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a b s t r a c t

The present work reports the analysis of combining low Reynolds number flows and channels with wall
corrugation and the corresponding thermal exchange intensification achieved. The proposed model
involves axial heat diffusion along the fluid and adiabatic regions both upstream and downstream to
the corrugated heat transfer section, in light of the lower values of Reynolds numbers (and consequently
Peclet numbers) that can be encountered in the present class of problems. Aimed at developing a fast and
reliable methodology for optimization purposes, the related laminar velocity field is obtained by an
approximate analytical solution valid for smooth corrugations and low Reynolds numbers, typical for
instance of micro-channel configurations, locally satisfying the continuity equation. A hybrid numeri-
cal-analytical solution methodology for the energy equation is proposed, based on the Generalized Inte-
gral Transform Technique (GITT) in partial transformation mode for a transient formulation. The hybrid
approach is first demonstrated for the case of a smooth parallel-plates channel situation, and the impor-
tance of axial heat conduction along the fluid is then illustrated. Heat transfer enhancement is analyzed in
terms of the local Nusselt number and dimensionless bulk temperature along the heat transfer section.
An illustrative sinusoidal corrugation shape is adopted and the influence of Reynolds number and corru-
gation geometric parameters is then discussed.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Within the scope of thermal engineering, energy conservation
and sustainable development demands have been driving research
efforts towards more energy efficient equipments and processes.
The petroleum and process industries have been quite active in
progressively incorporating heat transfer enhancement solutions
to the efficiency increase requirements along the years [1]. More
recently, heat exchangers employing micro-channels with charac-
teristic dimensions below 500 microns have been calling the atten-
tion of researchers and practitioners, towards applications that
require high heat removal demands and/or space and weight lim-
itations [2]. Motivated by the search for optimal solutions in heat
exchange rates, Steinke and Kandlikar [3] critically analyzed vari-
ous heat transfer enhancement techniques as applied to the mi-
cro-channels scale. Among the passive enhancement techniques
then discussed, the authors emphasize the utilization of treated
surfaces, rough or corrugated walls and additives for working flu-
ids. Several other approaches were disregarded in light of the dif-

ficulties in manufacturing or mechanically modifying the thermal
system at the micro-scale. In parallel, a few previous works have
addressed the interest in investigating channel corrugations at
the micro-scale, either for liquid or gaseous flows [4,5].

The research here reported addresses the convective heat trans-
fer in low Reynolds number flows within channels possibly en-
hanced by the presence of axial heat conduction along the fluid
and wall corrugations. First, the typical low Reynolds numbers in
applications such as micro-systems may lead to low values of the
Peclet number that bring up some relevance to the axial heat dif-
fusion along the fluid stream, especially for regions close to the in-
let. Then, both the upstream and downstream sections of the
micro-channel that are not actually part of the heat transfer sec-
tion, may participate in the overall heat transfer process, and final-
ly yield different predictions than those reached by making use of
conventional macro-scale relations for ordinary liquids or gases.
Therefore, our first objective is to inspect such effects of the axial
heat diffusion within the fluid. For this reason, it was initially nec-
essary to identify the range of governing parameters to be ana-
lyzed, in order to allow for an appropriate modeling of the
relevant physical phenomena that may appear at this dimensional
scale. Second, either due to the inherent difficulties in achieving
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smooth surfaces during micro-fabrication processes or to the ac-
tual purpose of improving mixing and/or heat transfer, micro-
channels with irregularly shaped walls started gaining some focus
in the heat and mass transfer literature, as pointed out in the brief
review above. Thus, the analysis of laminar forced convection
within micro-channels with corrugated walls, and the possible
heat transfer enhancement effect achieved, is another goal of the
present study.

The steady two-dimensional flow problem was handled by
adopting an approximate analytical solution that essentially
adapts the fully developed velocity profile to the wall geometric
variations, satisfying the fully developed momentum equation
and the continuity equation [6]. Such simplified approach was
introduced in [6] aimed at the solution of incompressible flow
problems in low Reynolds number situations and gradual geomet-
ric variations in converging or diverging walls. The solution meth-
odology for the energy equation first introduces a domain
decomposition strategy, redefining the coordinates systems for
the three heat transfer regions, so as to rewrite the problem in
the form of a system of equations within the same mathematical
domain, coupled at the interfaces of the three regions. Then, a hy-
brid numerical-analytical solution based on the Generalized Inte-
gral Transform Technique (GITT) is proposed [7–9], which
consists on the elimination of the transversal coordinate by
integral transformation, and results in a coupled system of one-
dimensional partial differential equations for the transformed tem-
peratures. This system is then handled numerically with local error

control by making use of the Method of Lines implemented in the
Mathematica system [10]. This so-called partial transformation
mode of the GITT allows for the accurate and flexible solution of
multidimensional partial differential systems [11] and has been
previously employed in the solution of transient and periodic
forced convection within smooth parallel-plates micro-channels
[12–14]. This alternative hybrid solution strategy to the more usual
full integral transformation mode is of particular interest in the
treatment of transient convection-diffusion problems with a pref-
erential convective direction. In such cases, the partial integral
transformation in all but one space coordinate, may offer an inter-
esting combination of relative advantages between the eigenfunc-
tion expansion approach and the selected numerical method for
handling the coupled system of one-dimensional partial differen-
tial equations that results from the transformation procedure. It
should be recalled that the GITT approach has already been previ-
ously applied to the analysis of heat transfer within smooth rectan-
gular micro-channels [15,16] for steady state situations.

The situation of a smooth parallel-plates channel is here first
analyzed, for typical values of the governing parameters, so as to
provide validations of the hybrid numerical-analytical solution
for the energy equation, while also illustrating the importance of
the axial heat diffusion along the fluid, especially in the transition
from the first adiabatic region and the heat transfer section. Then,
the approximate analytical solution of the flow problem is demon-
strated, as compared to benchmark results of the two-dimensional
Navier-Stokes equations, as obtained from the GITT itself in previ-

Nomenclature

Aij; Bni; Cmn coefficients defined by Eqs. (24a), (24b) and (24c),
respectively

d half the distance between the flat walls
Dmn; Emn coefficients defined by Eqs. (24d) and (24e), respectively
fy�0; fy0 function that describes lower wall boundary, dimen-

sional and dimensionless, respectively
fy�1; fy1 function that describes upper wall boundary, dimen-

sional and dimensionless, respectively
Fmn coefficient defined by Eq. (24f)
g source function defined by Eq. (11g)
�gm coefficient defined by Eq. (24h)
Gmn coefficient defined by Eq. (24g)
L�, L total length of the channel, dimensional and dimension-

less, respectively
L�1; L1 length of region 1, dimensional and dimensionless,

respectively
L�2; L2 total length of the regions 1 and 2, dimensional and

dimensionless, respectively
MS sub-domain discretization parameter (maximum al-

lowed step size)
ny0 ;ny1 unit normal vector associated with the lower and upper

wall boundaries, respectively
N1; N2; N3 truncation orders for the temperature expansions in

regions 1, 2 and 3, respectively
Nu0; Nu1 local Nusselt numbers associated with the lower and

upper wall boundaries, respectively
Nwi;NCm norms defined by Eqs. (16e) and (17e), respectively
Pe Peclet number
Re Reynolds number
t�, t time variable, dimensional and dimensionless, respec-

tively
T�; TA temperature field, dimensional and dimensionless,

respectively
Tm bulk temperature

T1;i; T2;m; T3;i transformed potentials for the regions 1, 2, and 3,
respectively

