
LEARNING NETWORK NODE REPRESENTATIONS FROM STRUCTURAL

IDENTITY

Leonardo Filipe Rodrigues Ribeiro

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientador: Daniel Ratton Figueiredo

Rio de Janeiro

Junho de 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Pantheon

https://core.ac.uk/display/295397116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LEARNING NETWORK NODE REPRESENTATIONS FROM STRUCTURAL

IDENTITY

Leonardo Filipe Rodrigues Ribeiro

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE

SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. Daniel Ratton Figueiredo, Ph.D.

Prof. Felipe Maia Galvão França, Ph.D.

Prof. Pedro Olmo Stancioli Vaz De Melo, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

JUNHO DE 2017

Ribeiro, Leonardo Filipe Rodrigues

Learning Network Node Representations from

Structural Identity/Leonardo Filipe Rodrigues Ribeiro. –

Rio de Janeiro: UFRJ/COPPE, 2017.

XII, 67 p.: il.; 29, 7cm.

Orientador: Daniel Ratton Figueiredo

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2017.

Referências Bibliográficas: p. 63 – 67.

1. Feature Learning. 2. Node Embeddings. 3.

Structural Identity. I. Figueiredo, Daniel Ratton.

II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia de Sistemas e Computação. III.

T́ıtulo.

iii

“Não haverá borboletas se a vida

não passar por longas e

silenciosas metamorfoses.”

Rubem Alves

iv

Agradecimentos

Agradeço aos meus pais, Andreisa e José Ribeiro, por sempre acreditarem no meu

potencial e por, mesmo com todas as dificuldades, sempre terem apoiado meus

estudos. Às minhas irmãs, Fernanda e Flávia, pelo apoio mesmo distante e por

todo carinho dedicado a mim durante a vida. Agradeço também à Nathália Araujo,

por sempre me incentivar a perseguir meus sonhos, e com paciência suportar toda

tensão e ausência adivindas deste trabalho. Pelo consolo e afeto nos momentos de

angústia, não esquecerei. Amo muito todos vocês.

Agradeço ao meu orientador acadêmico, Professor Daniel, por todo o apoio e

conselhos durante a elaboração desse trabalho. Seu encantamento pela ciência e

ensino me motivaram na jornada do mestrado. Deixo claro que seus ensinamentos

ficarão para sempre em minha memória. Sem você, não teria conseguido.

Agradeço também ao Professor Felipe França, por me acolher no ińıcio do

mestrado e me mostrar vários caminhos posśıveis para minha trajetória acadêmica.

Ao Pedro Savarese, pela grande atenção despendida no ińıcio dessa pesquisa e pelas

ajudas constantes durante todo o trabalho. Ao amigo Jhonatan Oliveira, pelas pro-

dutivas conversas, desde os tempos de residência no Vale do Aço, bem como pela

ajuda na revisão do presente texto.

Agradeço aos amigos que fiz durante esses dois anos na UFRJ e no LAND,

por toda ajuda a mim concedida: David Coelho, Evandro Macedo, Giulio Iacobelli,

Jefferson Simões, João Vitor, José de Paula, Leandro Santiago, Luiz Fernando, Paulo

Nascimento, Raphael Erthal, Raul Barbosa, Renato Souza e Wladimir Cabral.

À Universidade Federal do Rio de Janeiro, e em especial ao Programa de En-

genharia de Sistemas e Computação da COPPE, por ter contribúıdo para minha

formação e ter recebido tão bem esse mineiro.

Ao professor Rodrigo Gaiba, que, desde os tempos da graduação, sempre me

apoiou, acreditou e apostou no meu potencial. Compartilho essa conquista com

você, amigo.

Aos colegas de turma e de trabalho, pelas discussões que ajudaram a evoluir e

amadurecer meus conhecimentos.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

APRENDIZADO DE REPRESENTAÇÕES LATENTES DE VÉRTICES EM

REDES BASEADO EM IDENTIDADE ESTRUTURAL

Leonardo Filipe Rodrigues Ribeiro

Junho/2017

Orientador: Daniel Ratton Figueiredo

Programa: Engenharia de Sistemas e Computação

Identidade estrutural é um conceito de simetria, no qual vértices em uma rede

são identificados de acordo com a estrutura da rede e com seus relacionamentos com

outros vértices. A identidade estrutural tem sido estudada na teoria e na prática

durante as últimas décadas, mas, somente recentemente, técnicas para aprendizado

de representações latentes vêm sendo utilizadas neste contexto. Este trabalho ap-

resenta o struc2vec, um framework inovador e flex́ıvel, utilizado para o aprendizado

de representações latentes da identidade estrutural de vértices. struc2vec usa uma

hierarquia para medir a similaridade de vértices em diferentes escalas, e constrói

um grafo multi-camadas para codificar similaridades estruturais e gerar contexto

estrutural para vértices. Experimentos numéricos indicam que recentes técnicas

para aprendizado de representações de vértices falham em capturar uma forte noção

de identidade estrutural, enquanto struc2vec exibe um desempenho muito superior

nestas tarefas, uma vez que supera as limitações das técnicas anteriores. Como

consequência, experimentos númericos indicam ainda que struc2vec melhora o de-

sempenho em tarefas de classificação que dependem mais da identidade estrutural.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

LEARNING NETWORK NODE REPRESENTATIONS FROM STRUCTURAL

IDENTITY

Leonardo Filipe Rodrigues Ribeiro

June/2017

Advisor: Daniel Ratton Figueiredo

Department: Systems Engineering and Computer Science

Structural identity is a concept of symmetry in which network nodes are identi-

fied according to the network structure and their relationship to other nodes. Struc-

tural identity has been studied in theory and practice over the past decades, but

only recently has it been addressed with representational learning techniques. This

work presents struc2vec, a novel and flexible framework for learning latent represen-

tations for the structural identity of nodes. struc2vec uses a hierarchy to measure

node similarity at different scales, and constructs a multilayer graph to encode struc-

tural similarities and generate structural context for nodes. Numerical experiments

indicate that state-of-the-art techniques for learning node representations fail in cap-

turing stronger notions of structural identity, while struc2vec exhibits much superior

performance in this task, as it overcomes limitations of prior approaches. As a con-

sequence, numerical experiments indicate that struc2vec improves performance on

classification tasks that depend more on structural identity.

vii

Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Contributions . 2

1.2 Organization . 3

2 Structural Identity 5

2.1 Motivation . 5

2.2 Related work . 7

3 Learning representations 10

3.1 Data representation . 10

3.2 Language Modeling . 11

3.3 Neural Language Models . 13

3.3.1 Continuous Bag-of-Words Model (CBOW) 14

3.3.2 Continuous Skip-gram Model 18

3.3.3 Optimizing Computational Efficiency 22

4 Learning representations from networks 25

4.1 Introduction . 25

4.2 DeepWalk . 27

4.3 node2vec . 28

4.4 Multi-label classification . 31

5 Framework struc2vec 33

5.1 Introduction . 33

5.2 Measuring structural similarity . 34

5.2.1 Dynamic Time Warping (DTW) 36

5.2.2 Using DTW to compare degree sequences 39

5.3 Constructing the multilayer graph . 39

viii

5.4 Generating context for vertices . 40

5.5 Learning a language model . 41

5.6 Computational complexity . 42

5.6.1 Reducing the length of degree sequences (OPT1) 42

5.6.2 Reducing the number of pairwise similarity calculations (OPT2) 44

5.6.3 Reducing the number of layers (OPT3) 45

6 Experimental Evaluation 46

6.1 Barbell graph . 46

6.2 Karate network . 49

6.3 Robustness to edge removal . 54

6.4 Classification . 56

6.4.1 Results . 58

6.5 Scalability . 60

7 Conclusion and future work 61

7.1 Work considerations . 61

7.2 Limitations and future work . 62

Bibliography 63

ix

List of Figures

1.1 An example of two nodes that are structurally similar in the network 2

2.1 Example of structural equivalence . 7

3.1 Continuous Bag-of-Words Model architecture 15

3.2 Skip-gram Model architecture . 19

3.3 An example binary tree for the hierarchical softmax model 23

4.1 Node representations generated by DeepWalk using the Zachary’s

Karate network . 27

4.2 Illustration of the random walk procedure in node2vec 29

4.3 Visualizations of Les Misérables network generated by node2vec . . . 30

4.4 Micro-F1 and Macro-F1 scores in a multi-label classification problem 32

5.1 An example graph G . 35

5.2 A warping between two time-dependent sequences 37

5.3 A cost matrix with the minimum-distance warp path 38

5.4 A warping between two ordered degree sequences 39

5.5 Distance distributions of degree sequences of the BlogCatalog network 43

5.6 Difference distribution between the DTW distances and Scatter plot

of the DTW distances . 44

6.1 Barbell Graph B(10, 10) . 46

6.2 Roles identified in Barbell graph B(10, 10) by RolX 47

6.3 Latent representations in R2 learned by DeepWalk, node2vec and

struc2vec . 48

6.4 Mirrored Karate network . 49

6.5 Mirrored Karate network representations created by DeepWalk and

node2vec . 51

6.6 Latent representations created by struc2vec and roles identified

by RolX for Mirrored Karate network 52

x

6.7 Distance distributions between pairs of nodes in the latent space, for

the mirrored Karate network . 53

6.8 Distribution for distances between node pairs in latent space repre-

sentation, under the edge sampling model 55

6.9 Distribution of vertex degrees of air-traffic networks of Brazil, USA

and Europe . 57

6.10 Accuracy for multi-class classification in air-traffic networks of Brazil,

USA and Europe . 59

6.11 Average execution time of struc2vec on Erdös-Rényi graphs with av-

erage degree of 10 . 60

xi

List of Tables

6.1 Average and standard deviation for distances between node pairs for

the mirrored Karate network . 53

6.2 Pearson and Spearman correlation coefficients between structural dis-

tance and euclidean distance in latent space 54

6.3 Average and standard deviation for distances between node pairs in

the latent space representation . 56

6.4 Parameter values used in grid search, for node2vec and struc2vec . . . 57

xii

Chapter 1

Introduction

In almost all networks, nodes tend to have one or more functions that greatly de-

termines their role in the system. For example, individuals in a social network have

a social role or social position [1, 2], while proteins in a protein-protein interaction

(PPI) network exert specific functions [3, 4]. Intuitively, different nodes in such

networks may perform similar functions, such as interns in the social network of

a corporation or catalysts in the PPI network of a cell. Thus, nodes can often be

partitioned into equivalent classes with respect to their function in the network.

Although identification of such functions often leverage node and edge attributes,

a more challenging and interesting scenario emerges when node function is defined

solely by the network structure. In this context, not even the labels of the nodes

matter but just their relationship to other nodes, represented by the edges. Indeed,

mathematical sociologists have worked on this problem since the 1970s, defining

and computing structural identity of individuals in social networks [1, 2, 5]. Beyond

sociology, the role of webpages in the webgraph is another example of identity (in

this case, hubs and authorities) emerging from the network structure, as defined by

the celebrated work of Kleinberg [6].

The most common practical approaches to determine the structural identity of

nodes are based on distances or recursions. In the former, a distance function that

leverages the neighborhood of each node is used to measure the distance between

all node pairs. Then clustering or matching is used to place nodes into equivalent

classes [7, 8]. In the later, a recursion with respect to neighboring nodes is con-

structed and then iteratively unfolded until convergence, with final values used to

determine the equivalent classes [6, 9–11]. In this work, we provide an alternative

methodology, one based on unsupervised learning of representations that capture

the structural identity of nodes.

Recent efforts in learning latent representations for nodes in networks have been

quite successful in performing classification and prediction tasks [12–15]. In par-

ticular, these efforts encode nodes using as context a generalized notion of their

1

u

d

e

b

a

c

network v

x

w

t

z

y

Figure 1.1: An example of two nodes (u and v) that are structurally similar. They
have, respectively, degrees 5 and 4, connected to 3 and 2 triangles, and are connected
to the rest of the network by two nodes, but are very far apart in the network.

neighborhood (e.g., w steps of a random walk). In a nutshell, nodes that have simi-

lar neighborhoods should have similar latent representations. But in all such works,

neighborhood is a local concept de ned by some notion of proximity in the network.

Thus, two nodes with neighborhoods that are structurally similar but are far apart

will not have similar latent representations, which is a fundamental requirement for

structural equivalence. Figure 1.1 illustrates the problem, where nodes u and v play

similar roles (i.e., have similar local structures) but are very far apart in the net-

work. Since their neighborhoods have no common nodes, recent approaches cannot

capture their structural similarity (as we soon show).

It is worth noting why recent approaches for learning node representations such

as DeepWalk [14] and node2vec [12] succeed in some classification tasks but tend

to fail in structural equivalence tasks. The key point is that many node features in

most real networks exhibit a strong homophily [16] (e.g., two blogs with the same

political inclination are much more likely to be connected than at random). Neigh-

bors of nodes with a given feature are more likely to have the same feature. Thus,

nodes that are close to each other in the network and in the latent representation

will tend to share features. Likewise, two nodes that are far to each other in the

network will tend to be separated in the latent representation, independent of their

local structure. Thus, structural equivalence will not properly be captured in the

latent representation. However, if classification is performed on features that depend

more on structural identity and less on homophily, then such recent approaches are

likely to be outperformed by latent representations that better capture structural

equivalence.

