)

w eigenfunctions of the original problem

X eigenfunctions of the auxiliary problem

Subscripts and Superscripts

i, n, m order of eigenquantities
_ integral transform

� normalized eigenfunction
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composite systems and theoretical models for high concentration values [2, 4, 5]. At
such high concentrations, the filler particles tend to form agglomerates, and conduc-
tive chains may be formed that result in a marked increase on thermal conductivity
[5]. A large number of contributions, for different combinations of filler and matrix
material configurations, have provided comparisons of experimental and theoretical
results [5–15] that confirm the lack of an universal model for thermal conductivity in
two-phase dispersed systems.

As the composite material morphology in the realm of applications presents
endless possibilities due to design tailoring, manufacturing processes and even self-
structuring, the characterization of their physical properties has to be made almost
case to case. Accordingly, it becomes essential to develop a methodology for the
identification of physical properties already on the finished material or system, via
solution of the corresponding inverse problem for a space-variable thermal conduc-
tivity [16–19]. Thus, the problem that is addressed here is that of providing a reliable
prediction of the composite thermal conductivity function from knowledge of the
physical properties of each component in the mixture and their relative concentra-
tions, without employing in advance a specific theoretical model among those pro-
posed in the literature. Such inverse analysis would then allow for the verification
of the adequacy of the existing models or even for their adaptation or formulation
of novel predictive expressions.

The analysis of diffusion problems in heterogeneous media involves formula-
tions with spatial variations of the thermophysical properties in different ways
[20–23], such as due to variations on local concentrations in particle-filled compo-
sites and other two-phase dispersed systems. Regarding the solution of the direct
heat conduction problem in the transient state, the procedure employed in this
work stems from the application of the classical integral transform technique
(CITT) [24, 25]. Since we are dealing with a linear heat conduction problem with
space-variable coefficients, integral transformation results into a decoupled trans-
formed ordinary differential system, capable of being solved analytically. Neverthe-
less, the solution of the corresponding auxiliary eigenvalue problem for the classical
integral transform technique demands the use of computational methodologies such
as the sign-count method or the generalized integral transform technique (GITT)
[25–28]. In this work we make use of the generalized integral transform technique,
which has been successfully applied to the solution of eigenvalue problems with vari-
able coefficients and irregular domains [25, 29–32]. Another possibility exploited
here is to express the variable coefficients themselves as eigenfunction expansions
[32]. This procedure is particularly useful for the fully analytical evaluation of the
coefficients of the algebraic system in the transformed eigenvalue problem. There-
fore, all manipulations can be expressed in terms of simpler eigenfunctions, allowing
the analytical integrations and additional derivations to be performed in symbolic
computation platforms [33].

Among the various available solution techniques for inverse problems [34–36],
a fairly common approach is related to the minimization of an objective function
that usually involves the quadratic difference between measured and estimated
values, such as the least-squares norm, possibly with the inclusion of regularization
terms. Despite the fact that the minimization of the least-squares norm is used indis-
criminately, it yields only maximum-likelihood estimates if the following statistical
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hypotheses are valid: The errors in the measured variables are additive, uncorrelated,
normally distributed, with zero mean, and known constant standard deviation; only
the measured variables appearing in the objective function contain errors; and there
is no prior information regarding the values and uncertainties of the unknown
parameters [34].

Although very popular and useful in many situations, the minimization of
the least-squares norm is a non-Bayesian estimator. A Bayesian estimator [36] is
basically concerned with the analysis of the posterior probability density, which
is the conditional probability of the parameters given the measurements, while
the likelihood is the conditional probability of the measurements given the para-
meters. If we assume the parameters and the measurement errors to be independent
Gaussian random variables, with known means and covariance matrices, and that
the measurement errors are additive, a closed-form expression can be derived for
the posterior probability density. In this case, the estimator that maximizes the
posterior probability density can be recast in the form of a minimization problem
involving the maximum a posteriori objective function. On the other hand, if
different prior probability densities are assumed for the parameters, the posterior
probability distribution may not allow an analytical treatment. Then, Markov
chain Monte Carlo (MCMC) methods are used to draw samples of all possible
parameters, so that inference on the posterior probability becomes inference on
the samples.

This work illustrates the use of Bayesian inference in the estimation of spatially
variable thermal conductivity in one-dimensional transient heat conduction pro-
blems of heterogeneous media, represented by two-phase dispersed systems, employ-
ing the method of Markov chain Monte Carlo [36–41]. The Metropolis-Hastings
algorithm is used for the sampling procedure [42, 43], implemented in the Mathema-
tica platform [33]. This sampling procedure is in general the most expensive compu-
tational task in solving an inverse problem by the method of Monte Carlo with
Markov chain, since the direct problem is calculated for each state of the chain.
In this context, the use of a fast, accurate, and robust computational implementation
of the direct solution is extremely important. Thus, the integral transformation
approach discussed above becomes very attractive for combined use with the Baye-
sian estimation procedure, since all steps in the method are determined analytically
at once by symbolic computation and the single numerical repetitive task is the
solution of an algebraic matrix eigenvalue problem [32].

Instead of seeking the function estimation in the form of local values for the
thermal conductivity, an alternative approach is proposed here, which is based on
the eigenfunction expansion of the thermal conductivity itself. Then the unknown
parameters become the corresponding series coefficients.

Simulated temperatures obtained via integral transforms are used in the inverse
analysis. From the prescription of the concentration distribution of the dispersed
phase, available correlations for the thermal conductivity are employed to produce
the simulated data with high precision in the direct problem solution, while eigen-
function expansions with reduced number of terms are employed in the inverse
analysis itself, in order to avoid the so-called inverse crime [36]. Both Gaussian
and noninformative uniform distributions were used as priors for comparison pur-
poses. In addition, alternative correlations for the thermal conductivity that yield
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different predictions are also employed as Gaussian priors for the algorithm in order
to test the inverse analysis robustness.

