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SUMMARY

A hybrid numerical–analytical solution based on the generalized integral transform technique is proposed
to handle the two-dimensional Navier–Stokes equations in cylindrical coordinates, expressed in terms
of the streamfunction-only formulation. The proposed methodology is illustrated in solving steady-state
incompressible laminar flow of Newtonian fluids in the developing region of a circular tube. The flow
modeling also considers two limiting inlet conditions, namely, uniform velocity profile representing a
parallel flow, and zero vorticity that characterizes irrotational inlet flow. The integral transform analysis
for such a full cylindrical region brings up singularities at the channel centerline, and, as previously
described in a work dealing with the boundary-layer formulation, a way to alleviate this difficulty is to
adopt a recently introduced fourth-order eigenvalue problem as the basis for the eigenfunction expansion.
A thorough convergence analysis of the proposed expansion is then undertaken, for different values of
Reynolds number, and a set of reference results for the velocity distributions and friction factors are then
presented in tabular and graphical forms. Copyright q 2009 John Wiley & Sons, Ltd.
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INTRODUCTION

The solution of the Navier–Stokes equations remains a major research topic in computational
mechanics in light of the marked nonlinear characteristics associated with them. Applications
involving flows governed by such formulation have been used to test the consistency and robustness
of different numerical solution methodologies. Alternative tools based on spectral-type hybrid
numerical–analytical methodologies, contrasting with the more straightforward treatment of the
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1418 C. A. M. SILVA ET AL.

conventional numerical approaches for such partial differential models, were also developed and
are especially suitable for benchmark and covalidation purposes [1].

Along the years, the literature reveals the progressive development of hybrid schemes based
on eigenfunction expansions, which recently, due to the development of symbolic computation
platforms, have became more attractive due to the reduction on the analytical development effort.
Among such hybrid techniques, one may recall the generalized integral transform technique (GITT)
[2–8] that was successfully extended and became applicable to a large number of problems in
transport phenomena, including fluid flow problems under either the boundary layer or the full
Navier–Stokes formulations [9–28]. In such contributions, the preference for the streamfunction-
only formulation in two-dimensional situations is notorious, in light of the elimination of the
pressure field and automatic satisfaction of the continuity equation. The application of GITT to
the streamfunction-only formulation of two-dimensional flow problems leads to an eigenfunction
expansion resulting from the analytical solution of an appropriate fourth-order eigenvalue problem
related to the linear biharmonic equation. Problems related to the Cartesian coordinates system
were more frequently studied in comparison to those propositions of eigenfunction expansions in
the cylindrical coordinates system [20, 25, 28], possibly due to the inherent difficulties in avoiding
the singularities of the fourth-order eigenvalue problem at the circular duct centerline for a full
cylindrical region. These difficulties were circumvented in a recent work dealing with the boundary-
layer equations [28], by adopting an also recently introduced eigenvalue problem [29] which
accounts for the singularities at the central radial position.

The flow in the entrance region of a circular tube is still considered an important test problem for
assessment of different methodologies focused on the solution of internal fluid flow and convective
heat transfer [30, 31]. A literature survey reveals classical works that dealt with the solution
of the Navier–Stokes equations in an approximate analytical way or through purely numerical
techniques, such as the linearization approach by Sparrow et al. [32] and the early solutions with
finite differences by Hornbeck [33] and Liu [34]. In addition, Friedmann et al. [35] investigated
hydrodynamically developing flow in a circular tube at low and moderate Reynolds numbers,
also using a finite difference scheme to numerically solve the problem. They obtained numerical
velocity profiles and an analytic solution for the limiting case of vanishing Reynolds number,
performing several comparisons with results then available in the literature.