1.1 Contributions

The main contribution of this work is to provide a flexible framework, called

struc2vec, for learning latent representations for the structural identity of nodes.

This framework offers an alternative and powerful tool to the study of structural

identity through the latent space representation. The key ideas within this frame-

2

work are:

• Assess structural similarity between nodes independently of node and edge

attributes, including node labels. Thus, two nodes that are structurally similar

will be considered so, independently of their position in the network and node

labels in their vicinity. Our approach also does not require the network to

be connected, and identifies structurally similar nodes in different connected

components.

• Establish a hierarchy to measure structural similarity, allowing progressively

more stringent notions of what it means to be structurally similar. In particu-

lar, at the bottom of the hierarchy, structural similarity between nodes depend

only on their degrees, while at the top of the hierarchy similarity depends on

the entire network (from the viewpoint of the node).

• Generates random contexts for nodes, which are sequences of structurally simi-

lar nodes as observed by a biased random walk (but not walking on the original

network). Thus, two vertices that frequently appear in similar contexts will

likely have similar structure. Such context can be leveraged by language mod-

els to learn latent representation for the nodes.

An instance of our framework was implemented and we show its potential

through numerical experiments on toy examples and real networks, comparing its

performance with DeepWalk [14] and node2vec [12] – two state-of-the-art techniques

for learning latent representations for nodes, and with RolX [11] – a recent approach

to identify roles of nodes. Our results indicate that while DeepWalk and node2vec

fail to capture the notion of structural identity, struc2vec excels on this task – even

when the original network is subject to strong random noise (random edge removal).

We also show that struc2vec is superior in a classification task where node labels de-

pends more on structural identity (i.e., air-traffic networks with labels representing

airport activity).

This research gave rise to a paper accepted for publication in the Research

Track at the ACM SIGKDD Conference on Knowledge Discovery and Data Mining

2017 [17].

1.2 Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents the

concept of structural identity of vertices and shows related works that use the net-

work structure to identify or characterize vertices. Chapter 3 is reserved to describe

3

the theoretical concepts that will give a basis to understand the learning of latent rep-

resentations and to present some models used to learn distributed representations.

In Chapter 4, we overview recent related work on learning latent representations

of nodes in networks. Chapter 5 presents the struc2vec, our proposed framework,

in detail. Experimental evaluation and comparison to other methods are shown

in Chapter 6. Finally, in Chapter 7 we conclude the text and we point out some

promising research directions.

4

Chapter 2

Structural Identity

This Chapter describes the concept of Structural Identity in networks focusing on

the different roles exerted by the vertices. We are interested in using solely the

network structure to identify vertices, without analyzing node and edge attributes.

A literature review will be presented, describing works that use the concepts related

to the structural identity of vertices.

2.1 Motivation

A network, in an abstract definition, is a set of actors or objects that have relation-

ships or connections between them. These entities are nodes and the connections

between them are edges in the network. We can find numerous networks in our world

and many other networks can be modeled based on diverse phenomena [18, 19]. For

example, a network created from contacts via e-mail exchanged between people of

a company, where the nodes are the people of the company and there is an edge

between two people if they have exchanged emails. In a protein-protein interaction

(PPI) network, protein molecules (nodes) are in physical contacts (edges) and the

network presents molecular associations between chains that occur in a cell [20].

In almost all networks, nodes tend to have one or more functions that greatly

determines their role in the network. In a protein-protein interaction (PPI) network

proteins exert specific functions based on its structural identity, as catalysis of a

cell, for example [3, 4]. In a social network, individuals can hold roles or positions

that are defined by social relations [1, 2]. An individual can have the social role

‘father’ given by social relations within a family, or in a professional context, may

have the role ‘director’, for example. Naturally, an individual with role ‘father’

will have interactions with other individuals with roles ‘mother’ and ‘child’, among

others. These roles can be defined by nodes attributes, as gender or age, or by

edges attributes, as a relationship. However, from a different point of view, the

network structure can be used to define the role or identity of nodes, looking solely

5

for patterns of relations present in the network. Then, each one of these roles is

defined by regularities in the patterns of relations between nodes. In this context,

we can analyze and identify nodes only by the structure that appears within the

network.

Intuitively, different nodes in such networks may perform similar functions, such

as digital influencers in a digital social network or managers in a social network

of a factory. Although, there are many ways in which two nodes can be similar,

nodes can often be partitioned into equivalent classes with respect to their function

or role in the network [1]. Nodes in the same equivalent class are structurally

similar, that is to say, their relationship to all others are similar. Nodes that are

structurally equivalent have similar identity in the network: they share exactly

the same structure of neighborhoods around them [5]. For example, in a network

of social relations, judges at different courts occupy the equivalent class (or social

position) judge, even though they do not work with each other, or even with the same

lawyers or attorneys, but they have a pattern of relationships that is structurally

similar (with actors that have the same role).

Hubs, cliques, bridges and other structures can be seen as different forms to

describing how the nodes in a network are identified on the basis of their patterns

of relations with others nodes. For example, nodes in a clique can be very similar

structurally because the patterns of ties of these nodes are similar, bridges have a

similar function in a way that they connect distinct clusters of the network.

The concept of structural equivalence is often reported with the automorphic

equivalence, using the notions of isomorphism and automorphism [21]. Two graphs

G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection function

f : V1 → V2 that precisely maps the edges of G1 into edges of G2, such that f

preserves adjacency of vertices, that is, any two nodes u and v of G1 are adjacent in

G1 if and only if f(u) and f(v) are adjacent in G2. An isomorphism between G and

G itself is called an automorphism of G [22]. Then, we have the following definition:

Definition 1 ([21]). Given a graph G = (V,E), two vertices v1, v2 ∈ V are auto-

morphically equivalent if there is an automorphism f of G such that f(v1) = v2.

Figure 2.1a shows an example of automorphic equivalence: vertices u and v have

exactly the same structural identity and exist a automorphism f of G1 such that

f(u) = v, that is, if we swap u for v the network remains the same.

However, the problem of determining if two arbitrary graphs are isomorphic

belongs to the class NP [23], which means it is possible to computationally check

the existence of an isomorphism between two graphs in polynomial time as a function

of the size of the graphs, using the vertex mapping as a certificate. But, it is still

unknown if this problem can be solved in polynomial time, that is, it is not known

6

Figure 2.1: In both examples vertices u and v connect their neighbors to the remain-
der of the graph. (a) Vertices u and u are automorphically equivalent. (b) Vertices
u and u are not automorphically equivalent, however they are structural equivalent.

if the problem is in the class P or NP-complete.

Besides that, isomorphism is a binary property. If two nodes are automorphically

equivalent and one incident edge to one of these nodes is removed, they will not

be automorphically equivalent anymore, even if they have the similar structural

identity. This change suddenly makes the equivalence disappear, and thus is a

too strong notion of equivalence between vertices. Figure 2.1b shows this issue:

intuitively, vertices u and v are structurally similar, they can be seen as small “hubs”

who share almost equally the role of connecting the “peripheral” vertices. However

they don’t have exactly the same structural identity (automorphic equivalence),

since u and v have different degrees, so the definition 1 falls short in capturing this

notion.

In real-world networks we would like to identify vertices that are structurally

similar, even if they are not automorphically equivalent, because exact structural

equivalence is likely to be rare, particularly in large networks. It is important to

capture the notion that similar vertices, despite not having exactly the same struc-

tural identity, play similar roles or functions in the network. This relaxation of the

automorphic equivalence is required to properly capture equivalence classes in large

real-world networks because we often are interested in analyzing the degree of struc-

tural equivalence, rather than the simple presence or absence of exact equivalence.

2.2 Related work

Many different approaches to determine the structural similarity have been proposed

in the literature. The most common practices are based on distances or recursions.

Leicht et al. [7] propose a measure of similarity based on the concept that two

vertices are similar if their immediate neighbors in the network are themselves sim-

ilar. This measure can be viewed as a weighted count of the number of paths of all

7

lengths between the vertices in question. They create a self-consistent matrix for-

mulation of similarity that can be evaluated iteratively using the adjacency matrix

of the network.

Fouss et al. [8] propose an approach based on a Markov-chain model of random

walk through the graph. In a nutshell, they make some calculations using the average

commute time and the pseudoinverse of the Laplacian matrix of the graph to provide

similarities between any pair of nodes, having the property of increasing when the

number of paths connecting those elements increases and when the “length” of paths

decreases. The model is evaluated on a collaborative recommendation task where

suggestions are made about which movies people should watch based upon what

they watched in the past. Experimental results show that the model performs well

in comparison with other methods.

Jefferson Simões [24] proposes a definition of local symmetry, based on the struc-

tural similarity of neighborhoods around each vertex considering the relationship

between the neighborhood of two vertices. Their definition naturally induces a hi-

erarchy of symmetries, which progressively uses more information for classifying

vertices, ultimately culminating in the traditional, automorphism-based symmetry,

which they call global symmetry.

The celebrated work of Kleinberg [6] uses the network structure of a hyperlinked

environment to effective discover and rank pages relevant for a particular topic,

defining roles of webpages in the webgraph. They propose and test an algorithmic

formulation of the role of authority, based on the relationship between a set of

relevant authoritative pages, the most prominent sources of primary content, and

the set of role “hub pages”, high-quality guides and resource lists, that join them

together in the link structure. Hyperlinks encode a considerable amount of latent

human judgment, and they use this type of judgment to formulate a notion of

authority. Specifically, the creator of page p, by including a link to page q, has in

some measure conferred authority on q. They develop a method that, given a query

to every web page, assigns to it two scores, called hub score and authority score.

They use the link structure to infer a notion of “similarity” among pages using the

score generated by the algorithm.

A recent approach to explicitly identify the role of nodes using just the network

structure is RolX - (Role eXtraction) [11]. This unsupervised approach is based on

enumerating various structural features for nodes, finding the more suited basis vec-

tor for this joint feature space, and then assigning for every node a distribution over

the identified roles (basis), allowing for mixed membership across the roles. Without

explicitly considering node similarity or node context (in terms of structure), RolX

is likely to miss node pairs that are structurally equivalent (to be shown).

Unlike these works, we propose an alternative approach based on unsupervised

8

learning of representations that capture the structural identity of nodes. Let G =

(V,E) be a given network, where V are nodes of the network and E its edges

E ⊆ (V × V). Our goal is to learn feature representations X ∈ R|V |×d, where d is

number of latent dimensions. These latent representations capture the structural

identity of nodes in V and obey a relation where embeddings of nodes with exactly

or similar roles will be in near positions on the latent space.

Approaches similar to ours have also been recently proposed in the literature, in

the sense that it uses representation for nodes in a latent space, such as node2vec [12]

and DeepWalk [14]. However, their goal is not to explicitly capture structural iden-

tity of nodes. We discuss these related works in Chapter 4.

9

Chapter 3

Learning representations

This Chapter presents theoretical background on language models and provides a

basis for the understanding of CBOW and Skip-gram, two widely used language

models. For both models, initially, the general theoretical concepts are presented,

followed by a more in-depth explanation. Finally, computationally efficient approx-

imations, which allow the use of the models in large datasets, will be presented.

The sections 3.3.1, 3.3.2 and 3.3.3, for the most part, are based on the work of Xin

Rong [25].

3.1 Data representation

The performance of many information processing tasks is heavily influenced by the

choice of data representation (or features) on which they are applied. Machine

learning algorithms may be more or less efficient when performing a certain task

depending on how the input information is represented. For that reason, much

effort is put into creating techniques for pre-processing data, transforming it into a

meaningful representation that can support more effective machine learning [26].

A feature is a piece of information that might be useful for the task. Feature

engineering is a way of using human ingenuity and prior knowledge of the data to

create features that make machine learning algorithms perform better. However,

this process is very expensive and difficult, and in most times it is not clear how to

extract information from the data. To overcome these issues and expand the scope

and ease of the use of machine learning, it is important to create learning algorithms

that can extract useful information from data that can then be used in classifiers

and other predictors.

Feature learning or representation learning is a set of techniques that aim to

learn features, that is, representations of the data that lead to more effective machine

learning tasks. Representation learning has become a field in itself, in the machine

learning community, sometimes under the header of Deep Learning [26]. Among the

10

various ways of learning representations, deep learning methods are those that are

formed by the composition of multiple non-linear transformations, with the goal of

yielding more abstract, and ultimately more useful representations [26].

Natural Language Processing (NLP) is the field of study that focuses on the

interactions between human language and computers. Generating dense represen-

tations for sparse data has a long history in NLP [27]. Many NLP applications are

based on language models that define a probability distribution over sequences of

words in a natural language. A fundamental problem that makes language model-

ing and other learning problems difficult is the curse of dimensionality : when the

dimensionality increases, the volume of the space increases so fast that the avail-

able data become sparse. Traditional encodings, such as one-hot or bag of words,

generate representations that have the same size as the vocabulary. This might be

an issue since vocabulary size in the order of millions of words is common. The

resultant sparse high-dimensional data pose an obstacle for many tasks, including

text classification and clustering. To reduce impact of the curse of dimensionality,

Bengio et al. [27] proposed a neural network language model that learns distributed

representation for words. The model learns simultaneously a distributed representa-

tion for each word (called a word embedding) along with the probability distribution

over word sequences, expressed in terms of these representations. Generalization is

obtained because a sequence of words that has never been seen before receives high

probability if it is made of words that are similar (in the sense of having a nearby

representation) to words forming an already seen sentence.