DIRECT PROBLEM SOLUTION: INTEGRAL TRANSFORMS

We consider the one-dimensional version of the general formulation on transi-
ent heat conduction presented and solved in [32], for the potential T(x, t), dependent
on position x and time t and defined in region x2 [0, L]. The formulation includes
the transient term, the diffusion operator, a linear dissipation term, an independent
heat-generation term, and the space-variable thermal conductivity and heat capacity,
as shown in problem (1) below. The coefficients w(x) and k(x) are thus responsible
for the information related to the heterogeneity of the medium. The diffusion equa-
tion and initial and boundary conditions are given by

wðxÞ qTðx; tÞ
qt

¼ q
qx

kðxÞ qTðx; tÞ
qx

� �
� dðxÞTðx; tÞ þ Pðx; tÞ x 2 ½0;L�; t > 0 ð1aÞ

Tðx; 0Þ ¼ f ðxÞ x 2 ½0;L� ð1bÞ

a0Tðx; tÞ � b0kðxÞ
qTðx; tÞ

qx
¼ /0ðtÞ x ¼ 0; t > 0 ð1cÞ

a1Tðx; tÞ þ b1kðxÞ
qTðx; tÞ

qx
¼ /1ðtÞ x ¼ L; t > 0 ð1dÞ

Problem (1) covers a fairly wide range of physical conditions for a typical
one-dimensional transient thermal conductivity experimental setup, including the
various types of boundary conditions and independent heating, or, for instance,
based on an initial space-variable thermal excitation throughout the domain and
subsequent temperature measurements acquisition via infrared thermography [40].
Before providing the integral transform solution of problem (1), a filtering solution
is proposed which attempts to eliminate the source terms in the governing equation
and boundary conditions, for improved convergence behavior of the eigenfunction
expansions. In this case, we write the original temperature field as

Tðx; tÞ ¼ Tf ðx; tÞ þ T�ðx; tÞ ð2Þ

The quasi-steady formulation of problem (1) may, for instance, be used to
obtain the filter Tf(x;t), that is,

q
qx

kðxÞ qTf ðx; tÞ
qx

� �
� dðxÞTf ðx; tÞ þ Pðx; tÞ ¼ 0 x 2 ½0;L� ð3aÞ

a0Tf ðx; tÞ � b0kðxÞ
qTf ðx; tÞ

qx
¼ /0ðtÞ x ¼ 0 ð3bÞ

a1Tf ðx; tÞ þ b1kðxÞ
qTf ðx; tÞ

qx
¼ /1ðtÞ x ¼ L ð3cÞ
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where time t enters the formulation as a parameter [26]. Simpler analytical filters
may be preferred, which essentially homogenizes the original boundary conditions,
Eqs. (1c, d), and eventually include simplified forms of the equation source term.

The filtered temperature formulation is then obtained as

wðxÞqT
�ðx; tÞ
qt

¼ q
qx

kðxÞqT
�ðx; tÞ
qx

� �
� dðxÞT�ðx; tÞþP�ðx; tÞ x2 ½0;L�; t> 0 ð4aÞ

T�ðx; 0Þ ¼ f �ðxÞ x 2 ½0;L� ð4bÞ

a0T
�ðx; tÞ � b0kðxÞ

qT�ðx; tÞ
qx

¼ 0 x ¼ 0; t > 0 ð4cÞ

a1T
�ðx; tÞ þ b1kðxÞ

qT�ðx; tÞ
qx

¼ 0 x ¼ L; t > 0 ð4dÞ

where the filtered initial condition and the filtered source term are given by

P�ðx; tÞ ¼ �wðxÞ qTf ðx; tÞ
qt

f �ðxÞ ¼ f ðxÞ � Tf ðx; 0Þ ð5a; bÞ

The formal exact solution of problem (4) is then obtained with the classical
integral transform method [24] and is written as

T�ðx; tÞ ¼
X1
i¼1

~wwiðxÞ �ff ie
�m2i t þ

Z t

0

�ggiðt0Þe�m2i ðt�t0Þdt0
� �

ð6Þ

where the eigenvalues mi and eigenfunctions wi(x) are obtained from the eigenvalue
problem that contains the information about the heterogeneous medium in the form

d

dx
kðxÞ dwiðxÞ

dx

� �
þ ðm2i wðxÞ � dðxÞÞwiðxÞ ¼ 0 x 2 ½0;L� ð7aÞ

with boundary conditions

a0wiðxÞ � b0kðxÞ
dwiðxÞ
dx

¼ 0 x ¼ 0 ð7bÞ

a1wiðxÞ þ b1kðxÞ
dwiðxÞ
dx

¼ 0 x ¼ L ð7cÞ

Also, the other quantities that appear in the exact solution (6) are computed after
solving problem (7), such as

Ni ¼
Z L

0

wðxÞw2
i ðxÞ dx normalization integrals ð8aÞ

~wwiðxÞ ¼
wiðxÞffiffiffiffiffi

Ni

p normalized eigenfunctions ð8bÞ
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�ff i ¼
Z L

0

wðxÞ~wwiðxÞf �ðxÞ dx transformed initial condition ð8cÞ

�ggiðtÞ ¼
Z L

0

P�ðx; tÞ~wwiðxÞ dx transformed source terms ð8dÞ

For a general-purpose automatic implementation, it is quite desirable to
develop a flexible computational approach to handle eigenvalue problems with
arbitrarily variable coefficients, such as problem (7). Thus, the generalized integral
transform technique is employed here in the solution of the Sturm-Liouville problem
(7) via the proposition of a simpler auxiliary eigenvalue problem, and expanding
the unknown eigenfunctions in terms of the chosen basis. Also, the variable equation
coefficients are themselves expanded in terms of known eigenfunctions [32], so as to
allow for a fully analytical implementation of the coefficient matrices in the trans-
formed system. The solution of problem (7) is thus proposed as an eigenfunction
expansion, in terms of a simpler auxiliary eigenvalue problem, given as

d

dx
k�ðxÞ dXnðxÞ

dx

� �
þ k2nw

�ðxÞ � d�ðxÞ
� �

XnðxÞ ¼ 0 x 2 ½0;L� ð9aÞ

with boundary conditions

a0XnðxÞ � b0k
�ðxÞ dXnðxÞ

dx
¼ 0 x ¼ 0 ð9bÞ

a1XnðxÞ þ b1k
�ðxÞ dXnðxÞ

dx
¼ 0 x ¼ L ð9cÞ

where the coefficients w�(x), k�(x), and d�(x) are simpler forms of the equation
coefficients, chosen to allow for an analytical solution of the auxiliary problem.

The proposed expansion of the original eigenfunction is then given by

wiðxÞ ¼
X1
n¼1

eXXnðxÞ�wwi;n inverse ð10aÞ

�wwi;n ¼
Z L

0

w�ðxÞwiðxÞeXXnðxÞ dx transform ð10bÞ

where the normalization integral and normalized auxiliary eigenfunction are given by

Mn ¼
Z L

0

w�ðxÞeXX2

nðxÞ dx norm

eXXnðxÞ ¼
XnðxÞffiffiffiffiffiffiffi
Mn

p normalized eigenfunction

ð10c; dÞ
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The integral transformation is thus performed by operating on Eq. (7a) withR L
0
eXXnðxÞ � dx to yield, after some manipulation [32], the following algebraic

problem in matrix form:

ðA� nBÞW ¼ 0 with n ¼ m2 ð11aÞ

W ¼ f�wwðmÞ
n g B ¼ fBn;mg Bn;m ¼

Z L

0

wðxÞeXXnðxÞeXXmðxÞ dx ð11b�dÞ

An;m ¼ �
Z L

0

eXXmðxÞ
d

dx
kðxÞ d

eXXnðxÞ
dx

" #
dxþ ðkðxÞ � k�ðxÞ½ � eXXmðxÞ

deXXnðxÞ
dx

" #( )x¼L

x¼0

þ
Z L

0

dðxÞeXXnðxÞeXXmðxÞ dx

A ¼ fAn;mg ð11e; f Þ

The algebraic problem (11) can be solved numerically to provide results for the
eigenvalues and eigenvectors, upon truncation to a sufficiently large finite order M,
which will be combined by the inverse formula (10a) to provide the desired original
eigenfunctions.