T�
w;0; T

�
w;1 temperatures of the lower and upper wall boundaries,

respectively
TA;w;1 dimensionless temperature of the upper wall boundary
u�, u longitudinal velocity component, dimensional and

dimensionless, respectively
um average velocity
v�, v transversal velocity component, dimensional and

dimensionless, respectively
x� longitudinal coordinate
x1; x2; x3 normalized longitudinal coordinates
y�, y transversal coordinate, dimensional and dimensionless,

respectively

Greek letters
a�, a channel amplitude, dimensional and dimensionless,

respectively
af fluid thermal diffusivity
bm eigenvalues defined by Eq. (17f)
Cm eigenfunctions defined by Eq. (17d)
DTc reference temperature difference
li eigenvalues defined by Eq. (16f)
n dimensionless longitudinal coordinate
/ filtered potential
�/m coefficient defined by Eq. (24i)
wi eigenfunctions defined by Eq. (16d)

Subscripts and superscripts
_ integral transformed quantities
i, j, m, n expansions indices
1, 2, 3 relative to the regions 1, 2, and 3, respectively

F.V. Castellões et al. / International Journal of Heat and Mass Transfer 53 (2010) 2022–2034 2023



ous works [17]. The illustrative situation of sinusoidal symmetric
corrugated walls is considered more closely, allowing for paramet-
ric variations on the corrugation geometry. Finally, the heat trans-
fer enhancement is inspected for a few different combinations of
flow, thermal and geometric parameters, in terms of both the
dimensionless bulk temperature and local Nusselt number along
the heat transfer section. The present contribution is thus related
to the fundamental analysis of forced convection in low Reynolds
number flows, here illustrated by flow within micro-channels as
required for the design of micro-heat exchangers, including the ef-
fects of axial heat conduction and wall corrugation or roughness on
heat transfer enhancement.

2. Analysis

We consider transient laminar forced convection within chan-
nels formed by smooth or corrugated plates. Three regions along
the channel are considered in the problem formulation, as de-
scribed in Fig. 1 below, which is a general representation of a chan-
nel with asymmetric irregular walls. First, an adiabatic region with
smooth walls, followed by the heat transfer section with pre-
scribed temperatures at the corrugated walls, and the third one,
following the corrugated region, is again made of smooth adiabatic
walls.

The two-dimensional steady flow is assumed to be laminar and
incompressible, with temperature independent thermophysical
properties, while viscous dissipation and natural convection effects
are neglected. Also, the continuum hypothesis is considered to be
valid throughout the flow region, without slip or temperature jump
at the boundaries, such as in the case of liquids flowing in micro-
channels. Due to the possible low values of Peclet number, in light
of the lower range of Reynolds numbers, axial diffusion along the
fluid is not disregarded. Also, the flow is assumed to be fully devel-
oped at the first section entrance, but varies along the axial coordi-
nate once the corrugated section is reached.

In obtaining the velocity field along the flow, the full Navier-
Stokes equations should be employed, yielding the variable veloc-
ity components and pressure field along the transversal and longi-
tudinal directions, as recently demonstrated in [17], where the
Generalized Integral Transform Technique (GITT) has been em-
ployed in the hybrid numerical-analytical solution of this laminar
flow. However, for sufficiently low Reynolds numbers and smooth
variations on the wall corrugations, an approximate solution has
been previously proposed [6], essentially by accounting for the var-
iable cross section within the local mass balance equation in a qua-

si-fully developed formulation, thus neglecting the inertia terms
influence on the velocity components modification. These explicit
solutions for the velocity components are particularly handy, espe-
cially in pre-design and optimization tasks, and shall be here
exploited to demonstrate the transient thermal problem solution.
Thus, following the approach in [6], and for sufficiently smooth
wall geometries defined by the x* functions fy�0 and fy�1, as depicted
in Fig. 1, the velocity components are analytically derived as:

u�ðx�; y�Þ ¼ �ðy�0 � y�1Þ
½fy�0ðx�Þ � fy�1ðx�Þ�

3 f�y�2 þ y�½fy�0ðx�Þ þ fy�1ðx�Þ�

� fy�0ðx�Þfy
�
1ðx�Þg ð1aÞ

v�ðx�; y�Þ ¼ �ðy�0 � y�1Þ
½fy�0ðx�Þ � fy�1ðx�Þ�

4 f6½y� fy�0ðx�Þ�½y� fy�1ðx�Þ�

� ffy�01 ðx�Þ½y� fy�0ðx�Þ� � fy�00 ðx�Þ½y� fy�1ðx�Þ�gg ð1bÞ

It can be noticed that according to the approximate solution in
Eqs. (1a) and (1b), at the entrance and exit of the corrugated sec-
tion, as well as for a smooth heat transfer section, the flow be-
comes the classical parabolic fully developed velocity profile for
parallel-plates, given in the present coordinates system by:

u�ðy�Þ ¼ 6

ðy�0 � y�1Þ
2 ½�y�2 þ y�ðy�0 þ y�1Þ � y�0y

�
1� ð2Þ

while the transversal velocity component vanishes in these regions.
Once the velocity field is available, the energy equation in the

whole region is given as:

@T�

@t�
þ u� @T

�

@x�
þ v� @T

�

@y�
¼ af

@2T�

@x�2
þ @2T�

@y�2

 !
;

0 < x� < L�; fy�0ðx�Þ < y� < fy�1ðx�Þ; t� > 0 ð3aÞ

T�ðx�; y�;0Þ ¼ T�
0ðx�; y�Þ;

T�ð0; y�; t�Þ ¼ T�
eðy�; t�Þ;

@T�

@x�

����
x�¼L�

¼ 0 ð3b—dÞ

@T�

@y�

����
y�¼fy�0ðx�Þ

¼ 0

@T�

@y�

����
y�¼fy�1ðx�Þ

¼ 0

8>>><
>>>:

; for 0 < x� < L�1;

T�ðx�; y� ¼ fy�0ðx�Þ; t�Þ ¼ T�
w;0

T�ðx�; y� ¼ fy�1ðx�Þ; t�Þ ¼ T�
w;1

(
; for L�1 6 x� 6 L�2 ð3e — hÞ

Fig. 1. Geometry and coordinates system for heat transfer in corrugated channel.
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@T�

@y�

����
y�¼fy�0ðx�Þ

¼ 0

@T�

@y�

����
y�¼fy�1ðx�Þ

¼ 0

8>>><
>>>:

; for L�2 < x� < L� ð3i; jÞ

The following dimensionless groups are defined:

n ¼ af

umd
2 x

� ¼ 1
Pe

x�

d
; L ¼ af

umd
2 L

� ¼ 1
Pe

L�

d
;

L1 ¼ af

umd
2 L

�
1 ¼ 1

Pe
L�1
d
; L2 ¼ af

umd
2 L

�
2 ¼ 1

Pe
L�2
d
;

y ¼ y�

d
; uðn; yÞ ¼ u�ðx�; y�Þ

um
; vðn; yÞ ¼ v�ðx�; y�Þ

um
;

t ¼ af

d2 t
�; TAðn; y; tÞ ¼

T�ðx�; y�; t�Þ � T�
w;0

DTc
;