After this work, many neural network language models were developed [26] but

none of the previously proposed architectures has been successfully trained on more

than a few hundred millions of words, with a modest dimensionality of the word

representations [28]. Recently, CBOW and Skip-gram [28, 29] are proposed as archi-

tectures to learn high-quality word representations from huge data sets with billions

of words, and with millions of words in the vocabulary.

3.2 Language Modeling

The goal of Language Modeling is to learn a probability distribution over sequences

of words appearing in a language. More formally, let V denote the set of all words

in the language, that is, the vocabulary. A sentence in the language is a sequence

of words w1, w2, . . . , wm, where m ≥ 1 and wi ∈ V for i ∈ {1...m} and let V† denote

the set of all sentences with vocabulary V . According with Michael Collins [30], we

have the following definition:

Definition 2 (Language Model). A language model consists of a finite set V , and

a function p(w1, w2, . . . , wm) such that:

11

1. For any 〈w1, w2, . . . , wm〉 ∈ V†, p(w1, w2, . . . , wm) ≥ 0

2. In addition, ∑
〈w1,w2,...,wm〉∈V†

p(w1, w2, . . . , wm) = 1

Hence p(w1, w2 . . . , wm) is a probability distribution over the sentences in V†.

Given a training corpus (a set of sentences), we would like to learn a function

p. Consider a sequence of random variables X1, X2, . . . , Xm where each random

variable can take any value in V . We would like to learn the probability of any

sequence of words w1, w2, . . . , wm, more precisely, the joint probability:

p(X1 = w1, X2 = w2, . . . , Xm = wm) (3.1)

Because there are |V|m possible sequences of words of the form w1, w2 . . . , wm, it

is not feasible for reasonable values of V and m to list all |V|m probabilities. Then,

to simplify the model, the following assumption is made:

p(X1 = w1, X2 = w2, . . . , Xm = wm)

= p(X1 = w1)
m∏
i=2

p(Xi = wi | X1 = w1, . . . , Xi−1 = wi−1) (3.2a)

= p(X1 = w1)
m∏
i=2

p(Xi = wi | Xi−1 = wi−1) (3.2b)

In the 3.2b step, we have made the assumption that for any i ∈ {2, ...,m}, for

any w1, w2, . . . , wm:

p(Xi = wi | X1 = w1, . . . , Xi−1 = wi−1) = p(Xi = wi | Xi−1 = wi−1) (3.3)

This is a Markov assumption, wich will form the basis of n-gram language models

[30]. It was assumed that the occurrence of the i’th word in the sequence depends

only on the i− 1’th word. More specifically, it was assumed that the value of Xi is

conditionally independent of X1, . . . Xi−2. This assumption can be generalized in a

form that each word only depends on the n− 1 previous words in the sequence:

p(Xi = wi | X1 = w1, . . . , Xi−1 = wi−1)

= p(Xi = wi | Xi−(n−1) = wi−(n−1), . . . , Xi−1 = wi−1)
(3.4)

A sequence of n words from a given sentence is a n-gram. An n-gram with n = 1

is called a unigram. In an n-gram model, the probability p(w1, . . . , wm) of observing

12

the sentence w1, . . . , wm is given as:

p(w1, . . . , wm) =
m∏
i=1

p(wi | wi−(n−1), . . . , wi−1) (3.5)

Language modeling is useful in many natural language processing applications

like speech recognition, machine translation, part-of-speech tagging, syntactic pars-

ing, sentiment analysis and information retrieval [26]. Among many ways to learn

a language model from a training corpus, a class of models, called Neural Language

Models, uses neural networks to learn distributed representations of words.

3.3 Neural Language Models

Recent works have focused on using neural networks models to build general repre-

sentations of words [29] [27]. A Neural Language Model is a language model based

on neural networks, exploiting their ability to learn distributed representations to

reduce the impact of the curse of dimensionality [27]. The neural network learns to

associate each word in the vocabulary V with a latent representation in a continu-

ous vector space with a relatively small number of dimensions. Dimensions of that

vector space correspond to a semantic or syntactic structure of human language.

The idea is that representations of semantic similar words are closer to each other

in space, at least along some dimensions.

In these neural networks, two words can get similar representations if they have

semantic and syntactic similarity, that is, if they are functionally similar. This

occurs because these words can appear in the same context, helping the neural

network to represent compactly a function that makes good predictions on the set

of word sequences used to train the model (training set).

Neural Language Models are probabilistic classifiers that learn to predict a proba-

bility distribution P (wt|context), ∀t ∈ V . So during the training phase, these neural

networks learn vectors that are word representations, maximizing a loss function

which takes into account the probability distribution of the word sequences. This is

done using standard neural network training algorithms such as stochastic gradient

descent with back-propagation [27]. The context might be a fixed-size window of pre-

vious words (like n-gram), so that the neural network predicts p(wi|wi−c, . . . , wi−1)

from distributed representations of the previous c words [27]. Another option is to

use distributed representations of “future” words as well as “past” words as context,

so that the estimated probability is P (wi|wi−c, . . . , wi−1, wi+1, . . . , wi+c) [29].

The sparsity of the data is a major problem in building language models be-

cause it is harder to generalize the statistical learning. When the number of words

13

increases, the number of required sequence examples grows exponentially, but most

possible word sequences will not be observed in training.

The advantage of using distributed representations is that it allows the model

to generalize well to sequences that are not in the training set of word sequences,

but that have words that are similar (syntactically and semantically) to other that

were used in sequences present in the training set. Consequently, these words will

have similar representations. Since neural networks tend to map nearby inputs to

nearby outputs, the predictions corresponding to word sequences with similar repre-

sentations are mapped to similar predictions. Because many different combinations

of features are possible, a very large set of possible meanings can be represented

compactly, allowing a model with a comparatively small number of parameters to

fit a large training set [27].

Two models to be presented below (CBOW and Skip-gram [29]) aim to learn

word embeddings (representations) of words in sequences. Theses models use a large

amount of text to create representations of words capturing relationships between

them. Such representation capture many linguistic regularities. Training such a lex-

ical model to maximize likelihood will induce word representations with impressive

syntactic and semantic properties. For example, it yields a vector approximating

the representation for vec(‘Rome’) as a result of the vector operation vec(‘Paris’)

– vec(‘France’) + vec(‘Italy’).

3.3.1 Continuous Bag-of-Words Model (CBOW)

Continuous Bag-of-Words Model (CBOW) is a Feedforward Neural Network intro-

duced in Mikolov et al. [29]. CBOW is a neural network composed of three layers:

an input layer, a single hidden layer, and an output layer. It is trained to pre-

dict the target word (e.g. ‘eating’) from the contextual words that surround it

(e.g ‘The man is ... in the kitchen.’). More specifically, the goal is to maximize

p(wt | wt−c, . . . , wt−1, wt+1, . . . , wt+c) over the training set, where wt is the input

word, wt−c, . . . , wt−1, wt+1, . . . , wt+c are the words in the context and c is the size of

the context window. CBOW uses a relaxation of n-gram models where the order

of words in a context does not matter. Moreover, CBOW also uses as part of the

context the “future”, that is, words that appear after wt.

Figure 3.1 shows the CBOW model. In the input layer, there are C one-hot

encoded vectors of size |V|, where C is the number of words in the input context.

Each one-hot encoded vector is used to a word at the context. The weights between

the input layer and the hidden layer are represented by a |V|×N matrix W , where N

is the size of vector representations of words. The j’th row of W is the N -dimension

vector representation vwj
of the word wj of vocabulary V .

14

Figure 3.1: Continuous Bag-of-Words Model architecture. Figure from [25].

To compute the output of the hidden layer, CBOW takes the average of the

vector representations of the context words. It does this calculating the product of

the matrix W by sum of the one-hot vectors of the context words and dividing it

by C:

h =
1

C
W T(x1 + x2 + · · ·+ xC) (3.6a)

=
1

C
(vw1 + vw2 + · · ·+ vwC

)T (3.6b)

where x1,x2, . . . ,xC are the one-hot encoded vectors of the words w1, w2, . . . , wC

in the context and vwj
(j’th row of W) is the vector representation of the word wj,

which is ultimately, the word representation that we want to learn. This implies

that the activation function of the hidden layer units is simply linear.

From the hidden layer to the output layer, there is a different weight matrix W ′

with dimensions N × |V|. Using these weights, we can compute a score uj for each

word wj in V :

uj = v′
wj

T
h (3.7)

where v′
wj

is the j’th column of matrix W ′. After this, softmax function1 is used

to obtain the probability distribution of words (multinomial distribution):

p(wj | w1, w2, . . . , wC) = yj =
exp(uj)∑|V|

j′=1 exp(uj′)
(3.8)

1Softmax function is a generalization of the logistic function that “squashes” a K-dimensional
vector z of arbitrary real values to a K-dimensional vector σ(z) of real values in the range [0, 1]
that add up to 1.

15

where yj is the output of the j’th unit in the output layer and w1, w2, . . . , wC

are words of the input context.

To train the model it is necessary to define a training objective for one training

example. CBOW aims to maximize the conditional probability of observing the

output word wO given the input context w1, w2, . . . , wC . It uses a loss function that is

commonly used along with the softmax function for training a neural network: cross-

entropy. The cross-entropy formula is used to minimize the negative log likelihood

of observing the output word wO given the input context w1, w2, . . . , wC . Then, we

consider the logarithm of the conditional probability to define the loss function for

one training example:

E = − log p(wO | w1, w2, . . . , wC) (3.9a)

= − log

(
exp(uj∗)∑|V|
j′=1 exp(uj′)

)
(3.9b)

= −
(
uj∗ − log

|V|∑
j′=1

exp(uj′)

)
(3.9c)

where j∗ is the index of the actual output word in the output layer (wO). The

loss function can be rewritten as:

E = −
|V|∑
j=1

tj log yj (3.10)

where tj = 1(j = j∗), i.e., tj will only be 1 when the j’th unit is the actual

output word, otherwise tj = 0.

With this objective function, it is possible to train the model by computing the

gradients with respect to the parameters and at each iteration update them via

stochastic gradient descent and backpropagation [31].

Training CBOW

Backpropagation [31] is an usual method for training neural networks. It is used in

conjunction with an optimization method such as stochastic gradient descent (SGD).

SGD is used to update a set of model parameters (weights of a neural network) in

an iterative manner to minimize the loss function. In each iteration, only a subset of

training samples from the training set is traditionally used to update the parameters.

Backpropagation is composed of two-phases: propagation and weight updates. In

the first phase, an input is fed into the network and propagated forward through the

network, layer by layer, until it reaches the output layer. Then, the network output is

compared to the desired output, using a loss function, and an error value is calculated

16

for each neuron in the output layer. Next, the error values are propagated backward,

starting from the output, such that each neuron has an associated error value which

roughly represents its contribution to the original output. Then, backpropagation

uses these error values to calculate the gradient of the loss function with respect to

the weights in the network. In the second phase, stochastic gradient descent uses

the calculated gradients to update the weights, in an attempt to minimize the loss

function.

Below are the details to update the weights of the network. In order to use the

softmax function in neural networks, it is necessary to compute its derivative. For

simplicity, if we define
∑
|V| =

∑|V|
j′=1 exp(uj′), then the derivative ∂yi

∂uj
of the output

yi of the softmax function with respect to its input uj can be calculated as:

if i = j :
∂yi
∂ui

=
∂ exp(ui)∑

|V|

∂ui
=
exp(ui)

∑
|V| − exp(ui)exp(ui)
(
∑
|V|)

2

=
exp(ui)∑

|V|

∑
|V|−exp(ui)∑

|V|
=
exp(ui)∑

|V|

(
1− exp(ui)∑

|V|

)
= yi(1− yi)

if i 6= j :
∂yi
∂uj

=
∂ exp(ui)∑

|V|

∂uj
=

0 − exp(ui)exp(uj)

(
∑
|V|)

2 = −exp(ui)∑
|V|

exp(uj)∑
|V|

= − yi yj

(3.11)

In order to derive the update equations for the weights of the neural network, it

is necessary to use the training objective E defined in (3.10). First of all, the weight

update equation between hidden and output layers is achieved taking the derivative

of E with respect to j’th unit uj:

∂E

∂uj
= −

|V|∑
i=1

∂ ti log yi
∂uj

= −
|V|∑
i=1

ti
∂ log yi
∂uj

= −
|V|∑
i=1

ti
1

yi

∂yi
∂uj

= − tj
yj

∂yj
∂uj
−
|V|∑
i=1
i 6=j

ti
yi

∂yi
∂uj

= − tj
yj
yj(1− yj)−

|V|∑
i=1
i 6=j

ti
yi

(−yi yj)

= − tj + tj yj +

|V|∑
i=1
i 6=j

ti yj = − tj +

|V|∑
i=1

ti yj = − tj + yj

|V|∑
i=1

ti

∂E

∂uj
= yj − tj

(3.12)

Note that the derivative of softmax function calculated in (3.11) was used. Next,

we take the derivative of E with respect to w′ij to obtain the gradient on the hidden

17

to output weights:

∂E

∂w′ij
=
∂E

∂uj

∂uj
∂w′ij

= (yj − tj)
∂ v′T

wj
h

∂w′ij
= (yj − tj)hi (3.13)

Then, using stochastic gradient descent, the weight updating equation for hidden

to output weights (W ′) is obtained:

w′
(new)
ij = w′

(old)
ij − η(yj − tj)hi (3.14)

where η > 0 is the learning rate and hi is the i’th unit in the hidden layer. Note

that it is necessary to apply this update equation for every element of the hidden

to output matrix W ′. Now, we can obtain update equations for input to hidden

weights (W) using the update equation calculated for W ′. To do this, first it is

taken the derivative of E on the output of the hidden layer:

∂E

∂hi
=

|V|∑
j=1

∂E

∂uj

∂uj
∂hi

=

|V|∑
j=1

(yj − tj)
∂ v′T

wj
h

∂hi
=

|V|∑
j=1

(yj − tj)w′ij (3.15)

where uj is defined in (3.7): input of the j’th unit in the output layer. Now, we

take the derivative of E with respect to each element of W :

∂E

∂wki

=
∂E

∂hi

∂hi
∂wki

=

|V|∑
j=1

(yj − tj)w′ij xk (3.16)

Then, using stochastic gradient descent, the weight updating equation for input

to hidden weights (W) is obtained:

w
(new)
ki = w

(old)
ki − η 1

C

|V|∑
j=1

(yj − tj)w′ij xk (3.17)

where C is the number of words in the input context. It is worth mentioning that

the only rows to be updated in W are rows corresponding to input words, because

they are the only rows of W whose derivative are non-zero. All the other rows will

remain unchanged during this iteration because their derivatives are zero.