As mentioned previously, it is also relevant to consider the possibility of
expressing the variable coefficients themselves as eigenfunction expansions [32]. This
is particularly advantageous in the evaluation of the algebraic system coefficients,
An,m and Bn,m. All the related integrals can then be expressed in terms of eigen-
functions, allowing for straightforward analytical evaluations. For instance, the
coefficient w(x) can be expanded in terms of eigenfunctions, together with a filtering
solution to enhance convergence, in the following form:

wðxÞ ¼ wf ðxÞ þ
X1
k¼1

eCCkðxÞ�wwk inverse ð12aÞ

�wwk ¼
Z L

0

ŵwðxÞ½wðxÞ � wf ðxÞ�eCCkðxÞdx transform ð12bÞ

where ŵwðxÞ is the weighting function for the chosen normalized eigenfunction eCCkðxÞ.
For instance, the eigenfunction basis may be chosen employing the same auxiliary
problem equation, but with first-order boundary conditions throughout, while the
filtering function would be a simple analytic function that satisfies the boundary
values for the original coefficients. Then, once the transformed coefficients have been
obtained through the transform formula, Eq. (12b), computations may be carried on
with the inverse expression for the variable coefficient, Eq. (12a). The two remaining
coefficients are equally expanded in terms of eigenfunctions to yield

kðxÞ ¼ kf ðxÞ þ
X1
k¼1

eCCkðxÞ�kkk inverse ð12cÞ

�kkk ¼
Z L

0

ŵwðxÞ½kðxÞ � kf ðxÞ�eCCkðxÞ dx transform ð12dÞ
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dðxÞ ¼ df ðxÞ þ
X1
k¼1

eCCkðxÞ�ddk inverse ð12eÞ

�ddk ¼
Z L

0

ŵwðxÞ½dðxÞ � df ðxÞ�eCCkðxÞ dx transform ð12f Þ

The matrices coefficients may then be rewritten in terms of the expanded
functions, such as for the elements of matrix B,

Bn;m ¼
Z L

0

wf ðxÞeXXnðxÞeXXmðxÞ dxþ
X1
k¼1

�wwk

Z L

0

eCCkðxÞeXXnðxÞeXXmðxÞ dx ð13aÞ

and for matrix A,

An;m¼�
Z L

0

eXXmðxÞ
d

dx
kf ðxÞ

deXXnðxÞ
dx

" #
dx�

X1
k¼1

Z L

0

eXXmðxÞ
d

dx
eCCkðxÞ

deXXnðxÞ
dx

" #
dx

( )
�kkk

þ kf ðxÞ�k�ðxÞ
� � eXXmðxÞ

deXXnðxÞ
dx

" #( )x¼L

x¼0

þ
X1
k¼1

(
½eCCkðxÞ� eXXmðxÞ

deXXnðxÞ
dx

" #" )x¼L

x¼0

�kkk

þ
Z L

0

df ðxÞeXXnðxÞeXXmðxÞdxþ
X1
k¼1

Z L

0

eCCkðxÞeXXnðxÞeXXmðxÞdx
� �

�ddk ð13bÞ

Also, the normalization integrals are then computed from

Ni ¼
X1
n¼1

X1
m¼1

�wwi;n
�wwi;m

Z L

0

wf ðxÞeXXnðxÞeXXmðxÞ dxþ
X1
k¼1

Z L

0

eCCkðxÞeXXnðxÞeXXmðxÞ dx
� �

�wwk

( )
ð13cÞ

This procedure will also be of interest in the function estimation task, when the
transformed coefficients will be the parameters to be estimated.

INVERSE PROBLEM SOLUTION: BAYESIAN INFERENCE

Consider the vector of parameters appearing in the physical model formu-
lation as

PT � ½P1; P2; . . . ;PNp� ð14aÞ

where Np is the number of parameters. For the solution of the inverse problem of
estimating P, we assume available the measured temperature data given by

ðY� TÞT ¼ ~YY 1 � ~TT1; ~YY 2 � ~TT2; . . . ; ~YYNx
� ~TTNx

� �
ð14bÞ
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where T is the vector of estimated temperatures and ~YYi contains the measured tem-
peratures for each of the Nx sensors at time ti, i¼ 1, . . . , Nt, that is,

ð~YYi � ~TTiÞ ¼ Yi1 � Ti1; Yi2 � Ti2; . . . ;YiNx
� TiNx

ð Þ for i ¼ 1; . . . ;Nt ð14cÞ

so that we have Nm¼Nx. Nt measurements in total.
Bayes’s theorem can then be stated as [36–39]

pposteriorðPÞ ¼ pðPjYÞ ¼ pðPÞpðYjPÞ
pðYÞ ð15Þ

where pposterior(P) is the posterior probability density, that is, the conditional prob-
ability of the parameters P given the measurements Y; p(P) is the prior density, that
is, a statistical model for the information about the unknown parameters prior to the
measurements; p(YjP) is the likelihood function, which gives the relative probability
density (loosely speaking, relative probability) of different measurement outcomes Y
with a fixed P; and p(Y) is the marginal probability density of the measurements,
which plays the role of a normalizing constant.

In this work we assume that the measurement errors are Gaussian random
variables, with known (modeled) means and covariances, and that the measurement
errors are additive and independent of the unknowns. With these hypotheses, the
likelihood function can be expressed as [34–39]

pðYjPÞ ¼ ð2pÞ�Nm=2jWj�1=2 exp � 1

2
½Y� TðPÞ�TW�1½Y� TðPÞ�

� 	
ð16Þ

where W is the covariance matrix of the measurement errors.
When it is not possible to obtain the corresponding marginal distributions

analytically, one needs to use a method based on simulation [36, 38]. The inference
based on simulation techniques uses samples to extract information about the pos-
terior distribution p(PjY). Obviously, as a sample is always a partial substitute of
the information contained in a density, simulation-based methods are inherently
approximate and should only be used when it is impossible to include the extraction
of analytical information from the posteriori, as is the case in the present study.
Unfortunately, for most problems of practical relevance it is complicated to generate
the posteriori p(PjY). Therefore, more sophisticated methods are required to obtain a
sample of p(PjY), for example, the simulation technique based onMarkov chains [38].
The numerical method most used to explore the space of states of the posteriori is the
Monte Carlo approach. The Monte Carlo simulation is based on a large number of
samples of the probability density function [in this case, the function of the posterior
probability density p(PjY)]. Several sampling strategies are proposed in the literature,
including the Monte Carlo method with Markov chain, adopted in this work, where
the basic idea is to simulate a ‘‘random walk’’ in the space of p(PjY) that converges to
a stationary distribution, which is the distribution of interest in the problem.