In this context, the GITT approach with its intrinsic characteristic of finding solutions with auto-
matic global error control, opened up an alternative perspective in benchmarking and covalidation
for such classical test problems [2–8]. At the present stage, the GITT methodology was already
successfully employed in the solution of the boundary-layer formulation version of this same
problem, by adopting an appropriate fourth-order eigenvalue problem in the cylindrical coordinates
system that could exactly deal with the singularities of the Bessel functions at the tube centerline
[28, 29]. The resulting system of transformed streamfunctions then offered an ordinary differential
equation (ODE) system as an initial value problem along the axial coordinate, due to the parabolic
nature of the modeling equations. Following the same line of research, the present work is thus
aimed at utilizing the ideas in the GITT methodology to construct a hybrid analytical–numerical
solution, now for the full Navier–Stokes equations. By adopting the same fourth-order eigenvalue
problem, the transformed streamfunctions system results in a fourth-order boundary value problem
to be numerically solved along the axial coordinate. Computation of the velocity field and friction
factor along the entrance region is performed for various values of Reynolds number, following a
thorough convergence analysis of the eigenfunction expansions. Critical comparisons with earlier
published works are also performed to allow for a covalidation against the present GITT results.

ANALYSIS

Laminar flow of a Newtonian fluid is considered along the developing region of a circular tube as
shown in Figure 1. The flow is assumed to be incompressible and physical properties are considered
constant. The steady two-dimensional continuity equation, together with the full Navier–Stokes
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Figure 1. Geometry and coordinates system for hydrodynamically developing flow in circular duct.

equations in cylindrical coordinates, are used to model the flow. Two different inlet conditions are
analyzed for a known longitudinal velocity component vz at the channel entrance, i.e. parallel inlet
flow (vr =0) and irrotational inlet flow (�vr/�z=0). Fully developed flow conditions are attained
at a sufficiently large channel length, recovering the parabolic flow structure for the velocity
field. Therefore, the modeling of this flow field, in the region 0<r<1 and z>0, in terms of the
streamfunction-only formulation such as described in [28] is written, in dimensionless form, as:
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The above streamfunction-only formulation, Equations (1)–(9), has been preferred in the integral
transform solution of flow problems in light of the elimination of the pressure field and for auto-
matically satisfying the continuity equation. Also, the definition of the functions �∞(r)≡�(∞,r)
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and �(r, z), which represent, respectively, the streamfunction at the fully developed region and the
filtered potential to be actually solved for, makes it possible to homogenize the problem boundary
conditions in the radial coordinate. Such functions are related to the original streamfunction in the
following form:

�(r, z) = �∞(r)+�(r, z) (12)

�∞(r) = r2
(
r2

2
−1

)
(13)

The velocity components in the longitudinal (z) and radial (r) directions are given in terms of
the streamfunction, respectively, as
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The dimensionless groups employed in the above equations are defined as:

r =r∗/rw, z= z∗/rw, vr =v∗
r /u0, vz =v∗

z /u0, p= p∗/�u20, Re=2u0rw/� (16)

In order to obtain the solution of the PDE system given by Equations (1)–(9) through the GITT
approach, the following integral transform pair for the streamfunction field is developed [28]:
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where Xi (r) are the eigenfunctions of an appropriate eigenvalue problem as discussed in details
in References [28, 29], which is given as
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The operators E2 and E4 above are just the reduced forms of the previously defined ones in
Equations (10), (11), as applied to a function of one single argument, r , and whose solution is of
the following form:

Xi (r)=r2− r J1(�i r)

J1(�i )
(26)

The eigenvalues �i ’s are computed from the following transcendental equation:
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The eigenfunctions satisfy the following orthogonality property:
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The normalization integral Ni is then computed from:
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Now, the next step is thus to accomplish the integral transformation of the original partial
differential system given by Equations (1)–(9). For this purpose, Equation (1), followed by the
inlet an outflow boundary conditions given by Equations (6)–(9), are multiplied by [Xi (r)/r ],
integrated over the domain in r [0,1], and the inverse formula given by Equation (18) is employed.
After the usual manipulations, the following coupled ordinary differential system results, for the
calculation of the transformed potentials �̄i (z):
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where the coefficients of the ordinary differential system are given by the following expressions:

Ai j =
∫ 1

0
Xi (r)X j (r)

dr

r
(35)

Bi jk =
∫ 1

0
Xi (r)

[
X ′′′

j (r)Xk(r)

r2
−3

X ′′
j (r)Xk(r)

r3
+3

X ′
j (r)Xk(r)

r4

− X ′
j (r)Xk

′′(r)
r2

+ X ′
j (r)X

′
k(r)

r3

]
dr (36)

Ci jk =
∫ 1

0
Xi (r)

[
X j (r)X ′

k(r)

r2
−2

X j (r)Xk(r)

r3

]
dr (37)

Di jk = −
∫ 1

0

Xi (r)X ′
j (r)Xk(r)

r2
dr (38)

Ei j =
∫ 1

0
Xi (r)

[
X ′

j (r)

r3
− X ′′

j (r)

r2

]
d�∞(r)

dr
dr (39)

Fi j = −
∫ 1

0

Xi (r)X j (r)

r2
d�∞(r)

dr
dr (40)
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In order to numerically handle the ODE system given by Equations (30)–(34), we have here
employed subroutine DBVPFD of the IMSL Library [36]. It is then necessary to truncate the
infinite series in a sufficiently large number of terms (NV) so as to guarantee the requested overall
relative error in obtaining the original potentials. This subroutine solves a (parameterized) system
of differential equations with boundary conditions at two points, using a variable order, variable
step size finite difference method with deferred corrections. It also provides the important feature of
automatically controlling the relative error in the solution of the ODEs system, allowing the user
to establish error targets for the transformed potentials.

Once the transformed potentials �̄i (z) are available, the velocity field is obtained from the
definition of the streamfunction given by Equations (14) and (15), after introducing the inverse
formula (18). In addition, the product of the Fanning friction factor-Reynolds number, fRe, is
obtained from its usual definition, and the following working expressions are constructed:
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To make use of subroutine DBVPFD, it is necessary to rewrite the fourth-order system as a first
order one, through the following transformations in terms of a solution vector:
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Therefore, introducing the definitions above in Equations (30)–(34) and truncating the infinite
series in a sufficiently large truncation order, NV, the transformed system takes the following form:
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The above coupled ordinary differential system for the transformed potentials �̄i (z) has boundary
conditions specified at infinity, and it is also convenient to propose a domain transformation to map
the longitudinal coordinate in the following form: z∈[0,∞)→�∈[0,1]. This can be achieved for
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NV∑
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RESULTS AND DISCUSSION

Numerical results for the velocity profiles and the product of the Fanning friction factor-Reynolds
number were produced along the entrance region of a circular tube, for two types of boundary

Table I. Convergence behavior of the longitudinal velocity component along the centerline of the duct for
different axial positions: (a) Re=0, (b) Re=40, (c) Re=500.

Z

NV 0.05 0.1 0.15 0.2 0.25 0.4 0.6 0.8 1.0 1.7

Re=0;vz(0, z)
4 1.349 1.301 1.282 1.296 1.333 1.509 1.733 1.875 1.948 1.999
8 1.207 1.159 1.167 1.211 1.272 1.483 1.723 1.871 1.947 1.999
12 1.136 1.105 1.134 1.190 1.257 1.475 1.720 1.870 1.946 1.999
16 1.095 1.082 1.122 1.181 1.250 1.471 1.717 1.869 1.946 1.999
20 1.069 1.071 1.116 1.177 1.246 1.469 1.716 1.868 1.946 1.999
24 1.053 1.065 1.112 1.174 1.244 1.467 1.715 1.868 1.945 1.999
28 1.043 1.062 1.110 1.172 1.242 1.466 1.715 1.868 1.945 1.999
32 1.036 1.059 1.108 1.170 1.240 1.465 1.714 1.867 1.945 1.999
36 1.031 1.057 1.107 1.169 1.239 1.464 1.714 1.867 1.945 1.999
40 1.028 1.056 1.106 1.168 1.238 1.463 1.713 1.867 1.945 1.999
44 1.025 1.055 1.105 1.167 1.238 1.463 1.713 1.867 1.945 1.999
48 1.024 1.054 1.104 1.167 1.237 1.462 1.713 1.867 1.945 1.999
Reference [35] 1.0122 1.0458 1.0963 1.1593 1.2304 1.46 1.71 1.87 1.91 2.00