3.3.2 Continuous Skip-gram Model

The Skip-gram model is another Feedforward Neural Network introduced in Mikolov

et al. [29]. This model is different from the models seen before: it reverses the use

of target and context words. Now, the input is only a word and the context words,

which are within a certain range before and after the current word, are on the

18

Figure 3.2: Skip-gram Model architecture. Figure from [25].

output layer. Skip-gram is trained to predict a word’s context (e.g ‘The man is ...

in the kitchen.’) that surround a word (e.g. ‘eating’). More specifically, it aims

to maximize p(wt−c, . . . , wt−1, wt+1, . . . , wt+c | wt) over all training corpus, where

wt is the input word, wt−c, . . . , wt−1, wt+1, . . . , wt+c are the words of context and c

is the size of the context window. Increasing the size of the context improves the

quality of the resulting word representations, but it also increases the computational

complexity [29].

Figure 3.2 shows the Skip-gram model. In the input layer, there is only a single

one-hot encoded vector of size |V|, corresponding to the input word. The weights

between the input layer and the hidden layer are represented by a |V| × N matrix

W , where N is the size of vector representations of words. As the CBOW, the j’th

row of W is the N -dimension vector representation vwj
of the word wj of vocabulary

V .

Skip-gram computes the hidden layer output multiplying the matrix W by the

input vector:

h = W Tx = vT
wI

(3.18)

where x is the one-hot encoded vector of the input word wI and vwI
is the vector

representation of the input word wI . As in CBOW, from the hidden layer to the

output layer, there is a different weight matrix W ′ with dimensions N × |V|. Using

these weights, we can compute a score uj for each word wj in V :

uj = v′
wj

T
h (3.19)

19

where v′
wj

is the j’th column of matrix W ′.

In the output layer, instead of using one softmax as in CBOW, it is necessary

to output C independent softmax functions, where C is the number of words in the

output context (see Figure 3.2). Each output is computed using the same weight

matrix W ′ with dimensions N × |V|:

p(wc,j = wO,c | wI) = yc,j =
exp(uc,j)∑|V|
j′=1 exp(uj′)

(3.20)

where wc,j is the j’th word on the c’th softmax; wc,O is the c’th word in the context

words; wI is the input word; uc,j and yc,j are the input and output, respectively,

of the j’th unit of the c’th softmax. Because the output layer has only one weight

matrix (W ′), we have:

uc,j = uj , c = 1, 2, . . . , C. (3.21)

Skip-gram model aims to maximize the conditional probability of observing the

context words wO,1, wO,2, . . . , wO,C given the input word wI . This is achieved by

minimizing the negative log likelihood of observing the output context words given

the input word wI . Thus, we consider the logarithm of the conditional probability,

assuming conditioned independence, and use it to define the loss function for one

training example:

E = − log p(wO,1, wO,2, . . . , wO,C | wI) (3.22a)

= − log
C∏
c=1

p(wO,c | wI) (3.22b)

= − log
C∏
c=1

exp(uc)∑|V|
j′=1 exp(uj′)

(3.22c)

= −
(C∑

c=1

uc − C log

|V|∑
j′=1

exp(uj′)

)
(3.22d)

where uc is the score for the c’th word of output context.

With this objective function, we can compute the gradients with respect to the

unknown parameters and at each iteration update them via Stochastic Gradient

Descent and back-propagation.

Training Skip-gram

Skip-gram is trained using backpropagation in conjunction with stochastic gradient

descent (SGD), in a similar fashion to CBOW.

20

In order to derive the update equations to the weights of neural network, it is

necessary to use the training objective E defined at (3.22d). First of all, we derive

the update equation of the weights between hidden and output layers taking the

derivative of E with respect of each j’th unit on every panel c: uc,j:

∂E

∂uc,j
= yc,j − tc,j (3.23)

which is the prediction error on the layer, the same as in (3.12). Next we take the

derivative of E with respect to w′ij to obtain the gradient on the hidden to output

weights (W ′):

∂E

∂w′ij
=

C∑
c=1

∂E

∂uc,j

∂uc,j
∂w′ij

=
C∑
c=1

(yc,j − tc,j)hi (3.24)

Note that was performed the sum of prediction errors over all context words.

Now, using stochastic gradient descent, the weight updating equation for hidden to

output weights (W ′) is obtained:

w′
(new)
ij = w′

(old)
ij − η

C∑
c=1

(yc,j − tc,j)hi (3.25)

Then, we can obtain update equations for input to hidden weights (W) using the

update equation calculated for uc,j. First, we take the derivative of E on the output

of the hidden layer:

∂E

∂hi
=

|V|∑
j=1

C∑
c=1

∂E

∂uc,j

∂uc,j
∂hi

=

|V|∑
j=1

C∑
c=1

(yc,j − tc,j)
∂ v′T

wj
h

∂hi

=

|V|∑
j=1

C∑
c=1

(yc,j − tc,j)w′ij

(3.26)

Now, the derivative of E with respect to each element of W is taken:

∂E

∂wki

=
∂E

∂hi

∂hi
∂wki

=

|V|∑
j=1

C∑
c=1

(yc,j − tc,j)w′ij xk (3.27)

Finally, using stochastic gradient descent, the weight updating equation for input

to hidden weights (W) is obtained:

w
(new)
ki = w

(old)
ki − η

|V|∑
j=1

C∑
c=1

(yc,j − tc,j)w′ij xk (3.28)

The understanding of (3.28) is similar as that for (3.17).

21

3.3.3 Optimizing Computational Efficiency

The models seen before (CBOW and Skip-gram) usually are huge neural networks,

that is, they have big weight matrices because the size of vocabulary V is huge (105

– 107 terms) [29]. For these models, there are two vector representations for each

word in the vocabulary: the input vector vw, and the output vector v′
w. Learning

the input vectors is cheap but learning the output vectors is very expensive. In order

to update v′
w, for each training instance (or a mini-batch), it is necessary to iterate

through every word wj in the vocabulary, compute its score uj and its predicted

probability yj, calculate the derivatives using the back-propagation, and, finally,

update the output vector v′
wj

. Then, as can be seen in equations (3.9c) and (3.22d),

for a given training sample it is necessary to evaluate/update O(|V|) network units.

This formulation is impractical because doing such computations for all words, for

every training instance is very expensive. A good approach to overcome this is to

approximate the softmax function.

Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarquical

softmax [32]. The main advantage is that instead of evaluating O(|V|) output nodes

in the neural network to obtain the probability distribution, we only need to evaluate

O(log |V|) nodes.

The hierarchical softmax uses a binary tree representation of the output layer

with the |V| words as its leaves. For each leaf unit, there exists a unique path from

the root to the unit. Each node on the path is responsible for making a decision

about which of its children it should go to. This is done by learning a binary classifier

that chooses a child node given an input. The total probability of a word is given

by the product of the probabilities of the correct decision of each binary classifier at

each node on the path from the root to the leaf node corresponding to that word.

Figure 3.3 shows an example tree.

In the hierarchical softmax there is no output vector representation (v′
w) for

words. Instead, each of |V| − 1 units has a output vector v′
n(w,j). Let n(w, j) denote

the j’th node on the path from the root to w, and let L(w) denote the length of this

path, so n(w, 1) = root and n(w,L(w)) = w. Then the hierarchical softmax defines

the probability of a word being the output word as:

p(w = wO) =

L(w)−1∏
j=1

σ

(
[[n(w, j + 1) = ch(n(w, j))]] · v′T

n(w,j)h

)
(3.29)

where σ(x) = 1/(1 + exp(−x)), the sigmoid function; ch(n) is the left child of

unit n; [[x]] is 1 if x is true and -1 otherwise; v′
n(w,j) is the output vector of the inner

22

Figure 3.3: An example binary tree for the hierarchical softmax model. The white
units are words in the vocabulary, and the dark units are inner units. An example
path from root to w2 is highlighted. In the example shown, the length of the path
L(w2) = 4. n(w, j) means the j’th unit on the path from root to the word w. Figure
from [25].

unit n(w, j); h is the output value of the hidden layer in the CBOW and skip-gram

models. Since a balanced binary tree has a depth of O(log(|V|)), it is only necessary

to evaluate O(log(|V|)) nodes to obtain the final probability of a word.

In contrast to the CBOW or Skip-gram with regular softmax formulation, which

assigns two vector representations vwj
and v′

wj
to each word wj, hierarchical softmax

formulation has one vector representation vwj
for each word wj and one vector

representation v′
n for every inner node n of the binary tree.

Now, the loss function for one example is defined as:

E = − log p(w = wO | wI) (3.30a)

= −
L(w)−1∑
j=1

log σ

(
[[n(w, j + 1) = ch(n(w, j))]] · v′T

n(w,j)h

)
(3.30b)

This loss function can be used for both CBOW and skip-gram models. When

used for skip-gram model, we need to repeat this update procedure for each of the

C words in the output context.

The tree used by the hierarchical softmax has a considerable effect on the per-

formance. The computational complexity per training instance is reduced from

O(|V|) to O(log |V|), which is a big improvement in speed. However, computing

the probability of all |V| words will remain expensive even with the hierarchical

softmax. Moreover, the model has roughly the same number of parameters, more

more specifically |V| − 1 vectors for inner-units compared to originally |V| vector

representations for words.

Negative Sampling

Negative samping (NEG) [29] is another efficient way to perform the computation

of the updates of word output vectors. NEG is a simplification of Noise Contrastive

23

Estimation (NCE) [33], and can be shown that NCE approximately maximizes the

log probability of the softmax.

In order to deal with the difficulty of having too many output vectors that need

to be updated per each training example, NEG only updates a small percentage of

them. NEG also uses a logistic loss function to minimize the negative log-likelihood

of words in the training set.

The idea is that the output word (i.e., the ground truth, or positive sample)

should be kept in the sample and gets its representation updated, and it is neces-

sary to sample a few words as negative samples (hence “negative sampling”). A

probabilistic distribution is needed for the sampling process. This distribution is

called the noise distribution and is denoted as Pn(w). One can determine a good

distribution empirically2.

Mikolov et al. [29] defines NEG by the loss function:

E = − log p(w = wO | wI) (3.31a)

= − log σ(v′T
wO

h) −
∑

wj∈Wneg

log σ(−v′T
wj
h) (3.31b)

where wO is the output word (i.e., the positive sample), and v′
wO

is its output

vector; h is the output value of the hidden layer: h = 1
C

∑C
c=1 vwc in the CBOW

model and h = vwI
in the Skip-gram model;Wneg = {wj | j = 1, . . . , K} is the set of

words (K words) that are sampled based on Pn(w), i.e., negative samples. This loss

function can be used for both CBOW and the Skip-gram model. For the Skip-gram

model, it is necessary to apply the update process for one context word at a time.

Then, the update process only needs to be applied to wj ∈ {wO} ∪Wneg instead

of every word in the vocabulary. This saves a significant amount of computational

effort time per training example.

2Mikolov et al. [29] investigated a number of choices for Pn(w) and suggest using a unigram
distribution raised to the 3/4’th power, for the best quality of results.

24

Chapter 4

Learning representations from

networks

In this Chapter, we present recent works that brought the representation learning

for the context of networks. More specifically, DeepWalk and node2vec are two

frameworks for learning latent representations for nodes. Finally, a comparison

between the methods is presented showing their main differences and performances

in classification tasks.

4.1 Introduction

Many important tasks in network analysis can require predictions over objects

(nodes) or its relationships (edges). In a typical network classification task, we are

interested in predicting the labels of nodes [12, 14]. For example, in a social network,

we might be interested in predicting interest groups of users, or in a protein-protein

interaction network we might be interested in predicting functions of proteins [3, 4].

Furthermore, in link prediction, we yearn to predict if a pair of vertices in a network

will have an edge connecting them.

In machine learning, many methods employ as input informative, discriminating

and independent features. This means that to use networks in machine learning

tasks it is necessary to construct a feature vector representation for the nodes or

edges. A typical solution involves hand-engineering domain-specific features based

on intuition and knowledge of the domain experts. However, usually features are de-

signed for specific tasks and can not generalize well across different prediction tasks.