A Markov chain is a stochastic process {P0, P1, . . .} such that the distribution
of Pi, given all previous values P0, . . ., Pi� 1, depends only on Pi� 1. That is, it inter-
prets the fact that for a process satisfying the Markov property of Eq. (17), given the
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present, the past is irrelevant to predict its position in a future instant [38]:

pðPi 2 AjP0; . . . ;Pi�1Þ ¼ pðPi 2 AjPi�1Þ ð17Þ

The most commonly used Monte Carlo method with Markov chain algorithms
are the Metropolis-Hastings, employed here, and the Gibbs sampler [38, 39].

The Markov chain according to the generic label of Metropolis-Hastings
comes from the articles of Metropolis et al. [42] and Hastings [43], later on comple-
mented by the works of Barker [44] and Peskun [45]. The Metropolis-Hastings algor-
ithm uses the same idea of the rejection methods, i.e., a value is generated from an
auxiliary distribution and accepted with a given probability. This correction mech-
anism ensures the convergence of the chain for the equilibrium distribution. That
is, the algorithm now includes an additional step, where the transition mechanism
depends on a proposal for a transition and a stage of assessing the equilibrium den-
sity, but this is represented by the global transition via the probability of acceptance.

The Metropolis-Hastings algorithm uses an auxiliary probability density func-
tion, q(P�jP), from which it is easy to obtain sample values. Assuming that the chain
is in a state P, a new candidate value, P�, is generated from the auxiliary distribution
q(P�jP), given the current state of the chain P.

The new value P� is accepted with probability given by Eq. (18), where the
ratio that appears in this equation was called by Hastings [43] the ratio test, and
is today called the ratio of Hastings ‘‘RH’’:

RHðP;P�Þ ¼ min 1;
pðP�jYÞqðP�jPÞ
pðPjYÞqðPjP�Þ

� �
ð18Þ

where p(PjY) is the a posteriori distribution of interest. An important observation is
that we only need to know p(PjY) up to a constant, since we are working with ratios
between densities and such normalization constant is canceled.

In practical terms, this means that the simulation of a sample of p(PjY) using
the Metropolis-Hastings algorithm can be outlined as follows [38]:

1. Boot up the iterations counter of the chain i¼ 0 and assign an initial value P(0).
2. Generate a candidate value P� of the distribution q(P�jP).
3. Calculate the probability of acceptance of the candidate value RH(P, P�) by

Eq. (18).
4. Generate a random number u with uniform distribution, i.e., u�U(0, 1).
5. If u�RH, then the new value is accepted and we let P(iþ1)¼P�. Otherwise, the

new value is rejected and we let P(iþ1)¼P(i).
6. Increase the counter i to iþ 1 and return to step 2.

The transition core q(P�jP) defines only a proposal for a movement that can be
confirmed by RH(P,P�). For this reason it is usually called the proposal or density
distribution. The success of the method depends on not so low acceptance rates and
proposals that are easy to simulate. The method replaces a difficult-to-generate
p(PjY) by several generations of the proposal q(P�jP). In this study we have chosen
to adopt symmetrical chains, i.e., q(P�jP)¼ q(PjP�) for all (P�,P). In this case,
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Eq. (18) reduces to the ratio of the posterior densities calculated at the previous and
proposed chain positions, and does not depend on q(P�jP).

The unknown quantity in the heat conduction problem addressed here is the
thermal conductivity of the medium, k(x). However, the approach adopted in solving
the direct problem was to expand the thermal conductivity function in terms of
eigenfunctions, so that the unknown quantities are in fact the coefficients of the
eigenfunction expansion and the two values of the property at the boundaries,
employed in the solution procedure as a filter.

RESULTS AND DISCUSSION

The inverse problem solution illustrated here involves the analysis of an abrupt
variation of the thermal conductivity in a two-phase dispersed system. In order to
examine the accuracy and robustness of the proposed inverse analysis, we have made
use of simulated measured temperature data along the length of the domain, in
the transient regime, such as obtained through infrared thermography [41]. Such
measurements were obtained from the solution of the direct (forward) problem by
specifying the functions and values for the filler concentration distribution and
thermophysical properties. The simulated data were disturbed by an error with a
mean value centered on the exact temperature and constant and known variance,
in order to simulate actual measured temperature data. For the results of the inverse
analysis to be presented below, we have employed the parameter values shown in
Table 1 for the generation of the simulated measured data, as extracted from [9]
for a polyethylene matrix filled with alumina particles.

The dimensionless problem formulation in this case reduces to

wðxÞ qTðx; tÞ
qt

¼ q
qx

kðxÞ qTðx; tÞ
qx

� �
0 < x < 1; t > 0 ð19aÞ

with initial and boundary conditions

Tðx; 0Þ ¼ f ðxÞ 0 < x < 1 ð19bÞ

Table 1. Parameter values used to generate the simulated measurement data [9]

Dimensionless length L¼ 1

Percent filler concentration at x¼ 0 /0¼ 0

Percent filler concentration at x¼L /L¼ 45

Matrix properties (HDPE) qm¼ 968kg=m3

cpm¼ 2,300 J=kgC

km¼ 0.545W=mC

Filler properties (alumina) qd¼ 3,970 kg=m3

cpd¼ 760 J=kgC

kd¼ 36W=mC

Effective thermal conductivity model Lewis and Nielsen (A¼ 1.5; /m¼ 0.637)

Parameters in filler concentration function c¼ 25

xc¼ 0.2
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qTðx; tÞ
qx






x¼0

¼ 0
qTðx; tÞ

qx






x¼1

¼ 0 t > 0 ð19c; dÞ

For the present illustration the initial condition was chosen arbitrarily from a
random-number generation between 0 and 1, shown in Figure 1, as obtained from an
initial flash lamp heating with a randomly perforated screen [41]. The space-variable
distribution for the abrupt variation of the concentration of the filler into the matrix
is governed by the parameter c in the function below:

/ðxÞ ¼ /x¼0 þ ð/x¼L � /x¼0Þ dðxÞ ð20aÞ

dðxÞ ¼ 1

1þ e�cðx�xcÞ
ð20bÞ

with xc being the transition position between the regions of lower and higher concen-
trations of the filler.