0.1 0.25 0.3 0.5 0.7 0.75 1.0 1.25 4.88

Re=40;vz(0, z)
4 1.301 1.190 1.181 1.232 1.334 1.361 1.487 1.593 1.981
8 1.136 1.096 1.111 1.206 1.319 1.348 1.480 1.589 1.981
12 1.072 1.079 1.097 1.196 1.312 1.341 1.476 1.587 1.980
16 1.046 1.071 1.090 1.191 1.308 1.338 1.474 1.585 1.980
20 1.034 1.066 1.086 1.187 1.306 1.336 1.472 1.584 1.980
24 1.028 1.063 1.083 1.185 1.304 1.334 1.471 1.583 1.980
28 1.024 1.061 1.081 1.184 1.303 1.333 1.471 1.583 1.980
32 1.021 1.060 1.080 1.182 1.302 1.332 1.470 1.582 1.980
36 1.020 1.058 1.078 1.181 1.301 1.331 1.469 1.582 1.980
40 1.018 1.057 1.077 1.181 1.301 1.331 1.469 1.582 1.980
44 1.017 1.057 1.077 1.180 1.300 1.330 1.469 1.582 1.980
Reference [35] 1.008 1.0484 1.074 1.1738 1.310 1.3263 1.4664 1.5799 1.980

0.5 1.0 3.0 5.0 7.0 9.0 11.0 56

Re=500;vz(0, z)
4 1.278 1.220 1.286 1.389 1.470 1.538 1.596 1.980
8 1.099 1.126 1.289 1.389 1.468 1.536 1.595 1.980
12 1.062 1.124 1.283 1.384 1.464 1.533 1.593 1.980
16 1.058 1.119 1.279 1.380 1.461 1.530 1.591 1.980
20 1.055 1.116 1.276 1.378 1.459 1.529 1.589 1.980
22 1.053 1.114 1.275 1.377 1.459 1.528 1.589 1.980
Reference [35] 1.0563 1.1337 1.2827 1.3836 1.4655 1.5352 1.5955 1.980

Inlet conditions: vz =1 and vr =0 (parallel flow).
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Table II. Convergence behavior of the longitudinal velocity component along the
centerline of the duct for different axial positions: [correction made here after

initial online publication] (a) Re=0, (b) Re=40, (c) Re=500.

Z

NV 0.05 0.1 0.15 0.2 0.25 0.4 0.6 0.8 1.0 1.7

Re=0;vz(0, z)
4 1.368 1.376 1.410 1.460 1.519 1.694 1.856 1.941 1.979 2.000
8 1.243 1.272 1.336 1.412 1.489 1.687 1.858 1.943 1.980 2.000
12 1.186 1.237 1.318 1.402 1.483 1.686 1.858 1.944 1.981 2.000
16 1.156 1.223 1.311 1.399 1.481 1.685 1.858 1.944 1.981 2.000
20 1.138 1.216 1.308 1.397 1.479 1.685 1.859 1.945 1.981 2.000
24 1.127 1.213 1.306 1.395 1.478 1.685 1.859 1.945 1.981 2.000
28 1.121 1.211 1.305 1.394 1.478 1.684 1.859 1.945 1.981 2.000
32 1.116 1.210 1.304 1.394 1.477 1.684 1.859 1.945 1.981 2.000
36 1.113 1.209 1.303 1.393 1.477 1.684 1.859 1.945 1.981 2.000
40 1.112 1.208 1.303 1.393 1.476 1.684 1.859 1.945 1.981 2.000