As shown in Chapter 3, an alternative approach is to learn feature representations

by solving an optimization problem.

As we described in Chapter 3, Skip-gram [28, 29] was proposed as a technique to

learn dense representations for text data, providing an easy optimization problem

25

where a word’s context should be predicted given its latent representations. More-

over, the embeddings capture word meanings, placing semantically similar words

near each other in the latent space.

Due to the high-dimensional and often sparse nature of graph representations

(e.g. the adjacency matrix), learning node embeddings is equally important for

machine learning applications on network data. Since Skip-gram (and most other

language models) requires temporal sequences as input, adapting it to learn repre-

sentations for graphs is non-trivial as graph data is not linear.

Learning a language model from a network was first proposed by DeepWalk [14].

It proposes to use sequences of nodes from a graph, which are then treated as

sentences by Skip-gram. In a text, due to linearity, the notion of a neighborhood

can be simply defined using a sliding window over consecutive words. However,

networks are not linear, and thus a proper notion of a neighborhood is needed. A

reasonable and cheap way to define a neighborhood of a vertex is using sequences of

vertices taken from random walks. Intuitively, since vertices in the same Skip-gram

window are close in the network, the learned representations capture mostly vertices

that are close in the network.

The idea was later extended by node2vec [12]. By proposing a biased 2nd order

random walk model, it provides more flexibility when generating the context of a

vertex. In its framework, biased random walks are designed to capture both vertex

proximity and structural equivalence.

subgraph2vec [13] is another recent approach that aims to learn latent features

for rooted subgraphs, and unlike the previous techniques it does not use random

walks to generate context for nodes. Alternatively, it proposes Radial Skip-gram,

a modification of the original Skip-gram where the context of a node is simply

defined by its neighbors. Additionally, subgraph2vec properly captures structural

equivalence by anchoring equivalent vertices to the same point in the latent space.

Nonetheless, the notion of structural equivalence is very rigid since it is defined as

a binary property dictated by the Weisfeiler-Lehman isomorphism test [34].

All these works have used neural language models for learning latent represen-

tations of vertices in a network. They take a graph as input and produces a latent

representation of vertices as an output. More specifically, let G = (V,E) denote the

network under consideration with vertex set V and edge set E, where n = |V | de-

notes the number of nodes in the network. The goal is to learn features X ∈ R|V |×d,
where d is number of dimensions of the latent representations. Instead of using

words and sequences of words to create word representations as traditional language

models, these works use vertices and sequences of vertices generated by random

walks to create representations of vertices. The idea is that nodes that have similar

neighborhoods or roles in the network should have similar latent representations.

26

These latent representations can be easily used for machine learning tasks, such as

node classification.

4.2 DeepWalk

DeepWalk [14] was a pioneering work that brought representational learning to

networks. DeepWalk generalized advancements in language modeling (Skip-gram)

from sequences of words to graphs. It uses local information obtained from truncated

random walks to learn latent representations of nodes that encode social relations in

a continuous vector space, which can be exploited by machine learning algorithms.

The result of applying DeepWalk to the well-studied Karate network [35] is

shown in Figure 4.1. The graph, presented by force-directed layout, is shown in

Figure 4.1a. Figure 4.1b shows the output of the method with 2 latent dimensions.

Beyond the striking similarity, it is possible to note that linearly separable portions

of (4.1b) correspond to clusters found through modularity maximization in the input

graph (4.1a), shown as vertex colors.

Figure 4.1: DeepWalk is used on Zachary’s Karate network [35] to generate node
representations in R2. Figure from [14].

The key idea behind this work was treating sequences of vertices, generated by

random walks, as sentences. If the degree distribution of a network follows a power

law1, we observe that the frequency which vertices appear in the random walks will

also follow a power-law distribution. The authors argue that a similar phenomenon

appears in context of natural language: word frequency follows a similar power-

law distribution. Thus, techniques like Skip-gram, which have been used to model

natural language, where the symbol frequency follows a distribution similar to a

power law, can be applied to model community structure in networks.

1A scale-free network is a network whose degree distribution follows a power law, at least
asymptotically. That is, the fraction P (k) of nodes in the network having k connections to other
nodes goes for large values of k as P (k) ∼ k−γ , where γ is a parameter whose value is typically in
the range 2 < γ < 3 [19].

27

As in any language modeling algorithm, the required input is a corpus (sentences)

and a vocabulary V . DeepWalk considers a set of sequences of vertices, generated

by short truncated random walks, as a corpus, and the graph vertices as vocabulary

(V = V). The process of generating random walk takes a graph G and samples

uniformly a random vertex vi as the root of the random walk Wvi . A walk samples

uniformly from the neighbors of the last vertex visited until the maximum length

(t) is reached.

DeepWalk specifies the number of random walks γ of length t to start at each ver-

tex. After generating all the vertex sequences using random walks, these sequences

are used by Skip-gram to generate node representations, through the neural network

training process. To train the Skip-gram, it is necessary to define the size of the

window (w) to be used as context, that is, given the representation of a node vj, we

would like to maximize the probability of its neighborhood in the walk (inside w).

4.3 node2vec

node2vec [12] extends DeepWalk defining a flexible notion of a node’s network neigh-

borhood. It generalizes DeepWalk, which is based solely on random walks to con-

struct neighborhoods, learning representations that embed nodes from the same

network community closely together, as well as learning representations for nodes

that have similar roles. In particular, nodes in networks could be organized based

on communities they belong to (i.e., homophily) and in other cases, the organization

could be based on the structural roles (i.e., structural equivalence). node2vec uses

a biased 2nd order random walk approach to generate (sample) network neighbor-

hoods for nodes.

In this work the problem of sampling node’s neighborhood is viewed as a form

of local search. Generally, there are two extreme strategies for generating neighbor-

hoods: Breadth-first Search (BFS): The neighborhood is restricted to nodes which

are immediate neighbors of the source; and Depth-first Search (DFS): The neighbor-

hood consists of nodes sequentially sampled at increasing distances from the source

node. The neighborhoods sampled by BFS lead to representations that correspond

closely to structural equivalence. In order to ascertain structural equivalence, it

is often sufficient to characterize the local neighborhoods accurately. For example,

structural equivalence based on network roles such as bridges and hubs can be in-

ferred just by observing the immediate neighborhoods of each node. In DFS, the

sampled nodes more accurately reflect a more global view of the neighborhood which

is required to infer communities based on homophily.

Considering the above observations, node2vec applies a flexible neighborhood

sampling strategy using a biased random walk procedure, which allows smoothly

28

Figure 4.2: Illustration of the random walk procedure in node2vec. The walk just
transitioned from t to v and is now evaluating its next step out of node v. Edge
labels indicate search biases α. Figure from [12].

interpolation between BFS and DFS, exploring neighborhoods in a BFS as well as

in a DFS fashion.

node2vec has the same parameters as DeepWalk : γ random walks of length t to

start at each vertex and the size of the window (w) to be used as context by Skip-

gram. However, two parameters p and q are used in order to give weights to edges

to bias the steps of the random walk. Consider a random walk that traversed edge

(t, v) and resides at node v (see Figure 4.2). The random walk needs to decide on

the next step so it evaluates the transition probabilities on edges (v, x) leading from

v. The unnormalized transition probability is set to πvx = αpq(t, x) · wvx, where:

αpq(t, x) =

1
p

if dtx = 0

1 if dtx = 1

1
q

if dtx = 2

(4.1)

and dtx denotes the shortest path distance between nodes t and x, and must

be one of 0, 1, 2. Parameters p and q control how the random walk explores the

neighborhood:

• Return parameter, p: p controls the likelihood of immediately revisiting

a node in the random walk. Setting it to a high value (> max(q, 1)) ensures

that the walk is less likely to sample an already-visited node in the following

two steps (unless the next node in the walk had no other neighbor). This

encourages moderate exploration and avoids 2-hop redundancy in sampling.

If p is low (< min(q, 1)), it would lead the walk to backtrack a step, keeping

the walk close to the starting node u.

• In-out parameter, q: q allows the search to differentiate between “inward”

and “outward” nodes. If q > 1, the random walk is biased towards nodes close

to node t (see Figure 4.2). Such walks obtain a local view of the underlying

graph with respect to the start node in the walk and approximate BFS behavior

29

Figure 4.3: Visualizations of Les Misérables network generated by node2vec with
label colors reflecting homophily (top) and structural equivalence (bottom). Figure
from [12].

in the sense that the samples comprise of nodes within a small locality. On the

other hand, if q < 1, the walk is more inclined to visit nodes which are further

away from the node t, encouraging outward exploration (DFS behavior).

To demonstrate the framework and to illustrate the use of its parameters, the

network Les Misérables [36] is used as input to node2vec. In this network, nodes

are characters in the novel Les Misérables and edges correspond to a joint action of

two characters. Figure 4.3(top) shows the example created using p = 1, q = 0.5.

Network communities are colored using the same color. In this setting, the algorithm

discovers communities of characters that frequently interact with each other in the

sub-plots of the novel.

In order to discover which nodes have the same structural roles, the parameters

have been set as p = 1, q = 2. In this experiment node2vec obtains a complemen-

tary assignment of node to clusters such that the colors correspond to structural

equivalence as illustrated in Figure 4.3(bottom). For instance, the algorithm em-

beds blue-colored nodes close together in the latent space. These nodes represent

characters that act as bridges between different sub-plots of the novel.

Lastly, node2vec is a semi-supervised algorithm and its parameters can be learned

directly using a fraction of labeled data.

30

4.4 Multi-label classification

One way to compare the quality of representations generated by the aforementioned

methods is to evaluate their performance on a multi-label classification problem. In

the multi-label classification setting, every node is assigned one or more labels from

a finite set L. The node feature representations are input to a one-vs-rest logistic

regression classifier with L2 regularization. During the training phase, we observe

a certain fraction of nodes and all their labels. The task is to predict the labels for

the remaining nodes. Grover and Leskovec [12] use three datasets to perform this

experiment:

• BlogCatalog [37]: This is a network of social relationships of the bloggers listed

on the BlogCatalog website. The labels represent blogger interests inferred

through the metadata provided by the bloggers. The network has 10,312

nodes, 333,983 edges, and 39 different labels.

• Protein-Protein Interactions (PPI) [38]: This is a subgraph of the PPI network

for Homo Sapiens. The subgraph corresponds to the graph induced by nodes

for which we could obtain labels from the hallmark gene sets [19] and represent

biological states. The network has 3,890 nodes, 76,584 edges, and 50 different

labels.

• Wikipedia [39]: This is a co-occurrence network of words appearing in the first

million bytes of the Wikipedia dump. The labels represent the Part-of-Speech

(POS) tags inferred using the Stanford POS-Tagger [32]. The network has

4,777 nodes, 184,812 edges, and 40 different labels.

Besides DeepWalk and node2vec, the performance of two other methods are also

evaluated:

• Sprectral Clustering [40]: This is a matrix factorization approach in which we

take the top d eigenvectors of the normalized Laplacian matrix of graph G as

the feature vector representations for nodes.

• LINE [41]: This method learns d-dimensional feature representations in two

separate phases. In the first phase, it learns d/2 dimensions by BFS-style

simulations over immediate neighbors of nodes. In the second phase, it learns

the next d/2 dimensions by sampling nodes strictly at a 2-hop distance from

the source nodes.

Figure 4.4 summarizes the results for the Micro-F1 and Macro-F1 scores and

also compares performance while varying the train-test split from 10% to 90%.

31

Figure 4.4: Performance evaluation of different benchmarks on varying the amount
of labeled data used for training. The x axis denotes the fraction of labeled data,
whereas the y axis in the top and bottom rows denote the Micro-F1 and Macro-F1
scores, respectively. DeepWalk and node2vec give comparable performance on all
networks. Figure from [12].

Parameters p and q (for node2vec) are learned using 10-fold cross-validation on

10% labeled data with a grid search over p, q ∈ 0.25, 0.50, 1, 2, 4. DeepWalk and

node2vec have the best performances. Yet, node2vec performs better in almost all

experiments with the three networks. These results are due to the ability of the

node2vec to capture both homophily and structural equivalence from the networks.

However, even though the experiments suggest that node2vec can capture struc-

tural equivalence, it is unclear how it would perform on larger graphs. More specif-

ically, structurally equivalent vertices will never share the same context if their

distance (hop count) is larger than the Skip-gram window w. In the next chap-

ter, we propose a framework that overcomes this limitation, generating node latent

representations that do not depend on node neighborhood.

32

Chapter 5

Framework struc2vec

This Chapter presents and describes the framework struct2vec, a general methodol-

ogy for learning latent representations for the structural identity of nodes. First, we

propose a measure of structural similarity of nodes, using Dynamic Time Warping

(DTW). Next, we create a multilayer weighed graph that encodes structural sim-

ilarity between nodes. Afterward, is shown how we generate node sequences that

will be used as input for Skip-gram. Lastly, we present practical optimizations of

the model to decrease the computational complexity.

5.1 Introduction

Consider the problem of learning latent representations for nodes that captures their

structural identity in the network. A successful approach should exhibit two desired

properties:

• The distance between the latent representation of nodes should be strongly

correlated to their structural similarity. Thus, two nodes that are identical

from the network structure point of view should have the same latent repre-

sentation, while nodes with different structural identities should be far apart.