The direct problem solution was obtained from the generalized integral trans-
form technique as described above. A thorough convergence analysis was performed
to select the number of terms in the temperature expansion, as well as the number of
terms in the coefficients expansion.

The eigenvalue problem that has been solved is then given by

d

dx
kðxÞ dwiðxÞ

dx

� �
þ m2i wðxÞwiðxÞ ¼ 0 0 < x < 1 ð21aÞ

with boundary conditions

dwiðxÞ
dx






x¼0

¼ 0
dwiðxÞ
dx






x¼1

¼ 0 ð21b; cÞ

So as to demonstrate the potential applicability of the present approach,
the simplest possible auxiliary problem was considered, based on the choice of

Figure 1. Initial dimensionless temperature distribution, randomly generated, employed in the direct

problem solution.
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coefficients k�(x)¼ 1, w�(x)¼ 1, and d�(x)¼ 0, and maintaining the same boundary
conditions as in Eqs. (21b, c), which results in:

eXXnðxÞ ¼
ffiffiffi
2

p
cosðknxÞ and eXX0ðxÞ ¼ 1 with kn ¼ np; n ¼ 0; 1; 2; . . .

ð22a�cÞ

From the availability of the filler concentration distribution along the domain,
Eq. (20a), as obtainable from different possible techniques, the thermal capacity
along the space coordinate is deterministically determined from mixtures theory.
Thus, the coefficient w(x) is considered as known in the inverse problem analysis,
given as

wðxÞ ¼ 1þ qdcpd
qmcpm

� 1

� �
/ðxÞ ð23Þ

Figures 2a and 2b illustrate the behavior of the filler concentration distribution
employed in the simulations that follow, besides the corresponding behavior of the
dimensionless thermal capacity, according to Eq. (23) above, using c¼ 25 and
xc¼ 0.2.

However, for the thermal conductivity determination, the volumetric content
of the filler is not sufficiently informative to yield a good prediction of this physical
property following the available theoretical approaches [9], especially for the higher
concentration values. Many theoretical and empirical models have been proposed to
predict the effective thermal conductivity of two-phase dispersed systems, and com-
prehensive review articles have discussed the applicability of many of these models
[14]. Here, we discuss just a few of them that are relevant to the inverse analysis that
follows. As upper and lower bounds of the effective thermal conductivity, we may
point out the parallel or series arrangements with respect to heat flow, which yield
the relations below, respectively:

kc ¼ ð1� /Þkm þ /kd parallel conduction model

k�1
c ¼ ð1� /Þk�1

m þ /k�1
d series conduction model

ð24a; bÞ

Figure 2. Sample behavior of the filler concentration distribution (a) and of the resulting dimensionless

thermal capacity (b), according to the data in Table 1.
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A simple geometric mean model for the effective thermal conductivity of
composites has also been employed in the literature [14]:

kc ¼ k/d k
ð1�/Þ
m ð24cÞ

One of the best-known models is that due to Maxwell [46], based on potential
theory, in the form of an exact solution for the conductivity of randomly distributed
and noninteracting homogeneous spheres in a homogeneous matrix:

kc ¼ km
kd þ 2km þ 2/ðkd � kmÞ
kd þ 2km � /ðkd � kmÞ

� �
ð25Þ

Maxwell’s model predicts the effective thermal conductivities fairly well at low
filler concentrations, but at higher concentrations the particles may form conductive
chains, and the model underestimates the conductivity in such regions.

Lewis and Nielsen [47] proposed a model that attempts to include the effect
of the shape of the particles and the orientation or type of packing for a two-phase
system. The resulting expression is given as

kc ¼ km
1þ AB/
1� B/w

� �
where B ¼ ðkd=kmÞ � 1

ðkd=kmÞ þ A
and w ¼ 1þ 1� /m

/2
m

 !
/

ð26a�cÞ

The values of A and /m are suggested in [47] for a number of different geometric
shapes and orientations, such as A¼ 1.50 for spheres and /m¼ 0.637 for random
packing.

Agari and Uno [48] proposed another model that attempts to combine the
parallel and series conduction mechanisms, in the form

log kc ¼ /C2 log kf þ ð1� /Þ logðC1kmÞ ð27Þ

where C1 and C2 are experimentally determined constants of order unity. Since this
model provides two parameters for empirical adjustment, in general it results in a
better agreement with available experimental data. Figures 3a–3c illustrate the beha-
vior of some of the above models for the present situation, according to the data in
Table 1. Figure 3a presents the curves corresponding to the two upper and lower
bounds, the parallel and series models, respectively, as well as the geometric mean
model, and the two models based on theoretical derivations. These two models by
Maxwell and Lewis-Nielsen are more closely compared in Figure 3b. The percentage
deviation between these last two models is presented in Figure 3c.

The nonparametric estimations in the present work were addressed to the coef-
ficients of the eigenfunction expansion of k(x) and the two values at the boundaries
used in the linear filter function used in the expansion process. Thus, the parameters
and the number of parameters to be estimated are given by

P ¼ kx¼0; kx¼L; �kk1; �kk2; �kk3; . . . ; �kkNk

� �
with NP ¼ Nk þ 2 ð28aÞ
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where

kðxÞ ¼ kf ðxÞ þ
XNk

k¼1

eCCkðxÞ�kkk ð28bÞ

In the proposed inverse approach, the truncation order of the thermal con-
ductivity expansion, Nk, thus controls the number of parameters to be estimated.

Figure 3. Behavior of thermal conductivity models in proposed test case.
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The convergence analysis of the k(x) expansion, as obtained by the Lewis and
Nielsen model, Eqs. (26), is shown in Figures 4a–c, for three different truncation
orders, Nk¼ 4, 7, and 10. It can be observed that the three increasing truncation
orders given in these figures are able to recover the characteristic behavior of
the chosen thermal conductivity function following the abrupt change in filler
concentration, but the results for the lowest truncation order, Nk¼ 4, still show some
oscillation around the exact function, while for Nk¼ 10 a much closer agreement
between the expanded and the exact functions is observed.

Figure 4. Convergence behavior of the thermal conductivity function—exact (solid line) and expansion

(dashed line): (a) Nk¼ 4; (b) Nk¼ 7; and (c) Nk¼ 10.
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Before addressing the estimation of the unknown parameters, the behavior
of the determinant of the matrix JTJ [34, 35] was analyzed in order to inspect the
influence of the number of parameters to be estimated in the solution of the inverse
problem. The sensitivity matrix J is defined as:

JðPÞ ¼ qTT ðPÞ
qP

� �T
¼

q~TT
T

1

qP1

q~TT
T

1

qP2

q~TT
T

1

qP3
� � � q~TT

T

1

qPNp

q~TT
T

2

qP1

q~TT
T

2

qP2

q~TT
T

2

qP3
� � � q~TT

T

2

qPNp

..