Pe ¼ umd
af

; d ¼ y�1 � y�0
2

ð4a—kÞ

Then, the dimensionless form of the temperature problem is
written as:

@TA

@t
þ uðn; yÞ @TA

@n
þ Pevðn; yÞ @TA

@y
¼ 1

Pe2
@2TA

@n2
þ @2TA

@y2
;

0 < n < L; fy0ðnÞ < y < fy1ðnÞ; t > 0 ð5aÞ

TAðn;y;0Þ¼ TA;0ðn;yÞ; TAð0;y;tÞ¼ TA;eðy;tÞ;
@TA

@n

����
n¼L

¼0 ð5b—dÞ

@TA

@y

����
y¼fy0ðnÞ

¼ 0

@TA

@y

����
y¼fy1ðnÞ

¼ 0

8>>><
>>>:

; for 0 < n < L1;

TAðn; y ¼ fy0ðnÞ; tÞ ¼ 0
TAðn; y ¼ fy1ðnÞ; tÞ ¼ TA;w;1

�
; for L1 6 n 6 L2 ð5e — hÞ

@TA

@y

����
y¼fy0ðnÞ

¼ 0

@TA

@y

����
y¼fy1ðnÞ

¼ 0

8>>><
>>>:

; for L2 < n < L ð5i; jÞ

It can be observed from Eqs. (5g) and (5h) that the formulation
does not impose symmetry to the thermal problem boundary con-
ditions in the heat transfer section, but if symmetry prevails, Eq.
(5h) shall be an homogeneous one.

In light of the discontinuity on the boundary conditions at the
wall junction of the three regions, it is more convenient to propose
a domain decomposition to handle the three mathematical prob-
lems coupled at the cross sections between each pair of regions.
The three problems formulation should therefore include the con-
tinuity conditions of temperature and heat flux at the fluid inter-
faces between the regions. Thus, the problem formulation for the
first adiabatic region becomes:

@T1

@t
þ uðn; yÞ @T1

@n
þ Pevðn; yÞ @T1

@y
¼ 1

Pe2
@2T1

@n2
þ @2T1

@y2
;

0 < n < L1; fy0ðnÞ < y < fy1ðnÞ; t > 0 ð6aÞ

T1ðn; y;0Þ ¼ TA;0ðn; yÞ ð6bÞ

T1ð0; y; tÞ ¼ TA;eðy; tÞ;
@T1

@n

����
n¼L1

¼ @TA;2

@n

����
n¼L1

;

@T1

@y

����
y¼fy0ðnÞ

¼ 0;
@T1

@y

����
y¼fy1ðnÞ

¼ 0 ð6c—fÞ

For the heat exchanging section, we have:

@TA;2

@t
þ uðn; yÞ @TA;2

@n
þ Pevðn; yÞ @TA;2

@y

¼ 1
Pe2

@2TA;2

@n2
þ @2TA;2

@y2
; L1 < n < L2; fy0ðnÞ < y < fy1ðnÞ;

t > 0 ð7aÞ

TA;2ðn; y;0Þ ¼ TA;0ðn; yÞ ð7bÞ

TA;2ðn ¼ L1; y; tÞ ¼ T1ðn ¼ L1; y; tÞ;
TA;2ðn ¼ L2; y; tÞ ¼ T3ðn ¼ L2; y; tÞ ð7c;dÞ

TA;2ðn; y ¼ fy0ðnÞ; tÞ ¼ 0; TA;2ðn; y ¼ fy1ðnÞ; tÞ ¼ TA;w;1 ð7e; fÞ

and finally for the exiting section, also adiabatic, we may write:

@T3

@t
þ uðn; yÞ @T3

@n
þ Pevðn; yÞ @T3

@y
¼ 1

Pe2
@2T3

@n2
þ @2T3

@y2
;

L2 < n < L; fy0ðnÞ < y < fy1ðnÞ; t > 0 ð8aÞ

T3ðn; y; 0Þ ¼ TA;0ðn; yÞ ð8bÞ

@T3

@n

����
n¼L2

¼ @TA;2

@n

����
n¼L2

;
@T3

@n

����
n¼L

¼ 0;
@T3

@y

����
y¼fy0ðnÞ

¼ 0;

@T3

@y

����
y¼fy1ðnÞ

¼ 0 ð8c—fÞ

The temperature problem for the heated section remains non-
homogeneous in Eq. (7f). In order to homogenize the problem in
the transversal direction y, a filtering solution, /ðn; yÞ, is employed
for the potential TA;2ðn; y; tÞ, in the form:

TA;2ðn; y; tÞ ¼ T2ðn; y; tÞ þ /ðn; yÞ ð9Þ

A simple and sufficiently general form for the filter /ðn; yÞ is ob-
tained by satisfying the diffusion operator in the transversal direc-
tion, which yields:

/ðn; yÞ ¼ TA;w;1
fy0ðnÞ � y

fy0ðnÞ � fy1ðnÞ
ð10Þ

Then, the homogeneous problem for the corrugated section is
given by:

@T2

@t
þ uðn; yÞ @T2

@n
þ Pevðn; yÞ @T2

@y

¼ 1
Pe2

@2T2

@n2
þ @2T2

@y2
þ gðn; yÞ; L1 < n < L2;

fy0ðnÞ < y < fy1ðnÞ; t > 0 ð11aÞ

T2ðn; y; t ¼ 0Þ ¼ TA;0ðn; yÞ � /ðn; yÞ ð11bÞ

T2ðn ¼ L1; y; tÞ ¼ T1ðn ¼ L1; y; tÞ � /ðn ¼ L1; yÞ;
T2ðn ¼ L2; y; tÞ ¼ T3ðn ¼ L2; y; tÞ � /ðn ¼ L2; yÞ ð11c;dÞ

T2ðn; y ¼ fy0ðnÞ; tÞ ¼ 0; T2ðn; y ¼ fy1ðnÞ; tÞ ¼ 0 ð11e; fÞ

where

gðn; yÞ ¼ 1
Pe2

@2/

@n2
� Pevðn; yÞ @/

@y
� uðn; yÞ @/

@n
ð11gÞ

Next, the decomposed domain is described with three different
coordinates systems, which match at the two interfaces, as shown
in Fig. 2 below. The normalized longitudinal coordinates are then
computed in terms of the original dimensionless coordinate as:
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x1 ¼ 1
L1

n; x2 ¼ 1
ðL2 � L1Þ

ðL2 � nÞ; x3 ¼ 1
ðL� L2Þ

ðn� L2Þ ð12Þ

Thus, in terms of the redefined coordinates systems the dimen-
sionless problem formulation is given, for each of the three regions,
as:

@T1

@t
þ uðx1; yÞ

@T1

@x1

1
L1

þ Pevðx1; yÞ
@T1

@y

¼ 1
Pe2

1
L21

@2T1

@x21
þ @2T1

@y2
; 0 < x1 < 1; y0 < y < y1; t > 0 ð13aÞ

T1ðx1; y; t ¼ 0Þ ¼ T1;0ðx1; yÞ ð13bÞ

T1ðx1 ¼ 0; y; tÞ ¼ T1;eðy; tÞ;
@T1

@x1

����
x1¼1

¼ � L1
L2 � L1

@T2

@x2

����
x2¼1

ð13c;dÞ

@T1

@y

����
y¼y0

¼ 0;
@T1

@y

����
y¼y1

¼ 0 ð13e; fÞ

@T2

@t
� 1
ðL2 � L1Þ

uðx2; yÞ
@T2

@x2
þ Pevðx2; yÞ

@T2

@y

¼ 1
Pe2

1

ðL2 � L1Þ2
@2T2

@x22
þ @2T2

@y2
þ gðx2; yÞ;

0 < x2 < 1; fy0ðx2Þ < y < fy1ðx2Þ; t > 0 ð14aÞ

T2ðx2; y; t ¼ 0Þ ¼ T2;0ðx2; yÞ � /ðx2; yÞ ð14bÞ

T2ðx2 ¼ 0; y; tÞ ¼ T3ðx3 ¼ 0; y; tÞ � /ðx2 ¼ 0; yÞ;
T2ðx2 ¼ 1; y; tÞ ¼ T1ðx1 ¼ 1; y; tÞ � /ðx2 ¼ 1; yÞ ð14c;dÞ

T2ðx2; y ¼ fy0ðx2Þ; tÞ ¼ 0; T2ðx2; y ¼ fy1ðx2Þ; tÞ ¼ 0 ð14e; fÞ

/ðx2; yÞ ¼ TA;w;1
fy0ðx2Þ � y

fy0ðx2Þ � fy1ðx2Þ
;

gðx2; yÞ ¼
1

Pe2ðL2 � L1Þ2
@2/

@x22
� Pevðx2; yÞ

@/
@y

þ 1
L2 � L1

uðx2; yÞ
@/
@x2

ð14g;hÞ

@T3

@t
þ 1
ðL� L2Þ

uðx3; yÞ
@T3

@x3
þ Pevðx3; yÞ

@T3

@y

¼ 1
Pe2

1

ðL� L2Þ2
@2T3

@x23
þ @2T3

@y2
; 0 < x3 < 1;

y0 < y < y1; t > 0 ð15aÞ

T3ðx3; y; t ¼ 0Þ ¼ T3;0ðx3; yÞ ð15bÞ

@T3

@x3

����
x3¼0

¼ � L� L2
L2 � L1

@T2

@x2

����
x2¼0

;
@T3

@x3

����
x3¼1

¼ 0 ð15c;dÞ

@T3

@y

����
y¼y0

¼ 0;
@T3

@y

����
y¼y1

¼ 0 ð15e; fÞ

One may observe that after the coordinates systems redefini-
tion, the problems are coupled only at the interfaces and all the do-
main limits are the same, and therefore the dependent variables
may be algebraically interpreted as applied to one single domain
in the longitudinal coordinate (0 < x < 1).

Following the formalism in the GITT [7–9], the auxiliary
problems are now defined to construct the eigenfunction expan-
sions in each region. For regions 1 and 3 we adopt the same
eigenvalue problem, with second kind boundary conditions, gi-
ven by:

d2wi

dy2
þ l2

i wiðyÞ ¼ 0; y0 < y < y1; ð16aÞ

dwi

dy

����
y¼y0

¼ 0;
dwi

dy

����
y¼y1

¼ 0 ð16b; cÞ

whose solution in terms of eigenfunctions, norms and eigenvalues
is readily found as

wiðyÞ ¼
1; i ¼ 0
cos½liðy� y0Þ�; i ¼ 1;2;3 . . .

�
;

Nwi ¼
Z y1

y0

w2
i ðyÞdy ¼

y1 � y0; i ¼ 0
y1�y0

2 ; i ¼ 1;2;3 . . .

(
;

li ¼
0; i ¼ 0
ip

y1�y0
; i ¼ 1;2;3 . . .

(
ð16d—fÞ

For region 2, the auxiliary problem has to account for the irreg-
ular walls, which is incorporated into the eigenfunctions and
eigenvalues via the functions of x that describe the transversal do-
mains, as shown below:

@2Cm

@y2
þ b2

mðxÞCmðx; yÞ ¼ 0; fy0ðxÞ < y < fy1ðxÞ ð17aÞ

Cm½y ¼ fy0ðxÞ� ¼ 0; Cm½y ¼ fy1ðxÞ� ¼ 0 ð17b; cÞ

Fig. 2. Coordinates systems for the decomposed domain.
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Thus, the x-dependent eigenfunctions, norms and eigenvalues
are given by:

Cmðx; yÞ ¼ sinfbmðxÞ½y� fy0ðxÞ�g;

NCmðxÞ ¼
Z fy1ðxÞ

fy0ðxÞ
C2

mðx; yÞdy ¼ fy1ðxÞ � fy0ðxÞ
2

;

bmðxÞ ¼
mp

fy1ðxÞ � fy0ðxÞ
; m ¼ 1;2;3 . . . ð17d — fÞ

Once the eigenvalue problems have been defined and solved,
the integral transform pairs (transform-inverse) are constructed
as:

T1;iðx; tÞ ¼
Z y1

y0

T1ðx; y; tÞwiðyÞdy;

T1ðx; y; tÞ ¼
X1
i¼0

1
Nwi

T1;iðx; tÞwiðyÞ ð18a;bÞ

T2;mðx; tÞ ¼
Z fy1ðxÞ

fy0ðxÞ
T2ðx; y; tÞCmðx; yÞdy;

T2ðx; y; tÞ ¼
X1
m¼1

1
NCmðxÞ

T2;mðx; tÞCmðx; yÞ ð19a;bÞ

T3;iðx; tÞ ¼
Z y1

y0

T3ðx; y; tÞwiðyÞdy;

T3ðx; y; tÞ ¼
X1
i¼0

1
Nwi

T3;iðx; tÞwiðyÞ ð20a;bÞ

One may start with the integral transformation of Eqs. (13) for
region 1, operating with

R y1
y0

�wiðyÞdy, and after substitution of the
inverse formula (18b) and some manipulation, the transformed
system becomes:

@T1;i

@t
þ 1
L1

X1
j¼0

Aij
@T1;j

@x
¼ 1

Pe2L21

@2T1;i

@x2
� l2

i T1;iðx; tÞ;

0 < x < 1; t > 0 ð21aÞ

T1;iðx; t ¼ 0Þ ¼ T1;0;iðxÞ ð21bÞ

T1;iðx ¼ 0; tÞ ¼ Te;iðtÞ;

@T1;i

@x

�����
x¼1

¼ � L1
L2 � L1

X1
n¼1

1
NCnðx ¼ 1ÞBinðx ¼ 1Þ@T2;n

@x

�����
x¼1

ð21c;dÞ

Similarly, Eqs. (14) are operated on with
R fy1ðxÞ
fy0ðxÞ

�Cmðx; yÞdy to
yield the transformed version for the temperature problem in re-
gion 2:

@T2;m

@t
¼ 1

Pe2ðL2 � L1Þ2
@2T2;m

@x2
þ
X1
n¼1

@T2;n

@x

� 1

Pe2ðL2 � L1Þ2
2
d
dx

1
NCnðxÞ

� �
NCnðxÞdmn þ

2
NCnðxÞ

FmnðxÞ
� �"