0.1 0.25 0.3 0.5 0.7 0.75 1.0 1.25 4.88

Re=40;vz(0, z)
4 1.289 1.277 1.296 1.401 1.506 1.530 1.631 1.708 1.986
8 1.166 1.241 1.277 1.412 1.524 1.549 1.650 1.725 1.986
12 1.129 1.238 1.277 1.418 1.533 1.558 1.659 1.733 1.987
16 1.115 1.237 1.276 1.422 1.538 1.563 1.664 1.737 1.987
20 1.110 1.237 1.278 1.425 1.542 1.566 1.668 1.740 1.987
24 1.107 1.237 1.278 1.426 1.544 1.569 1.670 1.742 1.987
28 1.105 1.237 1.279 1.427 1.546 1.571 1.672 1.744 1.987
32 1.104 1.237 1.279 1.429 1.547 1.572 1.673 1.745 1.987

0.5 1.0 3.0 5.0 7.0 9.0 11.0 56

Re=500;vz(0, z)
4 1.271 1.235 1.313 1.411 1.489 1.553 1.610 1.981
8 1.127 1.178 1.328 1.421 1.495 1.559 1.615 1.981
12 1.117 1.188 1.332 1.424 1.498 1.562 1.617 1.981
16 1.122 1.191 1.334 1.426 1.500 1.563 1.618 1.981
20 1.123 1.193 1.335 1.427 1.501 1.564 1.619 1.981
22 1.123 1.194 1.336 1.427 1.501 1.564 1.620 1.981

Inlet conditions: vz =1 and 	=0 (irrotational flow).

condition at the entrance: uniform parallel flow and irrotational flow. The computational code
was developed in FORTRAN 90/95 programming language and implemented on a PENTIUM-IV
1.3GHz computer. The routine DBVPFD from the IMSL Library [36] was used to numerically
handle the truncated version of the ordinary differential system, Equations (30)–(34), with a
prescribed relative error target of 10−4 for the transformed potentials. For the velocity field, the
results were produced with different truncation orders (NV�60) so as to illustrate the convergence
behavior, and for various values of Reynolds number, Re=0, 10, 20, 40, 100, 150, 200, 300, 400
and 500.

A set of tables was first prepared to illustrate the convergence behavior of the proposed eigen-
function expansion, in terms of the longitudinal velocity component at the duct centerline, for
both inlet boundary conditions and for the different values of the governing parameter, Reynolds
number. Table I(a) shows the convergence behavior of the longitudinal velocity component at the
centerline of the circular tube for the case Re=0, considering boundary condition of uniform
parallel flow at the channel inlet. This limiting case of the Navier–Stokes equation is of interest
in different applications related to ‘creeping flow’, and also allows for a direct comparison with
the results of Reference [35]. It can be observed that within the range of truncation order NV<48
there is convergence of the GITT solution already to three significant digits. In addition, this table
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Figure 2. Velocity profile development vz(r, z) in circular tube, compared against numerical results of
[35]. Uniform inlet flow. (a) Re=40 and (b) Re=500.

0

σ = 2z/Re 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

v z
(0

,z
)

Re = 40     Present Work
Re = 40     ref. [35]
Re = 200   Present Work
Re = 200   ref. [35]
Re = 500   Present Work
Re = 500   ref. [35]
Re =2000  ref. [28]

Re = ∞      ref. [35]

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Figure 3. Development of longitudinal velocity component at the channel centerline, compared against
numerical results of [35]. Uniform inlet flow.
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brings a comparison of the present results with those in Reference [35], and a reasonable agreement
to roughly the third digit is achieved. A very similar convergence pattern was observed for the
case Re=40, illustrated in Table I(b), together with the third digit agreement against the results
in Reference [35], again for the parallel inlet flow situation. Table I(c) is aimed at demonstrating
the effect of Reynolds number on the convergence behavior of the eigenfunction expansion, for
Re=500, again with excellent behavior offering practically a four digits convergence for truncation
orders as low as around NV=22, and reconfirming the agreement to three significant digits with
respect to previously published numerical results [35].