. ..
. ..

. ..
.

q~TT
T

Nt

qP1

q~TT
T

Nt

qP2

q~TT
T

Nt

qP3
� � � q~TT

T

Nt

qPNp

266666666664

377777777775
ð29aÞ

where

q~TT
T

i

qPj
¼

qTT
i1

qPj

qTT
i2

qPj

..

.

qTT
iNx

qPj

26666666664

37777777775
j ¼ 1; 2; . . . ;Nt ð29bÞ

The sensitivity coefficients Jkj ¼ qTk=qPj, k¼ 1, 2, . . . , Nm and j¼ 1, 2, . . . , NP, give
the sensitivity of Tk (solution of the direct problem) with respect to changes in the
parameter Pj. A small value of the magnitude of Jkj indicates that large changes in
Pj yield small changes in Tk. It can be easily noticed that the estimation of the para-
meter Pj is extremely difficult in such cases, because basically the same value for Tk

would be obtained for a wide range of values of Pj. In fact, when the sensitivity coef-
ficients are small, jJTJj � 0, the inverse problem is said to be ill-conditioned. It can
also be shown that jJTJj is null if any column of J can be expressed as a linear com-
bination of other columns [34]. Therefore, it is desirable to have linearly independent
sensitivity coefficients Jkj with large magnitudes, so that the parameter estimation
problem is not very sensitive to measurement errors and accurate estimates of the
parameters can be obtained. The comparison of the magnitude of the sensitivity
coefficients, as well as the analysis of possible linear dependence, is more easily per-
formed by using the reduced sensitivity coefficients instead of the original ones. The
reduced sensitivity coefficients are obtained by multiplying the original sensitivity
coefficients, Jkj, by the parameters to which they refer to. Therefore, they have units
of the measured variables, which are used as a basis of comparison.

Based on possible experimental setups, we will consider the following two cases
for the analysis of the determinant of the information matrix JTJ: (1) variation of the
number of parameters to be estimated with a fixed number of spatial measurements
and a fixed frequency of measurements (Figure 5a); (2) variation of the number of
spatial measurements with a fixed frequency of measurements and a fixed number
of parameters (Figure 5b).
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Figure 5a shows the evolution in time of the information matrix determinant,
for a total of 20,000 measurements (Nx¼ 200 along the domain, andNt¼ 100 in time).
The three curves stand for an increasing number of parameters, NP¼ 6, 9, and 12,
which correspond respectively toNk¼ 4, 7, and 10, plus the two end values of thermal
conductivity that are filtered from the expansion. Clearly, the gradual increase on the
number of parameters markedly decreases the value of the determinant, as illustrated
by their values at the end of the time scale, 7.8	 10�12, 6.0	 10�24, and 1.0	 10�38,

Figure 5. Evolution of sensitivity matrix determinant.
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respectively, for NP¼ 6, 9, and 12. Therefore, it has been observed, as expected,
that increasing the number of parameters markedly affects the conditioning of the
estimation procedure.

Figure 5b presents the information matrix determinant for the case of NP¼ 9
parameters, but with a variable number of equally spaced measurements along the
domain (Nx¼ 200, 100, 50, and 5, from top to bottom). The lowest value of Nx

has been considered to inspect the possibility of employing traditional temperature
measurement techniques, such as thermocouples, while the higher values represent
a thermographic type of temperature measurement. The determinant of the sensi-
tivity matrix decreases by reducing the number of measurements along the domain
(61	 10�24, 1.4	 10�26, 3.4	 10�29, and 3.3	 10�38, for Nx¼ 200, 100, 50, and 5,
respectively).

Figure 5c presents the behavior of the determinant of the information matrix
(for the uppermost curve in Figure 5b), with a fixed number of measurements along
the domain (Nx¼ 200) and a fixed frequency of measurements (Dt¼ 5	 10�4), for
the case involving the estimation of nine parameters (NP¼ 9). We may observe more
clearly in this figure the effect of increasing the number of measurements in time
(Nt¼ 20, 50, and 100), which results in determinants of about the same order of mag-
nitude (1.7	 10�25, 2.7	 10�24, and 6.0	 10�24). Hence, the variation on the num-
ber of measurements in time within this range does not have a marked effect on the
conditioning of the estimation procedure.

The simulated experimental data were generated with standard deviation equal
to 1% of the direct problem temperature values as computed with N¼ 100 terms in
the temperature expansion, M¼ 100 terms in the original eigenfunction expansion,
and Nk¼ 20 terms in both coefficient expansions, k(x) and w(x). The subsequent
inverse analysis was performed using just N¼M¼ 15 terms in both the temperature
and eigenfunction expansions, in order to avoid the so-called inverse crime [36]. For
the known coefficient, w(x), we have maintained Nk¼ 20 terms in the expansion,
which warrant a converged representation to four significant digits. Based on the
information matrix analysis shown above, in solving the inverse problem we then
adopted Nk¼ 7 terms in the thermal conductivity expansion (NP¼ 9 parameters),
Nx¼ 200 spatial measurements, and Nt¼ 20 measurements in time.

A relevant aspect in the use of the eigenfunction expansion coefficients as a
parameter estimation procedure is the definition of maximum and minimum values
for the coefficients to be estimated from the corresponding maximum and minimum
values of the thermal conductivity, kmax and kmin

The parameterized form of the thermal conductivity used in this application is
given by

kðxÞ ¼ kx¼L � kx¼0

L

� �
xþ kx¼0 þ

XNk

k¼1

�kkkeCCkðxÞ ð30aÞ

which can be rewritten as

XNk

k¼1

�kkkeCCkðxÞ ¼ kðxÞ � kx¼L � kx¼0

L

� �
x� kx¼0 ð30bÞ
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Operating with
R L
0
eCCiðxÞ—dx on both sides of the above equation, we have

�kki ¼
Z L

0

eCCiðxÞkðxÞ dx� kx¼L � kx¼0

L

� �
�ggi � kx¼0

�ff i ð31aÞ

where

�ggi ¼
Z L

0

xeCCiðxÞ dx ð31bÞ

�ff i ¼
Z L

0

eCCiðxÞ dx ð31cÞ

Thus, for a bounding maximum or minimum k(x), kb¼ kmin or kb¼ kmax, respec-
tively, we have