þ 1
L2 � L1

1
NCnðxÞ

DmnðxÞ
� ��

þ
X1
n¼1

T2;nðx; tÞ

� 1

Pe2ðL2 � L1Þ2
d2

dx2
1

NCnðxÞ

� �
NCnðxÞdmn þ 2

d
dx

1
NCnðxÞ

� � "

�FmnðxÞ þ
1

NCnðxÞ
GmnðxÞ

�
þ 1
L2 � L1

� 1
NCnðxÞ

CmnðxÞ þ
d
dx

1
NCnðxÞ

� �
DmnðxÞ

� �

�Pe
1

NCnðxÞ
EmnðxÞ

� �
� b2

mðxÞdmn

�
þ �gmðxÞ; 0 < x < 1; t > 0

ð22aÞ

T2;mðx; t ¼ 0Þ ¼ T2;0;mðxÞ � �/mðxÞ ð22bÞ

T2;mðx ¼ 0; tÞ ¼
X1
j¼0

1
Nwj

Bmjðx ¼ 0ÞT3;jðx ¼ 0; tÞ
 !

� �/mðx ¼ 0Þ

ð22cÞ

T2;mðx ¼ 1; tÞ ¼
X1
j¼0

1
Nwj

Bmjðx ¼ 1ÞT1;jðx ¼ 1; tÞ
 !

� �/mðx ¼ 1Þ

ð22dÞ

And finally, for region 3, Eqs. (15) are operated on withR y1
y0

�wiðyÞdy, to furnish:

@T3;i

@t
þ 1
L� L2

X1
j¼0

Aij
@T3;j

@x
¼ 1

Pe2ðL� L2Þ2
@2T3;i

@x2

� l2
i T3;iðx; tÞ; 0 < x < 1; t > 0 ð23aÞ

T3;iðx; t ¼ 0Þ ¼ T3;0;iðxÞ ð23bÞ

@T3;i

@x

�����
x¼0

¼ � L� L2
L2 � L1

X1
n¼1

1
NCnðx ¼ 0ÞBinðx ¼ 0Þ@T2;n

@x

�����
x¼0

;

@T3;i

@x

�����
x¼1

¼ 0 ð23c;dÞ

The coefficients that appear on the transformed system Eqs.
(21)–(23) are analytically obtained from the following
integrations:

Aij ¼
1

Nwj

Z y1

y0

uðyÞwiðyÞwjðyÞdy;

BniðxÞ ¼
Z y1

y0

wiðyÞCnðx; yÞdy ð24a;bÞ

CmnðxÞ ¼
Z fy1ðxÞ

fy0ðxÞ
uðx; yÞCmðx; yÞ

@Cn

@x
dy;

DmnðxÞ ¼
Z fy1ðxÞ

fy0ðxÞ
uðx; yÞCmðx; yÞCnðx; yÞdy ð24c;dÞ

EmnðxÞ ¼
Z fy1ðxÞ

fy0ðxÞ
vðx; yÞCmðx; yÞ

@Cn

@y
dy;

FmnðxÞ ¼
Z fy1ðxÞ

fy0ðxÞ
Cmðx; yÞ

@Cn

@x
dy ð24e; fÞ

GmnðxÞ ¼
Z fy1ðxÞ

fy0ðxÞ
Cmðx; yÞ

@2Cn

@x2
dy;

�gmðxÞ ¼
Z fy1ðxÞ

fy0ðxÞ
gðx; yÞCmðx; yÞdy;

�/mðxÞ ¼
Z fy1ðxÞ

fy0ðxÞ
/ðx; yÞCmðx; yÞdy ð24g—iÞ

Eqs. (21)–(23) form an infinite system of partial differential
equations having as independent variables the unified dimension-
less longitudinal coordinate, x, and dimensionless time, t, and as
dependent variables the transformed temperatures in each region.
For computational purposes, the system is truncated to a finite or-
der, truncating the eigenfunction expansions for each field in a suf-
ficiently large number of terms for each region (N1; N2 and N3).
Due to the x-variable nature of the system coefficients, Eqs. (24),
the PDE system has to be numerically solved, for instance employ-
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ing the Method of Lines with local error control as implemented on
the function NDSolve of theMathematica symbolic-numerical com-
putation platform [10].

For the thermal problem, results are reported in terms of the
bulk temperature and the local Nusselt numbers at the two chan-
nel walls (yielding the same results for the symmetric situation), as
defined below:

Tmðn; tÞ ¼
R fy1ðnÞ
fy0ðnÞ

uðn; yÞTAðn; y; tÞdyR fy1ðnÞ
fy0ðnÞ

uðn; yÞdy
ð25aÞ

Nu1ðn; tÞ ¼
�4

Tmðn; tÞ
ðrTA � ny1 Þ;

Nu0ðn; tÞ ¼
4

Tmðn; tÞ
ðrTA � ny0 Þ ð25b; cÞ

In the chosen example discussed below, the problem formula-
tion adopts the same geometry and boundary conditions as pre-
sented by Wang and Chen [18]. The walls boundaries are then
described by the following functions along the longitudinal coordi-
nate which describe a symmetric sinusoidal wavy profile:

fy�0ðx�Þ ¼

y�0; 0 < x� < L�1

y�0 þ a�sin pðx� � L�1Þ 12
L�2

� �
; L�1 < x� < L�2

y�0; L�2 < x� < L�

8>><
>>: ð26aÞ

fy�1ðx�Þ ¼

y�1; 0 < x� < L�1

y�1 � a�sin pðx� � L�1Þ 12
L�2

� �
; L�1 < x� < L�2

y�1; L�2 < x� < L�

8>><
>>: ð26bÞ

3. Results and discussion

A computational code was developed and implemented on the
Mathematica system [10] and the transformed partial differential
Eqs. (21)–(23) were solved by employing the subroutine NDSolve,
which uses the numerical Method of Lines to handle a wide range
of coupled PDEs. Numerical results were produced for bulk tem-
perature and local Nusselt numbers in both situations of smooth
and wavy channels. First, a brief convergence analysis of the tem-
perature field is presented and a few comparisons with literature
results for simpler models are provided for validation purposes.
Second, a physical interpretation of the axial conduction effects
in smooth ducts is offered, in light of the possible low values of
the Peclet number, followed by the relevant parametric analysis
in terms of the Reynolds number and the wavy wall geometry ef-
fects on heat transfer enhancement.

The convergence behavior of the proposed eigenfunction
expansion for the temperature fields is analyzed in terms of the fol-
lowing parameters: truncation orders of the expansions for each
region ðN1; N2; N3Þ; maximum step size along the spatial coordi-
nate during the numerical solution of the transformed system
(MaxStepSize parameter of the NDSolve subroutine [10]). Such

parameter is indirectly controlled via the minimum number of
steps in the domain discretization allowed for in the algorithm
(parameter MS, which stands for Max Steps).

The values of Peclet number adopted in the present analysis
were Pe = 1, 10, 30 and 100. The dimensionless longitudinal lengths
used in the simulations for each Peclet number are listed in Table 1
below, which have proven to be compatible with the physical
problem here formulated, i.e., they are sufficiently large so as to
warrant satisfaction of the prescribed boundary conditions at the
inlet and outlet of the channel.