• The latent representation should not depend on any node or edge attribute,

including the node labels. Thus, structurally similar nodes should have close

latent representation, independent of node and edge attributes in their neigh-

borhood. The structural identity of nodes must be independent of its “posi-

tion” in the network.

Given these two properties, we propose struct2vec, a general methodology for

learning latent representations for nodes. The methodology is composed of four

main steps, informally defined as follows:

33

1. Measure structural similarity: Determine the structural similarity be-

tween each vertex pair in the graph for different neighborhood sizes. This

induces a hierarchy in the measure for structural similarity between nodes,

providing more information to assess structural similarity at each level of the

hierarchy.

2. Construct the multilayer graph: Construct a weighted multilayer graph

where all nodes in the network are present in every layer, and each layer corre-

sponds to a level of the hierarchy in measuring structural similarity. Moreover,

edge weights among every node pair within each layer are inversely propor-

tional to their structural similarity.

3. Generate context for vertices: Use the multilayer graph to generate con-

text for each node. In particular, biased random walks on the multilayer graph

are used to generate node sequences. These sequences are likely to include

nodes that are more structurally similar.

4. Learn a language model: Apply a technique to learn latent representation

from a context given by the sequence of nodes, for example, Skip-Gram.

Note that struct2vec is quite flexible as it does not determine any particular struc-

tural similarity measure or representational learning framework. In what follows,

we explain in detail each step of struct2vec and provide a rigorous approach to a

hierarchical measure of structural similarity.

5.2 Measuring structural similarity

The first step of struct2vec is to determine the structural similarity of node pairs

without using any node or edge attributes. Moreover, we need a measure that can

cope with increasing neighborhood sizes. While there are many ways to measure the

structural similarity between two vertices, we would like a metric with the following

property.

Let G = (V,E) denote the network under consideration with vertex set V and

edge set E, where n = |V | denotes the number of nodes in the network and k∗ its

diameter. Let Nk(u) denote the set of nodes with distance less than or equal to

k ≥ 0 from u ∈ V (note that N0(u) = u and N1(u) are the neighbors of u and u

itself, see Figure 5.1b). Let G[S] denote the induced subgraph of G over the set of

nodes S ⊂ V . Note that G[N1(u)] is often referred to as the egonet of node u.

Let f(u, v) ≥ 0 denote a distance measure for the structural similarity between

u, v ∈ V . A suitable f should satisfy the following property:

34

Figure 5.1: (a) An example graph G. (b) N1(v): set of nodes with distances less
than or equal to k = 1. (c) R1(v): set of nodes at distance exactly k = 1.

• f(u, v) = 0 if there exists an isomorphism between G[Nk(u)] and G[Nk(v)] for

any k > 0, mapping u onto v.

Under this property, two nodes that have locally isomorphic neighborhoods should

be considered identical to one another, and thus, have a structural distance of zero.

Clearly, this property is desired when considering the structural identity of nodes in

networks.

However, isomorphisms cannot be used directly to measure structural similarity.

For one reason, there are no polynomial time algorithm to determine if two arbitrary

graphs are isomorphic, and second, isomorphism is a binary property. Thus, we

consider the following approach.

Let s(S) denote the ordered degree sequence of the set of vertices S ⊂ V . Note

that if G[Nk(u)] is isomorphic to G[Nk(v)] for any k > 0, mapping u to v, then

s(Nk−1(u)) = s(Nk−1(v)). Namely, the ordered degree sequences of nodes in the

(k − 1)-hop neighborhood of u and v must be identical. Thus, the ordered degree

sequence can lead to a distance metric that satisfies the desired property. Moreover,

the degree sequence avoids any label information associated to nodes or edges.

The ordered degree sequence is also a natural choice for inducing a hierarchy of

distance functions. Let Rk(u) denote the set of nodes at distance exactly k ≥ 0 from

u in G (see Figure 5.1c). Thus, Rk(u) = Nk(u)\Nk−1(u) for k ≥ 0 (let N−1(u) = ∅).
By comparing the ordered degree sequences of the rings of nodes at distance k from

both u and v we can impose a hierarchy in assessing their structural similarity,

that becomes more stringent as k increases. In particular, let fk(u, v) denote the

structural distance between u and v when considering their k-hop neighborhoods (all

nodes at distance less than or equal to k and all edges among them). In particular,

35

we define:

fk(u, v) = fk−1(u, v) + g(s(Rk(u)), s(Rk(v))),

k ≥ 0 and |Rk(u)|, |Rk(v)| > 0
(5.1)

where g(D1, D2) ≥ 0 measures the distance between the ordered degree sequences

D1 and D2 and f−1 = 0. Note that by definition fk(u, v) is non-decreasing in k and

is defined only when both u or v have nodes at distance k. Moreover, using the ring

at distance k in the definition of fk(u, v) forces the comparison between the degree

sequences of nodes that are at the same distance from u and v. Finally, note that

if G[Nk(u)] and G[Nk(v)] are isomorphic for some k > 0, mapping u onto v, then

fk−1(u, v) = 0.

A final step is determining the function that compares two degree sequences.

Note that s(Rk(u)) and s(Rk(v)) can be of different sizes and its elements are arbi-

trary integers in the range [0, n − 1] with possible repetitions, where n = |V | (i.e.,

any possible degree). We adopt Dynamic Time Warping (DTW) to measure the

distance between two ordered degree sequences, a technique that can cope better

with sequences of different sizes and loosely compares sequence patterns [42, 43].

5.2.1 Dynamic Time Warping (DTW)

Dynamic time warping (DTW) distance measure is a well-known technique to find

the optimal alignment between two (time-dependent) sequences under certain re-

strictions [44]. The sequences are “warped” non-linearly in the time dimension to

determine a measure of their similarity independent of certain non-linear variations

in the time dimension. It is often used to determine time series similarity, classifica-

tion, and to find corresponding regions between two time series. Originally, DTW

has been used to compare different speech patterns in automatic speech recognition

[43].

Informally, DTW aims to find the optimal alignment between two sequences

X and Y . Given a distance function dist(x, y) for the elements of the sequence,

DTW matches each element x ∈ X to y ∈ Y , such that the sum of the distances

between matched elements is minimized. Note that each element in one sequence

can be matched to more than one element in the other, but crossings in the matching

are not allowed, and all elements must be matched. Thus, two sequences that are

identical except for localized stretching of the time axis will have DTW distances

of zero. An example of how one sequence can be “warped” to another is shown in

Figure 5.2.

More formally, suppose we have two time-dependent sequences X =

x1, x2, . . . , xi, . . . , xm and Y = y1, y2, . . . , yj, . . . , yn of lengths m and n. The goal is

36

Figure 5.2: A warping between two time-dependent sequences. Figure from [43].

to find an alignment path between X and Y having minimal overall cost. A warp

path (or alignment path) W is defined as:

W = w1, w2, . . . , wK max(m,n) ≤ K < m+ n (5.2)

where K is the length of the wrap path and the k’th element of the warp path is

wk = (i, j), where i and j are the index from sequences X and Y , respectively. The

alignment path must satisfy to the following criteria [45]:

• Boundary condition: w1 = (1, 1) and wK = (m,n). The starting and ending

points of the warping path must be the first and the last points of aligned

sequences.

• Monotonicity: Given wk = (a, b) then wk−1 = (a′, b′) where a–a′ ≥ 0 and

b− b′ ≥ 0. This forces the points in W to be monotonically spaced in time.

• Continuity: Given wk = (a, b) then wk−1 = (a′, b′) where a–a′ ≤ 1 and b− b′ ≤
1. This restricts the allowable steps in the warping path to adjacent cells,

including diagonally adjacent cells.

The optimal warp path is the minimum-distance warp path, where the distance

of a warp path W is:

dist(W) =
k=K∑
k=1

dist(wki, wkj) (5.3)

where dist(wki, wkj) is the distance between the two data points x ∈ X and y ∈ Y
indexes in the k’th element of the warp path. In order to find the optimal warp

path, we need to test every possible warping path between X and Y . It can be

computationally challenging due to the exponential growth of the number of optimal

paths as the lengths ofX and Y grow linearly. To overcome this challenge, a dynamic

programming approach is used to find this optimal warp path.

DTW starts by building a m × n matrix D where the D(i, j) element of the

matrix contains the minimum-distance warp path that can be constructed from the

two sequences X ′ = x1, . . . , xi and Y ′ = y1, . . . , yj. The D(m,n) element will contain

37

Figure 5.3: A cost matrix with the minimum-distance warp path traced through it.
Figure from [43].

the minimum-distance warp path between X and Y . Intuitively, such an optimal

path runs along a “valley” of low cost within the matrix D. The x-axis is the time of

sequence X, and the y-axis is the time of sequence Y . Figure 5.3 shows an example

of a cost matrix and a minimum-distance warp path traced through it from D(1, 1)

to D(m,n). This warp path is W = (1,1), (2,1), (3,1), (4,2), (5,3), (6,4), (7,5), (8,6),

(9,7), (9,8), (9,9), (9,10), (10,11), (10,12), (11,13), (12,14), (13,15), (14,15), (15,15),

(16,16). If the warp path passes through a cell (i, j) in the matrix, it means that

the i’th point in time series X is warped to the j’th point in time series Y .

Since the value at D(i, j) is the minimum warp distance of two time series of

lengths i and j, using the dynamic programming approach we can calculate the

minimum warp distances starting from D(1, 1) and expanding to all portions of the

sequences. Since the warp past must either be incremented by one or stay the same

along the i and j axes, the distances of the optimal warp paths one data point

smaller than lengths i and j are contained in the matrix at D(i− 1, j), D(i, j − 1),

and D(i− 1, j − 1). So the value of a cell in the cost matrix is:

D(i, j) = dist(xi, yj) + min[D(i− 1, j) , D(i, j − 1) , D(i− 1, j − 1)] (5.4)

After all elements of the matrix are calculated, a warp path must be found from

D(1, 1) to D(m,n). The warp path is calculated in reverse order starting at D(m,n)

and stopping when D(1, 1) is reached. A greedy search is performed that evaluates

cells to the left, down, and diagonally to the bottom-left.

The DTW time and space complexity is O(mn), that is, a quadratic complexity.

This complexity is prohibitive for larger sequences, and other approaches can be

38

Figure 5.4: A warping between two ordered degree sequences using the function
(5.5) to calculate the distances between the degrees. The distance between the two
sequences, that is the sum of costs of matched elements, is 0.9.

used to approximate the DTW (with linear time and space complexity) [43].

5.2.2 Using DTW to compare degree sequences

We will use DTW to compare ordered degree sequences. Since elements of sequences

A and B are degrees of nodes, we adopt the following distance function:

dist(a, b) =
max(a, b)

min(a, b)
− 1 (5.5)

Note that when a = b then dist(a, b) = 0. Thus, two identical ordered degree

sequences will have zero distance. Also note that by taking the ratio between the

maximum and the minimum, the degrees 1 and 2 are much more different than

degrees 101 and 102, a desired property when measuring the distance between node

degrees. Figure 5.4 shows DTW applied to two ordered degree sequences.

Last, the function g in equation (5.1) is simply replaced by DTW. Note that k

plays a key role in determining the structural distance between two nodes: f0(u, v) =

0 if degrees of u and v are identical, while if fk∗(u, v) = 0 then there is strong evidence

that there exists an automorphism in G that maps u to v, since the degree sequence

of all k-hop rings around u and v perfectly match. Note that if indeed there exists an

automorphism in G that maps u to v, then fk(u, v) = 0, for all k. Thus, structural

similarity between u and v becomes more rigid as k increases.

5.3 Constructing the multilayer graph

We construct a multilayer weighted graph that encodes structural similarity between

nodes. Recall that G = (V,E) denotes the original network (possibly not connected)

and k∗ its diameter. Let M denote the multilayer graph, with layers going from 0

to k∗, corresponding to neighborhood hierarchy defined above. In particular, layer

k will be defined using the k-hop neighborhoods of the nodes in V .

Each layer k = 0, . . . , k∗ is formed by a weighted undirected complete graph with

node set V , and thus,
(
n
2

)
edges. The edge weight between two nodes in given layer

39

is given by:

wk(u, v) = e−fk(u,v), k = 0, . . . , k∗ (5.6)

Note that edges are defined only if fk(u, v) is defined and that weights are inversely

proportional to structural distance, and assume values smaller than or equal to 1,

being equal to 1 only if fk(u, v) = 0. Note that nodes that are structurally similar

to u will have larger weights across various layers of M .

We connect the layers using directed edges as follows. Each vertex is connected

to its corresponding vertex in the layer above and below (layer permitting). Thus,

every vertex u ∈ V in layer k is connected to the corresponding vertex u in layer

k + 1 and k − 1. The edge weight between layers are as follows:

w(uk, uk+1) = log(Γk(u) + e), k = 0, . . . , k∗ − 1

w(uk, uk−1) = 1, k = 1, . . . , k∗
(5.7)

where Γk(u) is number of edges incident to u that have weight larger than the average

edge weight of the complete graph in layer k. In particular:

Γk(u) =
∑
v∈V

1(wk(u,v) > wk) (5.8)

where wk =
∑

(u,v)∈(V
2)
wk(u, v)/

(
n
2

)
. Thus, Γk(u) measures the similarity of node

u to other nodes in layer k. Note that if u has many similar nodes in the current

layer, then it should change layers to obtain a more refined context. Note that by

moving up one layer the number of similar nodes can only decrease. Last, the log

function simply reduces the magnitude of the potentially large number of nodes that

are similar to u in a given layer.