�kki;b ¼ ðkb � kx¼0Þ�ff i �
kx¼L � kx¼0

L

� �
�ggi ð32Þ

Since the values of the thermal conductivity at the boundaries are not known a
priori, to either maximize or minimize the values of the transformed coefficients in
Eq. (32) we need to take into consideration the signs of the coefficients �ggi and

�ff i.
Thus, from the analysis of the expression above, and the specific forms of the trans-
formed quantities, �ggi and

�ff i for odd or even indices, one may get conservative upper
and lower limits for the expansion coefficients, �kki;max and �kki;min, in the form

For i ¼ odd!ðkx¼0 ¼ kx¼L ¼ kmin; kb ¼ kmaxÞ:

�kki;max ¼
2
ffiffiffi
2

p
ðkmax � kminÞ
ip

ffiffiffiffiffiffiffiffiffi
1 L=

p ð33aÞ

�kki;min ¼ � 2
ffiffiffi
2

p
ðkmax � kminÞ
ip

ffiffiffiffiffiffiffiffiffi
1 L=

p ð33bÞ

For i ¼ even!ðkx¼0 ¼ kmin; kx¼L ¼ kmaxÞ

�kki;max ¼
2ðkmax � kminÞ

ip
ffiffiffiffiffiffiffiffiffi
1 L=

p ð34aÞ

For i ¼ even!ðkx¼L ¼ kmin; kx¼0 ¼ kmaxÞ

�kki;min ¼ �
ffiffiffi
2

p
ðkmax � kminÞ
ip

ffiffiffiffiffiffiffiffiffi
1 L=

p ð34bÞ

The parameters were estimated using the Metropolis-Hastings algorithm as
described in the previous section. To estimate the maximum and minimum ranges
for each parameter, we have conservatively adopted as upper limit the filler conduc-
tivity, kmax(x)¼ kd, and as lower limit the matrix conductivity kmin(x)¼ km. Alterna-
tively, the theoretical models previously discussed could have been used to narrow
the interval [kmin, kmax], but at the present stage of tools demonstration, we have
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preferred to employ the wider range. As initial estimate for the coefficient k(x).
we have chosen to consider a constant function given by the average value of
the coefficient in the range defined above by the upper and lower bounds,
kiniðxÞ ¼ kmaxðxÞ þ kminðxÞ½ �=2.

The parameters to be estimated are given by Eq. (28a). Thus, the first two para-
meters, kx¼0 and kx¼L, have their maximum, minimum, and initial values given
directly by the choices kmax(x), kmin(x), kini(x) evaluated at, respectively, x¼ 0 and
x¼L. The other parameters related to the thermal conductivity expansion coeffi-
cients have their maximum and minimum values determined as shown in Eqs. (33)
and (34), and their initial values are taken equal to the average value between the
maximum and minimum parameters obtained. The step adopted in the search
procedure used in the generation of candidates within the minimum–maximum para-
meters range was 20% of the exact value of the parameter. Table 2 shows the
maximum, minimum, the initial search step, and the limiting upper and lower values
for the nine parameters to be estimated.

Five illustrative cases were analyzed, corresponding to different a priori infor-
mation provided. In case 1, a noninformative uniform prior was adopted, while in
case 2 the prior was in the form of a normal distribution with mean given by the
Lewis and Nielsen thermal conductivity value, with a fairly large 40% standard devi-
ation. In case 3, a normal prior distribution with mean given by Lewis and Nielsen’s
correlation was used as in case 2, but with as much as 80% standard deviation.
Cases 4 and 5 deal with the use of a normal prior distribution with mean now given
by Maxwell’s correlation with 40% and 80% standard deviations, respectively, which
in principle provide poor prior information for larger concentrations.

Case 1 is expected to provide the worst estimates, since no a priori information
is being provided. Cases 2 and 3 employ a Gaussian prior extracted from the same
correlation employed in the simulated data, but with reasonably large values of the
standard deviation, to challenge the algorithm to recover the thermal conductivity
function. Nevertheless, it should be recalled that since the inverse crime has been
avoided, the present approach is not expected to exactly recover the same parameters
employed to generate the simulated data. Cases 4 and 5 further challenge the inverse
analysis approach, by providing a Gaussian prior based on another model (Maxwell)
than that employed in generating the experimental data. For lower concentrations

Table 2. Exact values, initial guesses, search step, and search limits for inverse analysis

Parameter Exact Initial guess Step kmin kmax

kx¼0 1.0072 18.27 0.201 0.545 36

kx¼L 4.2070 18.27 0.841 0.545 36
�kk1 1.0066 0 0.201 �31.921 31.921
�kk2 0.01874 0 0.00375 �7.980 7.980
�kk3 �0.2592 0 0.0518 �10.640 10.640
�kk4 �0.2441 0 0.0488 �3.990 3.990
�kk5 �0.1218 0 0.0244 �6.384 6.384
�kk6 �0.009845 0 0.00197 �2.660 2.660
�kk7 0.04450 0 0.00890 �4.560 4.560
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the two models are expected to provide results with reasonable agreement, but with
increasing deviations for larger concentrations (22% deviation as from Figure 3c).

Assuming a burn-in period of 10,000 states in the Markov chains, and a total
of 50,000 states in the whole chains, estimates of the parameters for each case were
obtained given by the sample average of the remaining 40,000 states. Table 3 sum-
marizes the estimates found for each parameter and the confidence intervals for a
degree of confidence of 95% for all five cases examined. Clearly, case 1 provides
the worst set of results, with very wide confidence intervals, sometimes not even
enclosing the exact values, such as for the coefficient �kk6. The uniform distribution
also performs poorly because the provided bounding limits lead to a very wide inter-
val, which could be at least narrowed by more appropriate information on the func-
tion to be estimated, for instance, employing limiting models such as the parallel,
series and geometric mean conduction models. As expected, cases 2 and 3 perform
quite well, even with the large value of the standard deviation for case 3, which
results in larger confidence intervals for the estimated parameters. In cases 4 and 5
the algorithm still manages to correct the function behavior, by providing reasonable
estimates for the parameters, which will be even clearer in the graphical comparisons
to follow. Nevertheless, one aspect should be clarified, with respect to the parameter
values provided via the chosen Maxwell model as a priori distribution. Although the
two thermal conductivity models (Lewis and Nielsen, and Maxwell) are locally dif-
ferent at most by about 22%, after performing the integral transformation to express
the two functions in terms of eigenfunction expansions, the deviations between the
two sets of expansion coefficients can be much larger, even of the order of 300%.
This aspect is not immediately evident from the comparative behavior between the
two functions, Figure 3b, but it is certainly the main reason for the differences in per-
formance of the inverse analysis in such cases.