The constructed computer code was first verified against the
thermal problem results for transient convection within smooth
parallel-plates channels [13,14] with one single region, i.e., just
the heat transfer section. A thorough convergence analysis was
then undertaken on the bulk and centerline temperature results

Table 1
Dimensionless lengths of the sub-domains for each Peclet number used in the
simulations.

Pe Dimensionless lengths

L1 L2 L

1 200 230 280
10 5 10 15
30 1 5 6
100 0.15 4.15 4.45

Table 2
Convergence behavior of the centerline temperature as function of the dimensionless
time for Pe = 30 along the three sub-regions of a smooth channel with different
truncation orders N1 and N2 ¼ 8, N3 ¼ 4 and MS = 50.

t n N1 ¼ 2 N1 ¼ 4 N1 ¼ 6 N1 ¼ 8

Centerline temperature
0.1 0.05 1.00186 0.99669 0.99815 0.99771

0.09 0.99858 0.98834 0.99064 0.98999
0.13 0.98290 0.96775 0.97071 0.96988
0.17 0.94467 0.92650 0.92975 0.92884
0.21 0.87445 0.85637 0.85943 0.85857
0.25 0.76784 0.75289 0.75534 0.75462
0.29 0.62938 0.61934 0.62100 0.62046
0.33 0.47374 0.46877 0.46967 0.46930
0.37 0.32224 0.32120 0.32158 0.32134

0.5 0.05 1.00002 0.99962 0.99974 0.99970
0.14 0.99881 0.99672 0.99715 0.99702
0.23 0.98762 0.98218 0.98316 0.98287
0.32 0.94645 0.93767 0.93925 0.93880
0.41 0.85043 0.84088 0.84280 0.84226
0.50 0.68889 0.68140 0.68316 0.68266
0.59 0.48152 0.47710 0.47828 0.47792
0.68 0.27631 0.27454 0.27511 0.27490
0.77 0.12341 0.12326 0.12347 0.12339
0.86 0.04082 0.04118 0.04124 0.04123

1.0 0.10 0.99985 0.99984 0.99984 0.99984
0.26 0.99964 0.99943 0.99946 0.99945
0.42 0.99664 0.99547 0.99562 0.99557
0.58 0.97813 0.97480 0.97526 0.97510
0.74 0.91262 0.90717 0.90809 0.90780
0.90 0.76446 0.75879 0.76010 0.75972
1.06 0.52500 0.52262 0.52223 0.52308
1.22 0.26621 0.26700 0.26704 0.26714
1.38 0.10090 0.10103 0.10104 0.10107
1.54 0.02708 0.02702 0.02703 0.02704

1.5 0.30 0.99985 0.99984 0.99984 0.99984
0.52 0.99962 0.99949 0.99950 0.99950
0.74 0.99654 0.99573 0.99581 0.99577
0.96 0.97918 0.96987 0.97210 0.97164
1.18 0.75643 0.75519 0.75517 0.75562
1.40 0.45739 0.45761 0.45764 0.45788
1.62 0.24305 0.24358 0.24361 0.24372
1.84 0.10587 0.10622 0.10623 0.10627
2.06 0.03380 0.03389 0.03389 0.03390

1.9 0.20 0.99985 0.99985 0.99985 0.99985
0.48 0.99985 0.99984 0.99984 0.99984
0.76 0.99962 0.99951 0.99952 0.99952
1.04 0.96859 0.95545 0.95366 0.95729
1.32 0.63269 0.63222 0.63220 0.63264
1.60 0.36454 0.36431 0.36430 0.36453
1.88 0.19564 0.19567 0.19568 0.19579
2.16 0.09006 0.09023 0.09024 0.09028
2.44 0.03111 0.03120 0.03121 0.03122
2.72 0.00679 0.00680 0.00680 0.00680
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so as to provide confidence on the numerical results to be reported.
For instance, Tables 2 and 3 bring the convergence behavior of the
centerline and bulk temperatures, respectively, for Pe = 30 in the
case of a smooth walls duct. Clearly, the expansions convergence
rates improve with both increasing dimensionless time and longi-
tudinal coordinate, as expected, within the range of these indepen-
dent variables as covered in Tables 2 and 3. In synthesis, the
adoption of the truncation orders N1 ¼ 8; N2 ¼ 8 and N3 ¼ 4 was
sufficient to provide three to four converged significant digits in
the temperature field throughout these tabulated results, in a fairly
wide range of dimensionless time and longitudinal coordinate and
for the proposed values of Peclet number. It was also observed,
though not evident from the single Pe number tables here pre-
sented, that the truncation order of the expansions is required to
gradually increase as Pe increases.

In the sequence, Tables 4 and 5 illustrate the convergence
behavior of the centerline and bulk temperatures, respectively,
for the wavy channel case, with Pe = 30 and a ¼ 0:1, by varying
the sub-domains discretization parameter MS (maximum number
of steps) and with N1 ¼ 4; N2 ¼ 8 and N3 ¼ 4. Here the objective is
to illustrate the effect of demanding more refined grids from the
Method of Lines numerical solution, and it has been verified that
the results are apparently converged to at least four significant dig-
its with MS = 150. Thus, this particular combination of parameters
values was utilized for all subsequent simulations.

Next, an attempt was made of validating the present analysis,
for the smooth parallel-plates case, against a previously reported
analytical solution [19] that accounts for the upstream adiabatic
region, under steady laminar forced convection for low Peclet
numbers. Fig. 3 thus presents such comparison in terms of the
dimensionless bulk temperature, where only the behavior along

Table 3
Convergence behavior of the bulk temperature as function of the dimensionless time
for Pe = 30 along the three sub-regions of a smooth channel with different truncation
orders N1 and N2 ¼ 8; N3 ¼ 4 and MS = 50.

t n N1 ¼ 2 N1 ¼ 4 N1 ¼ 6 N1 ¼ 8

Bulk temperature
0.1 0.05 0.98772 0.98774 0.98779 0.98779

0.09 0.96227 0.96278 0.96289 0.96291
0.13 0.91567 0.91735 0.91755 0.91758
0.17 0.84351 0.84663 0.84689 0.84694
0.21 0.74526 0.74919 0.74947 0.74952
0.25 0.62488 0.62838 0.62860 0.62865
0.29 0.49100 0.49303 0.49314 0.49317
0.33 0.35628 0.35667 0.35668 0.35668
0.37 0.23501 0.23438 0.23434 0.23433

0.5 0.05 0.99902 0.99892 0.99892 0.99892
0.14 0.99139 0.99096 0.99094 0.99094
0.23 0.96276 0.96240 0.96242 0.96242
0.32 0.89243 0.89335 0.89345 0.89347
0.41 0.76603 0.76870 0.76889 0.76892
0.50 0.58916 0.59222 0.59242 0.59245
0.59 0.39093 0.39261 0.39273 0.39274
0.68 0.21385 0.21397 0.21402 0.21401
0.77 0.09167 0.09130 0.09132 0.09133
0.86 0.02933 0.02913 0.02915 0.02916