Finally, note that M has nk∗ vertices and k∗
(
n
2

)
+ 2n(k∗− 1) weighted edges. In

Section 5.6 we discuss how to reduce the complexity of generating and storing M .

5.4 Generating context for vertices

The multilayer graph M is used to generate structural context for each node u ∈ V .

Note that M captures the structure of structural similarities between nodes in G

using absolutely no label information. As in previous works, struct2vec uses random

walks to generate sequence of nodes to determine the context of a given node.

In particular, we consider a weighted random walk that moves around M making

random choices according to the weights of M . Before each step, the random walk

first decides if it will change layers or walk on the current layer. In particular, with

probability q > 0 the random walk decides to stay in the current layer.

Given that it will stay in the current layer, the probability of stepping from node

40

u to node v in layer k is given by:

pk(u, v) =
e−fk(u,v)

Zk(u)
(5.9)

where Zk(u) is the normalization factor for vertex u in layer k, simply given by:

Zk(u) =
∑
v∈V
v 6=u

e−fk(u,v) (5.10)

Note that the random walk will prefer to step onto vertices that are structurally

more similar to the current vertex, avoiding vertices that have very little structural

similarity with the current vertex. Thus, the context of a node u ∈ V is likely

to have structurally similar nodes, independent of their labels and position on the

original network G.

With probability 1 − q, the random walk decides to change layers, and moves

to corresponding node either in layer k + 1 or layer k − 1 (layer permitting) with

probability proportional to the edge weights. In particular:

pk(uk, uk+1) =
w(uk, uk+1)

w(uk, uk+1) + w(uk, uk−1)

pk(uk, uk−1) = 1− pk(uk, uk+1)

(5.11)

Also important, every time the walker steps within a layer it generates its current

position as a vertex of V , independent of the layer. Thus, a vertex u may have

a given context in layer k (determined by the structural similarity of this layer),

but have a subset of this context at layer k + 1, as the structural similarity cannot

increase as we move to higher layers. This notion of a hierarchical context across

the layers is a fundamental aspect of the proposed methodology.

Finally, for each node u ∈ V , we start a random walk in its corresponding vertex

in layer 0. Random walks have a fixed and relatively short length t (number of

steps), and the process is repeated a certain number of times (γ), giving rise to

multiple independent walks. These node sequences generated by these walks form

the context of node u.

5.5 Learning a language model

Skip-Gram [28] has proven to be effective at learning meaningful representations

for a variety of data. In order to apply it to networks, it suffices to use artificially

generated node sequences instead of word sentences. In our framework, we train

the neural network Skip-gram using hierarchical softmax according to optimization

41

problem given by equation (3.22d), using node sequences as training data. These

node sequences are generated by biased random walks that have moved around

the multilayer graph M . Negative Sampling also can be used as a technique to

approximate the softmax function used at the last layer of the Skip-gram.

To train the Skip-gram, it is necessary to define the size of the window (w) to be

used as context and the dimension (d) of the node representations. The window is

the maximum distance between the current and predicted node within a sequence.

Then, given the representation of a node v, we would like to maximize the probability

of neighbors of v in the walk (inside w). Note that, because the edge weights, the

random walks prefer to step onto vertices with similar structure, so the neighbors

of v should be structurally similar to v.

In this phase, after training the Skip-Gram, node latent representations that

captures the structural equivalence of nodes will have been generated. Finally, note

that while we use Skip-gram to learn node embeddings, virtually any technique to

learn representations for text data could be used in its place.

5.6 Computational complexity

In order to construct M , the structural distance between every node pair for every

layer must be computed, namely, fk(u, v) for u, v ∈ V , and 0 ≤ k ≤ k∗. However,

each value of fk(u, v) uses the result of the DTW calculation between two degree

sequences. While classic implementation of DTW has complexity O(`2), fast tech-

niques have complexity O(`), where ` is the size of the largest sequence [43]. Let

dmax denote the largest degree in the network. Then, the size of the degree sequence

|s(Rk(u))| ≤ min(dkmax, n), for any node u and layer k. Since in each layer there are(
n
2

)
pairs, the complexity of computing all distances for layer k is O(n2 min(dkmax, n)).

The final complexity is then O(k∗n3). In what follows we describe a series of opti-

mizations that will significantly reduce the computation and memory requirements

of the framework.

5.6.1 Reducing the length of degree sequences (OPT1)

Although degree sequences at layer k have lengths bounded by min(dkmax, n), for some

networks this can be quite large even for small k (e.g., for k = 3 the sequences are

already O(n)). Figure 5.5(a) shows the distance distributions of the size of ordered

degree sequences generated using the BlogCatalog network [37]. The network has

10,312 nodes, 333,983 edges and the diameter is 5. The degree sequences have many

degrees repeated, making their size increase considerably. The layers two and three

are the layers having larger sizes of sequences, having sequences with until 9,600

42

Figure 5.5: Distance distributions of (a) the size of ordered degree sequences and
(b) the size of compressed ordered degree sequences, both of the BlogCatalog net-
work [37].

node degrees. The layers one and five have small degree sequences, because, in layer

one the sequences have the size of the vertex degree and the layer five is bounded

by the diameter of the network, having few degrees.

To reduce the cost of comparing large sequences, we propose compressing the

ordered degree sequence as follows. For each degree in the sequence, we count the

number of occurrences of that degree. The compressed ordered degree sequence is

composed of tuples with the degree and the number of occurrences. Since many

nodes in a network tend to have the same degree, in practice the compressed or-

dered degree sequence can be an order of magnitude smaller than the original. Fig-

ure 5.5(b) shows the distance distributions of the size of compressed ordered degree

sequences.

Let A′ and B′ denote the compressed degree sequences of A and B, respectively.

Since the elements of A′ and B′ are tuples, we adapt the DTW pairwise distance

function as follows:

dist′(a, b) =

(
max(a0, b0)

min(a0, b0)
− 1

)
max(a1, b1) (5.12)

where a = (a0, a1) and b = (b0, b1) are tuples in A′ and B′, respectively; a0 and

b0 are the degrees; a1 and b1 are the number of occurrences. Note that using the

compressed degree sequence leads to comparisons between pieces of the original

sequences that have the same degree (as opposed to comparing every degree).

Consider the difference between the DTW distances calculated with origi-

nal distance function (5.5) and the new distance function (5.12), measured as

|dist(a, b) − dist′(a, b)|. We measure the difference distribution between the two

distances calculated for all vertex pairs in BlogCatalog network (see Figure 5.6a).

43

Figure 5.6: (a) Difference distribution between the DTW distances calculated with
original distance function (5.5) and the new distance function (5.12). (b) Scatter
plot of the DTW distances calculated with the functions (5.5) and (5.12) (each point
correspond to a vertex pair of the BlogCatalog network [37]).

Only 2% of new DTW distances have a difference larger than 10. Figure 5.6b shows

the correlation between the two DTW distances (calculated with the functions (5.5)

and (5.12)) through scatter plot, showing that distances are strongly correlated.

Thus, equation (5.12) leads to an approximation of the DTW on the original

degree sequences, as given by equation (5.5). However, DTW now operates on A′

and B′, which are much shorter than A and B, respectively.

5.6.2 Reducing the number of pairwise similarity calcula-

tions (OPT2)

While the original framework assesses the similarity between every node pair at

every layer k, clearly this seems unnecessary. Consider two nodes with very different

degrees (eg., 2 and 20). Their structural distance even for k = 0 will be large, and

consequently the edge between them in M will have a very small weight. Thus,

when generating context for these nodes, the random walk is unlikely to traverse

this edge. Consequently, not having this edge in M will not significantly change the

model.

We limit the number of pairwise similarity calculations to Θ(log n) per node,

for every level k. Let Ju denote the set of nodes that will be neighbors of u in M ,

which will be the same for every level. Ju should have the nodes most structurally

similar to u. In order to determine Ju, we take the nodes that have degrees most

similar to u. This can be computed efficiently by performing a binary search on the

ordered degree sequence of all nodes in the network (for the degree of node u), and

taking log n consecutive nodes on each direction after the search completes. Thus,

computing Ju has complexity Θ(log n). Computing Ju for all nodes has complexity

44

Θ(n log n) which is also needed for sorting the degrees of the network. As for memory

requirements, each layer of M will now have Θ(n log n) edges as opposed to Θ(n2).

5.6.3 Reducing the number of layers (OPT3)

The number of layers in M is given by the diameter of the network, k∗. However,

for many networks the diameter can be much larger than the average distance.

Moreover, the importance of assessing the structural similarity between two nodes

diminishes with arbitrarily large values for k. In particular, when k is near k∗

the length of the degree sequences of the rings become relatively short, and thus

fk(u, v) is not much different from fk−1(u, v). Therefore, we cap the number the

layers in M to a fixed constant k′ < k∗, capturing the most important layers for

assessing structural similarity. This significantly reduces the computational and

memory requirements for constructing M .

Although the combination of the above optimizations affects the capacity of the

framework in generating good representations for nodes that are structurally similar,

we will show that their impact is marginal and sometimes even beneficial. Thus,

the benefits in reducing computational and memory requirements of the framework

greatly outweighs its drawbacks.

Last, we make struc2vec available at: https://github.com/leoribeiro/

struc2vec

45

https://github.com/leoribeiro/struc2vec
https://github.com/leoribeiro/struc2vec

Chapter 6

Experimental Evaluation

In what follows we evaluate struct2vec in different scenarios in order to illustrate its

potential in capturing the structural identity of nodes, also in light of state-of-the-art

techniques for learning node representations.

6.1 Barbell graph

We denote B(h, k) as the (h, k)-barbell graph, which can be obtained by connecting

two complete graphs K1 and K2 (each having h nodes) through a path graph P of

length k. We choose two random nodes b1 ∈ V (K1) and b2 ∈ V (K2) to act as the

bridges. Using {p1, . . . , pk} to denote V (P), we connect b1 to p1 and b2 to pk, thus

joining the three graphs.

We use this specific network to illustrate how struct2vec works, since it has a

significant number of nodes with the same structural identity. Let C1 = V (K1)\{b1}
and C2 = V (K2)\{b2}. Note that all nodes v ∈ {C1∪C2} are structurally equivalent,

in the strong sense that there exists an automorphism that maps one node to the

other. Additionally, we also have that all node pairs {pi, pk−i}, for 1 ≤ i ≤ k − 1,

along with the pair {b1, b2}, are structurally equivalent in the same strong sense.

Figure 6.1 illustrates a B(10, 10) network, where structurally equivalent nodes have

Figure 6.1: Barbell Graph B(10, 10), composed of two complete graphs K with 10
nodes each and a path graph P of length 10.

46

Figure 6.2: Roles identified in Barbell graph B(10, 10) by RolX.

the same color.

Thus, we expect struct2vec to learn vertex representations that capture the struc-

tural equivalence mentioned above. Every node pair that is structurally equivalent

should be mapped to points that are close in the latent space. Moreover, the learned

representations should also capture structural hierarchies: while the node p1 is not

equivalent to neither nodes p2 or b1, we can clearly see that from a structural point

of view it is more similar p2 (it suffices to compare their degrees).

Figure 6.3 shows the latent representations learned by DeepWalk, node2vec and

struct2vec (with its optimizations) for the graph B(10, 10). DeepWalk fails to cap-

ture structural equivalences, which is expected since it was not designed to consider

structural identities. As illustrated, node2vec does not capture structural identities

even with different variations of its parameters p and q. In fact, it learns mostly

graph distances, placing closer in the latent space nodes that are closer (in hops) in

the graph. Another limitation of node2vec is that Skip-gram’s window size makes it

impossible for nodes from K1 and K2 to appear in the same context.

struct2vec, on the other hand, learns representations that properly separate the

equivalent classes, and also maps structurally equivalent nodes (in the strong senses)

to similar points in the latent space. Note that nodes of the same color are tightly

grouped together. Moreover, p1 and p10 are placed close to representations for nodes

in K1 and K2, as they are the bridges. Finally, note that none of the three opti-

mizations have any significant effect on the quality of the representations. In fact,

structurally equivalent nodes are even closer to one another in the latent represen-

tations under OPT1.

Last, we apply RolX to the barbell graph (results in Figure 6.2). A total of six

roles were identified and some roles indeed precisely captured structural equivalence

(roles 1 and 3). However, structurally equivalent nodes (in K1 and K2) were placed

47

Figure 6.3: Latent representations in R2 learned by (a) DeepWalk, (b) node2vec and
(c,d,e,f,g,h) struc2vec. Parameters used for all methods: number of walks per node:
20, walk length: 80, skip-gram window size: 5, dimensions: 2. For node2vec: p = 1
and q = 2.

48

Figure 6.4: Mirrored Karate network. Colors correspond to mirrored nodes.

in three different roles (role 0, 2, and 5) while role 4 contains all remaining nodes in

the path. Thus, although RolX does capture some notion of structural equivalence

when assigning roles to nodes, struct2vec better identifies and separates structural

equivalence.

6.2 Karate network

The Zachary’s Karate Club [35] is an unweighted undirected network composed of

34 nodes and and 78 edges, where each node represents a club member and edges

denote if two members have interacted outside the club. In this network, edges are

commonly treated as indications of friendship between members.