Tables II(a–c) present a similar set of results showing the convergence of the longitudinal
velocity component in the centerline of the duct, for Re=0, 40 and 500, respectively, but now
considering the inlet condition of irrotational flow. The convergence of the solution is again fully
reached to the third digit with NV<40 in the expansion, but in this case of irrotational inlet flow,
literature results are not readily available for direct comparison.

Figure 2(a) shows the development of the velocity profile vz(r, z) in the duct inlet region for
Re=40 considering uniform velocity profile at the entrance, compared against the results obtained
in [35]. An overall excellent agreement among the results is observed and the velocity profile
exhibits the well-known ‘overshooting’ behavior close to the inlet. As discussed in [32], the velocity
overshoots arise because a negative pressure gradient �p/�z establishes near the wall region a very
short distance downstream of the inlet (z=0) section, whereas a positive pressure zone exists in the
region near the centerline. Therefore, the flow near the centerline is not immediately accelerated
and the velocity overshoots are formed. Closer to the inlet region, more evident is the overshoot,
as can be seen from Figure 2(a). Also, Figure 2(b) shows the development of the velocity profile
vz(r, z) for the case Re=500, again for parallel inlet flow. The same conclusions may be reached,
but it should be noted that this case requires some changes on the parameter of scale compression to
accelerate the convergence of the boundary value problem for the transformed potentials, according
to the routine DBVPFD of the IMSL system. Again an excellent agreement among the results is
observed and the velocity overshoots are less pronounced.

In Figure 3 we display graphs of the longitudinal velocity component vz(0, z) along the centerline
of the duct as a function of the dimensionless coordinate 
=(2z/Re), together with comparisons
against the results reported in [35], for Re=40, 200, 500 and infinity (representative of the boundary
layer formulation). The attainment of the fully developed flow region is observed, besides the
tendency toward the boundary-layer results for increasing Reynolds number. The results found
through the GITT are in excellent graphical agreement with the results of [35].

Figure 4 again exhibits the longitudinal velocity component along the channel centerline, but
this time for both inlet flow conditions and Re=40 and 500. Here, the objective is to compare
the effects of the two inlet flow boundary conditions in relation to the boundary-layer behavior,
as also recently obtained via integral transforms [28]. For direct comparison against the original
boundary-layer solution [28], the dimensionless axial coordinate is taken as X+ =(z/2Re). As
for the parallel plate channel situation [13], the solution of the full Navier–Stokes equations
considering null vorticity at the entrance is closer to the solution obtained through the boundary
layer formulation in the vicinity of the duct inlet, especially for higher Reynolds numbers.

Figure 5 provides a comparison of the transversal velocity component profiles reported in the
present work with the results obtained from the implementation of the system of equations given
in Reference [28] using the boundary-layer model for a circular duct, also applying GITT. The
differences between the solutions from the boundary-layer model and from the full Navier–Stokes
equations are also quite evident for the radial velocity component, with a less disturbed flow pattern
at the channel inlet region being predicted by the boundary-layer approximation, which neglects
the radial pressure gradients. As expected, the two solutions approach each other for increasing
axial position toward the fully developed region.

Figures 6(a,b) offer an analysis of the transversal velocity component profiles comparing the
two inlet flow conditions considered here, for Reynolds numbers equal to 40 and 500, respectively.
For both Reynolds numbers, the imposition of irrotational flow at the channel entrance leads to a
shorter distance for the flow development, with a more marked difference for the lower Reynolds
numbers.
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Figure 5. Comparison of Navier–Stokes (Re=500) and boundary-layer [28] solutions for the radial velocity
component profiles. Uniform velocity profile (vz =1;vr =0).