1.0 0.10 0.99982 0.99981 0.99981 0.99981
0.26 0.99903 0.99889 0.99888 0.99888
0.42 0.99243 0.99193 0.99190 0.99190
0.58 0.96205 0.96136 0.96135 0.96134
0.74 0.87438 0.87460 0.87465 0.87465
0.90 0.70359 0.70537 0.70550 0.70555
1.06 0.41799 0.41997 0.42005 0.42021
1.22 0.19611 0.19680 0.19683 0.19690
1.38 0.07252 0.07260 0.07261 0.07263
1.54 0.01904 0.01899 0.01900 0.01901

1.5 0.30 0.99983 0.99982 0.99982 0.99982
0.52 0.99929 0.99919 0.99918 0.99918
0.74 0.99381 0.99338 0.99336 0.99335
0.96 0.95015 0.94894 0.94903 0.94961
1.18 0.58119 0.58104 0.58104 0.58139
1.40 0.34425 0.34446 0.34448 0.34466
1.62 0.18146 0.18187 0.18189 0.18198
1.84 0.07810 0.07836 0.07837 0.07840
2.06 0.02452 0.02458 0.02458 0.02459

1.9 0.20 0.99985 0.99985 0.99985 0.99985
0.48 0.99984 0.99983 0.99983 0.99983
0.76 0.99936 0.99927 0.99927 0.99927
1.04 0.83701 0.83763 0.83759 0.83819
1.32 0.48041 0.48011 0.48010 0.48043
1.60 0.27577 0.27560 0.27560 0.27577
1.88 0.14738 0.14741 0.14742 0.14750
2.16 0.06729 0.06742 0.06743 0.06746
2.44 0.02293 0.02300 0.02300 0.02301
2.72 0.00491 0.00491 0.00491 0.00492

Table 4
Convergence behavior of the centerline temperature as function of the dimensionless
time for Pe = 30 along the three sub-regions of a corrugated channel ða ¼ 0:1Þ with
different values of the sub-domains discretization parameter MS and N1 ¼ 4; N2 ¼ 8
and N3 ¼ 4.

t n MS = 100 MS = 150 MS = 200

Centerline temperature
0.1 0.05 0.96101 0.96103 0.96102

0.08 0.88657 0.88662 0.88661
0.11 0.74938 0.74940 0.74939
0.14 0.55846 0.55842 0.55842
0.17 0.35510 0.35501 0.35502
0.20 0.18778 0.18778 0.18780

0.5 0.05 0.99962 0.99962 0.99962
0.14 0.99672 0.99672 0.99672
0.23 0.98218 0.98218 0.98218
0.32 0.93768 0.93767 0.93767
0.41 0.84089 0.84088 0.84088
0.50 0.68140 0.68139 0.68139
0.59 0.47707 0.47708 0.47708
0.68 0.27451 0.27454 0.27455
0.77 0.12328 0.12330 0.12330
0.86 0.04121 0.04121 0.04120

1.0 0.10 0.99984 0.99984 0.99984
0.26 0.99943 0.99943 0.99943
0.42 0.99547 0.99547 0.99547
0.58 0.97480 0.97480 0.97480
0.74 0.90717 0.90716 0.90716
0.90 0.75880 0.75879 0.75878
1.06 0.56627 0.56578 0.56567
1.22 0.33640 0.33612 0.33604
1.38 0.09140 0.09139 0.09137
1.54 0.01859 0.01857 0.01857

1.5 0.30 0.99984 0.99984 0.99984
0.52 0.99949 0.99949 0.99949
0.74 0.99573 0.99573 0.99573
0.96 0.97002 0.96971 0.96960
1.18 0.90198 0.90066 0.90034
1.40 0.33787 0.33746 0.33735
1.62 0.15549 0.15529 0.15524
1.84 0.10100 0.10089 0.10085
2.06 0.02252 0.02250 0.02249

1.9 0.20 0.99985 0.99985 0.99985
0.48 0.99984 0.99984 0.99984
0.76 0.99951 0.99951 0.99951
1.04 0.99679 0.99667 0.99639
1.32 0.59252 0.59161 0.59137
1.60 0.21974 0.21939 0.21930
1.88 0.17429 0.17401 0.17395
2.16 0.04220 0.04214 0.04213
2.44 0.02116 0.02114 0.02113
2.72 0.00370 0.00369 0.00369
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the heat transfer section is presented. Different values of a modi-
fied Peclet number are employed, here called PeT , according to
the definition in [19]. A fairly good adherence between the two
independent solutions can be observed providing further valida-
tion to the proposed hybrid methodology. Also, one may already
observe the marked influence of the axial diffusion along the fluid
on the temperature behavior within the actual heat transfer
section.

The influence of the axial heat diffusion on the channel tran-
sient thermal response is now more closely examined and Fig. 4a
and b show a comparison of the transient behavior of the bulk tem-
perature in a smooth channel for the cases of Pe = 1 and 30 and at
different dimensionless times. One must observe that the longitu-
dinal coordinate was multiplied by the Peclet number in these
graphs, so that the resulting variable is essentially the channel
length normalized by the transversal dimension. Clearly, the lower
Pe number case (Pe = 1) involves a much more significant partici-

pation of the upstream region in the channel thermal behavior,
within a longer transient process as well. For the higher value of
Pe = 30, the participating upstream region is quite reduced in com-
parison with the previous case, while in terms of dimensionless
time the steady state is achieved much faster.

Fig. 5 then illustrates the influence of the axial heat diffusion
within the fluid for the steady state dimensionless bulk tempera-
tures along the channel for Pe = 1, 10, and 30, and especially across
the interface between the upstream adiabatic region and the heat
transfer section. The pre-cooling (or pre-heating) effect provided
by the presence of the upstream region is quite noticeable for
the lower values of Peclet number (Pe = 1 and 10), which is quite
relevant along the transient state as well, as shown in Fig. 4. As a
result, a heat transfer enhancement effect is in fact observed,
resulting in lower temperature values within the same physical re-
gion, for decreasing Peclet number. As can be deduced, significant
errors may occur if experimental results are employed to estimate
Nusselt numbers that assume the inlet temperature at the heat
transfer section inlet as having the same value as the uniform tem-
perature at the upstream region inlet, as usually considered for or-
dinary liquids at the macro-scale.

The next step in the present analysis is the illustration of the
adequacy of the approximate velocity field, Eqs. (1), in describing
the flow behavior within the wavy channel, as shown below in
Fig. 6. As previously mentioned, the simplified approach is ex-
pected to provide reasonable results for lower values of the Rey-
nolds number and for smoother corrugations. Thus, numerical
results for the full Navier-Stokes formulation were employed in
the verification of the present approximate analytical solutions,
as obtained from the GITT hybrid numerical-analytical solution
available in [17]. For instance, Fig. 6a presents the longitudinal
velocity component at different axial positions along the corru-
gated section, for the chosen values of Re = 10 and a ¼ 0:1, while
Fig. 6b and c present the longitudinal velocity component for pro-
gressively less smooth corrugations, with a ¼ 0:2 and a ¼ 0:3,
respectively. It can be noticed that the increase in wall corrugation
amplitude leads to a less accurate velocity component as obtained
from the approximate relations of Eqs. (1), especially in regions
closer to the inlet of the wavy region. Also, increasing the Reynolds