Figure 6a shows the upper and lower bounds, the initial guess, and the thermal
conductivity function to be recovered in the inverse analysis performed. Figures 6b–
6f show the estimated thermal conductivities in comparison to the exact function, for
each of the five cases considered here, based on the estimation of the nine parameters
shown in Table 3. These figures confirm the above observations based on Table 3.
One may observe the oscillations in the recovered thermal conductivity for the more
difficult case involving noninformative uniform prior of case 1 (Figure 6b), as a
consequence of the poor estimation of the coefficients in the eigenfunction expan-
sion. Case 2 (Figure 6c) results in the most accurate estimation obtained, and the
increase on the standard deviation to 80% in the prior (case 3) promotes only slight
deviations on the estimated thermal conductivity (Figure 6d). For the last two cases
with the prior given from Maxwelĺs correlation, one may notice the corrective action
of the algorithm, which distorts the initial guess profile to approach that provided by
the exact model, with slightly better agreement for the case with 80% of standard
deviation (see Figures 6e and 6f). It appears that the higher standard deviation in
case 5 ends up by providing more freedom to the algorithm and thus allows a some-
how more effective correction of the adopted priori based on another model, differ-
ent from the one employed to generate the experimental data, in comparison with the
more restrictive priori with a smaller standard deviation of case 4.

Finally, Figures 7 and 8 illustrate the Markov chain evolutions along the
50,000 states for all the nine parameters, in cases 1 and 2, respectively. From
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Table 3. Estimated parameter values with 50,000 states in Markov chains (neglecting first 10,000 states for chain burn-in) and corresponding 95% confidence

intervalsa

P Case 1 Case 2 Case 3 Case 4 Case 5

kx¼0 1.426 [0.630, 2.775] 1.075 [0.7041, 1.487] 1.163 [0.655, 1.813] 1.010 [0.684, 1.390] 1.063 [0.644, 1.569]

kx¼L 6.921 [1.950, 14.327] 4.300 [2.483, 6.424] 4.646 [2.199, 7.837] 3.979 [2.505, 5.576] 4.538 [2.373, 7.102]
�kk1 0.307 [�2.189, 3.207] 0.957 [0.356, 1.610] 0.841 [�0.279, 1.908] 0.757 [0.249, 1.261] 0.655 [�0.226, 1.510]
�kk2 0.328 [�0.068, 0.586] 0.0185 [0.0034, 0.033] 0.018 [�0.016, 0.049] 0.0747 [0.029, 0.121] 0.067 [�0.0013, 0.147]
�kk3 �0.336 [�1.238, 0.663] �0.270 [�0.452, �0.086] �0.293 [�0.625, 0.048] �0.146 [�0.248, �0.047] �0.169 [�0.353, 0.0223]
�kk4 �0.487 [�1.816, 0.706] �0.244 [�0.419, �0.0582] �0.280 [�0.596, 0.044] �0.180 [�0.309, �0.05] �0.204 [�0.437, 0.030]
�kk5 �0.511 [�1.305, 0.288] �0.1216 [�0.214, �0.0248] �0.113 [�0.294, 0.0782] �0.107 [�0.187, �0.029] �0.116 [�0.274, 0.056]
�kk6 0.154 [0.029, 0.271] �0.0101 [�0.017, �0.0024] �0.00976 [�0.027, 0.006] �0.0388 [�0.064, �0.016] �0.031 [�0.090, 0.023]
�kk7 0.202 [�0.167, 0.625] 0.0453 [0.013, 0.0795] 0.0425 [�0.024, 0.113] 0.0088 [0.0021, 0.016] 0.0089 [�0.005, 0.023]

aCase 1, uniform prior; case 2, normal prior from Lewis and Nielsen with 40% standard deviation; case 3, normal prior from Lewis and Nielsen with 80% standard

deviation; case 4, normal prior from Maxwell with 40% standard deviation; case 5, normal prior from Maxwell with 80% standard deviation.
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Figure 7, related to the noninformative uniform prior, and in light of the very wide
upper and lower bounds proposed here, one may notice the significant large ampli-
tudes in the chain oscillations, which is not yet fully converged for some of the para-
meters. On the other hand, the chains obtained with the normal prior provided from
Lewis and Nielsen’s model, which are presented in Figure 8, have oscillations with
small amplitudes and are fully converged within this range of 50,000 states. Also,
although not illustrated here due to space limitations, increasing the uncertainty
of the simulated temperature measurements essentially increases the amplitudes

Figure 6. (a) Exact and expanded k(x), initial guess and search limits provided, and (b–f) comparison of

exact (solid) and estimated (dashed) thermal conductivity functions in all five cases considered.

IDENTIFICATION OF CONDUCTIVITY IN DISPERSED SYSTEMS 197



of the Markov chains convergence patterns, basically yielding larger confidence
intervals for the estimated parameters. However, we note that the simulated
measurement errors used above are indeed much larger than those usually observed
in measurements with infrared cameras.

Figure 7. Markov chain evolutions of the nine parameters for case 1.
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CONCLUSIONS

The combined use of integral transforms and Bayesian inference was demon-
strated for the inverse problem of estimating space-variable thermal conductivity
in two-phase dispersed systems, undergoing a transient one-dimensional heat con-
duction process. The direct problem solution was obtained analytically with the

Figure 8. Markov chain evolutions of the nine parameters for case 2.
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classical integral transform method, while the related eigenvalue problem, which car-
ries the information on the medium heterogeneities, was solved with the generalized
integral transform technique (GITT).

The inverse problem solution was based on the Markov chain Monte Carlo
method. The Metropolis-Hastings algorithm was employed for the sampling pro-
cedure, all implemented in theMathematica symbolic computation platform. Instead
of seeking the function estimation in the form of a set of local values of the thermal
conductivity, an alternative approach was proposed in this work, using an eigenfunc-
tion expansion of the thermal conductivity itself. Both Gaussian and noninformative
uniform distributions were used as priors for the solution of the present inverse prob-
lem, obtained with simulated experimental data. Priors obtained from alternative
theoretical relations for the thermal conductivity, which yield different predictions
than those employed in the simulated experimental data, were also employed in
the algorithm, in order to demonstrate robustness of the inverse analysis.

The results obtained in this work reveal that the proposed inverse analysis
approach is robust with respect to measurement errors and capable of providing
accurate results even for prior distributions quite different from the exact one. Such
inverse analysis will now allow for the verification of the adequacy of the existing
models or even for their adaptation and formulation of novel predictive expressions,
for a wide variety of geometric and materials configurations, filler concentration dis-
tributions, and other relevant variables. In addition, for more complex systems, such
as hybrid or multicomponent dispersed systems, when models are even not yet read-
ily available or reliable, the present inverse analysis approach can provide accurate
estimation of the thermophysical properties variation.
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