Another comparison of the developing flow patterns for the two inlet conditions is provided in
Figures 7(a,b), which show the developing velocity profile vz(r, z) along the axial position of the
duct for Reynolds number equal to 40 and 500, respectively. Such as observed in the solution of
the Navier–Stokes equations for a parallel plates duct [13], when the inlet condition of the duct
is of irrotational flow, the velocity overshoots are hardly observable. For Reynolds number equal
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to 40, very close to the duct entrance, this behavior is still noticeable to the graph scale. Once
more, from these figures, it is clearly observable that the fully developed flow is reached within a
shorter channel length when the Navier–Stokes equations are complemented by the limiting inlet
condition of irrotational flow.

Finally, Figures 8(a,b) illustrates the results for the product of the Fanning friction factor and
Reynolds number as a function of the dimensionless axial position, X+. It can be observed, as
expected, that the product f·Re decreases until the fully developed region is reached, where this
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parameter assumes its well-known asymptotic value. Also, it should be recalled that the product
f·Re presents higher values in the entrance region of the circular tube due to the obviously higher
velocity gradients experienced by the fluid in this region, and despite the slower convergence of
the eigenfunction expansions very close to the inlet, the results represented were revealed to be
fully converged to the graph scale, offering a set of reference results for this quantity of practical
interest.

CONCLUSIONS

The integral transform method was applied in the hybrid numerical–analytical solution of the
Navier–Stokes equations in cylindrical coordinates. The streamfunction formulation was preferred
and the solid cylinder geometry was pursued for the purpose of handling the singularity at the
channel centerline. Adoption of a recently introduced eigenvalue problem allowed for a straightfor-
ward application of the GITT approach in the streamfunction formulation for such a full cylindrical
region. Hydrodynamically developing flow in a circular tube was chosen as a test case for the
present methodology extension. Numerical results for the velocity components and for the product
of the Fanning friction factor-Reynolds number were then produced for two different inlet condi-
tions, uniform and irrotational flow. The excellent agreement of the present results with previously
reported numerical implementations demonstrates the consistency of the proposed methodology
and constructed code. The same eigenfunction expansion employed here for laminar flow may be
equally utilized to produce results for the turbulent flow situation and/or non-Newtonian fluids,
by considering classical algebraic turbulence models and/or constitutive equations in the problem
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Figure 8. Development of the product fRe along the dimensionless axial coordinate X+ for various
Reynolds number. Inlet condition: (a) vz =1;vr =0 and (b) vz =1;	=0.

formulation, such as previously implemented for parallel plates channels [6, 16], but in principle
maintaining the same auxiliary problem structure.

NOMENCLATURE

Ai j , Bi jk,Ci jk coefficients defined by Equations (35), (36) and (37), respectively
c scale contraction parameter
Di jk,Ei j coefficients defined by Equations (38) and (39), respectively
Fi j coefficient defined by Equation (40)
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f Fanning friction factor
ḡi coefficient defined by Equation (41)
J1 Bessel function of the first kind and order one
Ni normalization integral
NV truncation order
p∗, p pressure field, dimensional and dimensionless, respectively
r∗, r radial coordinate, dimensional and dimensionless, respectively
Re Reynolds number
rw tube radius
u0 inlet and average velocity
v∗
r , vr radial velocity component, dimensional and dimensionless, respectively

v∗
z , vz longitudinal velocity component, dimensional and dimensionless, respectively
X+ dimensionless longitudinal coordinate
Xi (r) eigenfunctions
z∗, z longitudinal coordinate, dimensional and dimensionless, respectively
W solution vector used for the computational procedure

Greek letters

� coordinate in domain transformation
�i eigenvalues
� kinematic viscosity
� fluid density

 dimensionless longitudinal coordinate
�w wall shear stress
� filtered streamfunction

�̄i (z) transformed potential
� streamfunction
�∞ fully developed streamfunction
	 vorticity

Subscripts and Superscripts

i, j,k,m order from eigenvalue problems
w referred to the wall
– integral transformed quantities
∞ referred to fully developed situation
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