Table 5
Convergence behavior of the bulk temperature as function of the dimensionless time
for Pe = 30 along the three sub-regions of a corrugated channel ða ¼ 0:1Þ with
different values of the sub-domains discretization parameter MS and N1 ¼ 4; N2 ¼ 8
and N3 ¼ 4.

t n MS = 100 MS = 150 MS = 200

Bulk temperature
0.1 0.05 0.90490 0.90492 0.90491

0.08 0.78181 0.78184 0.78183
0.11 0.61260 0.61260 0.61260
0.14 0.42326 0.42322 0.42322
0.17 0.25115 0.25109 0.25111
0.20 0.12509 0.12509 0.12510

0.5 0.05 0.99892 0.99892 0.99892
0.14 0.99096 0.99096 0.99096
0.23 0.96241 0.96240 0.96240
0.32 0.89335 0.89335 0.89335
0.41 0.76870 0.76870 0.76870
0.50 0.59221 0.59221 0.59221
0.59 0.39259 0.39260 0.39260
0.68 0.21396 0.21397 0.21398
0.77 0.09132 0.09132 0.09133
0.86 0.02916 0.02915 0.02915

1.0 0.10 0.99981 0.99981 0.99981
0.26 0.99889 0.99889 0.99889
0.42 0.99193 0.99193 0.99193
0.58 0.96137 0.96136 0.96136
0.74 0.87460 0.87460 0.87460
0.90 0.70543 0.70539 0.70537
1.06 0.49158 0.49103 0.49086
1.22 0.24372 0.24354 0.24348
1.38 0.05385 0.05383 0.05383
1.54 0.01254 0.01253 0.01252

1.5 0.30 0.99982 0.99982 0.99982
0.52 0.99919 0.99919 0.99919
0.74 0.99338 0.99338 0.99338
0.96 0.95029 0.94923 0.94882
1.18 0.71454 0.71342 0.71314
1.40 0.20636 0.20609 0.20602
1.62 0.12681 0.12666 0.12661
1.84 0.07906 0.07897 0.07894
2.06 0.01336 0.01335 0.01335

1.9 0.20 0.99985 0.99985 0.99985
0.48 0.99983 0.99983 0.99983
0.76 0.99927 0.99927 0.99927
1.04 0.91993 0.91767 0.91708
1.32 0.37605 0.37549 0.37534
1.60 0.17770 0.17741 0.17734
1.88 0.13025 0.13004 0.12999
2.16 0.02830 0.02826 0.02825
2.44 0.01768 0.01766 0.01765
2.72 0.00219 0.00219 0.00218
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Fig. 3. Comparison of dimensionless bulk temperatures from present GITT solution
and from analytical steady state solution in [19] for a smooth parallel-plates
channel with an upstream adiabatic region and low Peclet number.
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number leads to some loss of accuracy in the simplified solution,
but one can see from Fig. 6d below that the results are still reason-
ably accurate for the case of Re = 100 and a ¼ 0:1, and apparently
the increase in corrugation amplitude of Fig. 6b and c was more
significant in deviating the approximate solution from the con-
verged GITT results for the full Navier-Stokes formulation than
the increase in Reynolds number of Fig. 6d. The comparisons of
the longitudinal velocity component are emphasized since the re-
lated convective term is the most important one in the heat trans-
fer problem to be addressed.

Fig. 7 illustrates the transient behavior of the bulk temperature
in the wavy channel for Pe = 10 and a ¼ 0:1, where the dashed line
denotes the interface between the adiabatic region 1 and the cor-
rugated section, region 2. Clearly, we may see that due to the

low Peclet number, the axial diffusion along the fluid promotes a
sensible effect on the bulk temperature evolution within the access
region (region 1) along the transient period. The steady state re-
sults are however closer to the situation of an unheated inlet sec-
tion, which would be obtained by the model that neglects axial
diffusion of heat within the fluid. Therefore, for micro-channel
applications that involve low Peclet numbers, the behavior of the
thermal wave front can be markedly affected by the presence of
an adiabatic inlet section. It can also be observed that the bulk
temperature behavior downstream already presents a slight fluctu-
ating shape due to the presence of the wall corrugations, though
the lower values of Peclet tend to smear our the oscillations.

Next, Fig. 8 illustrates the effect of the Peclet number on the
bulk temperatures temperature in the wavy channel with a ¼ 0:1
for the steady state situation, by taking the two values Pe = 10
and 30. Similarly to the smooth channel situation, one may clearly
observe the more significant participation of region 1 in the ther-
mal exchange due to the lower value of Pe, but also the more pro-
nounced effects on the bulk temperature fluctuations due to the
wall corrugations in the case of a smaller axial diffusion of heat
(Pe = 30), when the transversal effects start playing a major role
with respect to the longitudinal conduction.

For the heat transfer enhancement analysis it is of interest to
evaluate the behavior of the Nusselt number under different corru-
gation conditions. Fig. 9, for instance, illustrates the local Nusselt
number results for Pe = 10 and a ¼ 0:1 and 0.2. The smooth paral-
lel-plates case is also plotted for reference purposes, as the solid
black line. One may see that even with the lower corrugation
amplitude value some noticeable heat transfer enhancement is al-
ready evident, and marked increases in the local heat transfer coef-
ficient are achieved for the higher corrugation amplitude value for
this value of Pe.

4. Conclusions

Laminar forced convection in low Reynolds number flows with-
in channels with smooth and corrugated walls was analyzed and
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Fig. 4. Transient behavior of the dimensionless bulk temperature in smooth
parallel-plates channel along both the upstream adiabatic region and the heat
transfer section (dashed line is the interface between the two regions): (a) Pe = 1;
(b) Pe = 30.
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Fig. 6. Comparison of longitudinal velocity component for corrugated channel from approximate solution [6] and GITT solution [17] for: (a) Re = 10 and a ¼ 0:1; (b) Re = 10
and a ¼ 0:2; (c) Re = 10 and a ¼ 0:3; (d) Re = 100 and a ¼ 0:1.
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discussed to investigate possible heat transfer enhancement ef-
fects. The physical modeling for the thermal problem includes dis-
continuities in the boundary conditions at the channel walls,
considering the interfaces between entrance and exit adiabatic re-
gions and an intermediate heat transfer section. The thermal prob-
lem was then solved with the Generalized Integral Transform
Technique (GITT) applied in partial transformation mode and with
a transient formulation. The presented results exploited the bulk
temperature field and the local Nusselt number within the heat
transfer section of the channel. The axial diffusion effect along
the fluid was first examined for a smooth parallel-plates channel,

in light of the lower values of Peclet number achievable in such
applications due to the expectable low values of Reynolds number.
The importance of accounting for an upstream adiabatic region
was discussed, illustrating the resulting marked changes on the
temperature distribution behavior within the actual heat transfer
section. Then, for the corrugated heat transfer section case, the
velocity field was obtained by making use of an approximate solu-
tion methodology, shown to be appropriate for small scale corruga-
tions and low Reynolds numbers. From such results, one may
notice the combined influence on the heat transfer enhancement
along the heat transfer section due to both the low values of Peclet
number and the presence of corrugated walls. The analysis may
now proceed towards the utilization of optimization schemes
aimed at the identification of wall profiles for optimally enhanced
heat transfer, which can then be reconfirmed by the more accurate
solution of the flow problem employing the GITT itself, as previ-
ously accomplished in [17].
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