We construct a graph composed of two copies G1 and G2 of the Karate Club

network, where each node v ∈ V (G1) is a mirrored version of a node u ∈ V (G2).

We also connect the two networks by adding an edge between mirrored node pairs 1

and 37. Although this is not necessary for our framework, DeepWalk and node2vec

cannot place in the same context nodes in different connected components of the

graph. Thus, we add the edge for a more fair comparison with the two baselines.

Figure 6.4 shows the generated graph with mirrored node pairs exhibiting the same

color.

Figure 6.5 shows the representations learned by DeepWalk and node2vec, and

Figure 6.6a shows the representations learned by struct2vec. Clearly, Deepwalk and

node2vec fail to group in the latent space structurally equivalent nodes, as was the

case for the Barbell graph, including mirrored nodes.

Once again, struct2vec manages to learn features that properly capture the struc-

49

tural identity of nodes. Mirrored pairs – that is, nodes with the same color – stay

close together in the latent space, and there is a complex structural hierarchy in the

way the representations are grouped together.

As an example, note that nodes 1, 34 and their correspondent mirrors (37 and

42) are in a separate cluster in the latent space. Interestingly, these are exactly

the nodes that represent the club instructor Mr. Hi and his administrator John A.

The network was gathered after a conflict between the two that split the members

of the club which formed two groups – each centered on either Mr. Hi or John A.

Therefore, nodes 1 and 34 have a truly specific – although similar – social role in

the original network: they both act as leaders. Note that struct2vec captures their

function even though there is no edge between them.

Another visible cluster in the latent space is composed of nodes 2, 3, 4 and 33,

also along with their mirrors. These nodes also have a specific structural identity in

the network: all of them have high degrees and are also connected to at least one of

the leaders. Lastly, nodes 26 and 25 (far right in the latent space) have extremely

close representations, which agrees with their structural role: both have low degree

and are 2 hops away from leader 34.

struct2vec also captures non-trivial structural equivalences. Note that nodes 7

and 50 (pink and yellow) are mapped to close points in the latent space. Surprisingly,

these two nodes are structurally equivalent – there exists an automorphism in the

graph that maps one into the other. This can be more easily seen once we note

that nodes 6 and 7 are also structurally equivalent, and 50 is the mirrored version

of node 6 (therefore also structurally equivalent).

Analyzing how linear transformations in the latent space impact a node’s struc-

tural identity is fundamental to further understand the learned manifold. Unlike

DeepWalk and node2vec, our technique generates a latent space with a strongly

dominant component: clearly, most nodes are spread among a line in the feature

space. Note that linearity in this manifold has a direct correspondence to structural

properties such as degree. For example, note that φ(42) − φ(3) ≈ φ(3) − φ(56)

(where φ(i) is the latent representation of node i). This suggests that there is

a structural transformation that maps node 56 to 3, and node 3 to 42. Indeed,

it suffices to check each node’s degree: d(42) = 17, d(3) = 10, d(56) = 3, and

d(42) − d(3) = 7 = d(3) − d(56). This is a strong indication that the latent space

learned by struc2vec has fundamental aspects of the structural identity of nodes.

Last, Figure 6.6b shows the roles identified by RolX in the mirrored Karate

network (28 roles were identified). Note that leaders 1 and 34 were placed in different

roles. The mirror for 1 (node 37) was also placed in a different role, while the mirror

for 34 (node 42) was placed in the same role as 34. A total of 7 corresponding

pairs (out of 34) were placed in the same role. However, some other structural

50

Figure 6.5: Mirrored Karate network representations created by (a) DeepWalk and
(b) node2vec. Parameters used for two methods: number of walks per node: 5, walk
length: 15, window size of skip-gram: 3, dimensions: 2. For node2vec were used
p = 1 and q = 2.

51

Figure 6.6: (a) Mirrored Karate network representations created by struc2vec. Pa-
rameters used for the method: number of walks per node: 5, walk length: 15,
window size of skip-gram: 3, dimensions: 2. struc2vec clearly identifies structurally
equivalent nodes (mirrored nodes, with the same color) in the latent space. (b)
Roles identified in Mirrored Karate network by RolX.

52

Table 6.1: Average and standard deviation for distances between node pairs in
the latent space representation for the mirrored Karate network (see corresponding
distributions in Figure 6.7).

Corresponding nodes All nodes

Algorithms avg (std) avg (std)

DeepWalk 0.377 (0.184) 0.356 (0.195)

node2vec 0.407 (0.199) 0.372 (0.206)

struc2vec 0.129 (0.109) 0.722 (0.694)

Figure 6.7: Distance distributions between node pairs (mirrored pairs and all pairs)
in the latent space, for the mirrored Karate network learned by node2vec and
struc2vec (as shown in Figures 6.6 and 6.5). Curves marked with × correspond
to distances between mirrored pairs while + corresponds to all pairs; corresponding
averages indicated by vertical lines.

similarities were also identified – e.g., nodes 6 and 7 are structurally equivalent

and were assigned the same role. Again, RolX seems to capture some notion of

structural similarities among network nodes but struct2vec can better identify and

separate structural equivalences using latent representations.

Consider the distance between pairs of vertices in the latent representation. We

measure the distance distribution between pairs corresponding to mirrored nodes

and the distance distribution among all node pairs (using the representation shown

in Figures 6.6 and 6.5). Figure 6.7 shows the two distance distributions for the rep-

resentations learned by node2vec and struc2vec, with corresponding averages shown

in Table 6.1. For node2vec the two distributions are practically identical, indicating

no difference between distances among mirrored pairs and distances among all pairs.

53

DeepWalk shows similar behavior (curves omitted for clarity) with averages shown

in Table 6.1. In contrast, struc2vec exhibits two very different distributions: 94%

of mirrored node pairs have distance smaller than 0.25 while 68% of all node pairs

have distance larger than 0.25. Moreover, the average distance between all node

pairs is 5.6 times larger than that of mirrored pairs, while this ratio is about slightly

smaller than 1 for DeepWalk and node2vec (see Table 6.1).

To better characterize the relationship between structural distance and distances

in the latent representation learned by struc2vec, we compute the correlation be-

tween the two distances for all node pairs. In particular, for each layer k we compute

the Spearman and Pearson correlation coefficients between fk(u, v), as given by equa-

tion (5.1), and the euclidean distance between u and v in the latent representation.

Results shown in Table 6.2 for the mirrored Karate network indeed corroborate that

there is a very strong correlation between the two distances, for every layer, and

captured by both coefficients. This suggests that struc2vec indeed captures in the

latent space the measure for structural similarity adopted by the methodology.

Table 6.2: Pearson and Spearman correlation coefficients between structural distance
and euclidean distance in latent space for all node pairs in the mirrored Karate
network

Layer
Pearson correlation

(p-value)
Spearman correlation

(p-value)

0 0.83 (0.0) 0.74 (0.0)

1 0.72 (0.0) 0.66 (0.0)

2 0.71 (0.0) 0.65 (0.0)

3 0.70 (0.0) 0.59 (0.0)

4 0.70 (0.0) 0.57 (0.0)

5 0.62 (0.0) 0.47 (2.40)

6 0.74 (0.0) 0.57 (2.37)

7 0.91 (0.0) 0.89 (2.45)

6.3 Robustness to edge removal

We consider another scenario to illustrate the potential of the framework in effec-

tively representing structural identity, even in the presence of noise. In particular,

we randomly remove edges from the network, directly changing its structure. We

adopt the parsimonious edge sampling model to instantiate two structurally corre-

lated networks that were subjected to random edge removal [46].

The model works as follows. Starting from a fixed graph G = (V,E), we generate

54

a graph G1 by sampling each edge e ∈ E with probability s, independently. Thus,

each edge of G is present in G1 with probability s. Repeat the process again using G

to generate another graph G2. Thus, G1 and G2 are structurally correlated through

G, and s controls the amount of structural correlation. Note that when s = 1, G1

and G2 are isomorphic, while when s = 0 all structural identity is lost.

Figure 6.8: Distribution for distances between node pairs in latent space representa-
tion, under the edge sampling model (different values for s). Bottom curves (marked
with ×) are distances between corresponding node pairs; top curves (marked with
+) are distances between all node pairs.

We apply the edge sampling model to an egonet extracted from Facebook (224

nodes, 3192 edges, max degree 99, min degree 1) [47] to generate G1 and G2 with

different values for s. We relabel the nodes in G2 (as with the previous example),

and consider the union of the two graphs as the input network to our framework.

Note that this graph has at least two connected components (corresponding to G1

and G2) and every node in G1 has a corresponding node in G2 (and vice-versa).

Figure 6.8 shows the distance distribution between node pairs in the latent space

under various values for s (corresponding averages are shown in Table 6.3). In

order to evaluate how well struct2vec captures structural identities in this setting,

we compare the distance distributions between all node pairs and between only

correspondent pairs.

For s = 1 (thus, G1 is isomorphic to G2), the two distance distributions are

strikingly different, with the average distance for all pairs being 21 times larger

than that for corresponding pairs (see Table 6.3). More interestingly, when s = 0.9

the two distributions are still very different. Note that while further decreasing s

does not significantly affect the distance distribution of all pairs, it slowly increases

55

Table 6.3: Average and standard deviation for distances between node pairs in the
latent space representation (see corresponding distributions in Figure 6.8)

Corresponding nodes All nodes

s avg (std) avg (std)

1.0 0.083 (0.05) 1.780 (1.354)

0.9 0.117 (0.142) 1.769 (1.395)

0.7 0.338 (0.374) 1.975 (1.438)

0.5 0.528 (0.588) 1.994 (1.480)

0.3 0.674 (0.662) 1.962 (1.445)

the distribution of corresponding pairs. However, even when s = 0.3 (which means

that the probability that an original edge appears both in G1 and G2 is 0.09, s2),

the framework still places together corresponding nodes in the latent space.

This experiment indicates the robustness of the framework in uncovering the

structural identity of nodes even in the presence of structural noise, modeled here

through edge removals.

6.4 Classification

A common application of latent representations for network nodes is classification.

struc2vec can be leveraged for this task when labels for nodes are more related to

their structural identity than to the labels of their neighbors. To illustrate this

potential, we consider air-traffic networks: unweighted, undirected networks where

nodes correspond to airports and edges indicate the existence of commercial flights.

We consider the following datasets (collected for this study):

• Brazilian Air-traffic network: Data collected from the National Civil Aviation

Agency1, the Brazilian civil aviation authority, and were collected from Jan-

uary to December 2016. The network has 131 vertices, 1038 edges and the

diameter is 5. We label the airports taking into account their movements in

Brazil, during the year 2016. A movement is a landing or takeoff of an air-

craft. Airport activity is measured by the total number of movements in the

corresponding year.

• American air-traffic network: Data collected from the Bureau of Transporta-

tion Statistics2 from January to October, 2016. The network has 1,190 nodes,

13,599 edges (diameter is 8). Airport activity is measured by the total number

1http://www.anac.gov.br/
2https://transtats.bts.gov/

56

Table 6.4: Parameter values used in grid search. Parameters for node2vec and
struc2vec: number of walks per node (γ), walk length (t), context window-size (w)
and dimensions (d). Parameters p and q used only by node2vec.

network of
flights

γ t w d p , q

Brazil
5, 10, 15, 20,

30

5, 10, 15, 20, 30,

40, 60, 70, 80

1, 2, 3, 5,

10, 20

8, 16, 32,

64

0.25, 0.50,

1, 2, 4

EUA
5, 10, 15, 20,

30, 50

10, 15, 20, 30, 40,

60, 70, 80, 90, 120

2, 3, 5, 10,

20
64, 128, 256

0.25, 0.50,

1, 2, 4

Europe
5, 10, 15, 20,

30

5, 10, 15, 20, 30,

40, 60, 70, 80

1, 2, 3, 5,

10, 20

8, 16, 32,

64, 128

0.25, 0.50,

1, 2, 4

Figure 6.9: Distribution of vertex degrees of air-traffic networks of Brazil, USA and
Europe.

of people that passed (arrived plus departed) the airport in the corresponding

period.

• European air-traffic network: Data collected from the Statistical Office of the

European Union (Eurostat)3 from January to November 2016. The network

has 399 nodes, 5,995 edges (diameter is 5). Airport activity is measured by

the total number of movements in the corresponding period.

An air-traffic network usually has a heavy-tail degree distribution, with few air-

ports playing the role of major hubs [19]. In a network with a heavy-tail degree

distribution most nodes have only a few links. These various small nodes are held

3http://ec.europa.eu/

57

together by a few highly connected hubs. Then, we believe that airports with simi-

lar size are probably to have a similar structure in the network. For example, very

large airports, like Garulhos (GRU) or Galeão (GIG) in Brazil or Atlanta Airport

(ATL) and Los Angeles Airport (LAX) in EUA, will have many flights arriving and

departing (movements) and they will act like hubs in the network, performing the

role of connecting several smaller airports. At the same time, many airports are tiny

and have only a few connections (e.g. degree 1 or 2). They will be on the periphery

of the network, being final destinations for people going to small towns or being

private airports. Figure 6.9 shows the degree distribution of the networks.

Airports will be assigned a label corresponding to their level of activity, mea-

sured in flights or people. For each airport, we assign one of four possible labels

corresponding to their activity. In particular, for each dataset, we use the quartiles

obtained from the empirical activity distribution to split the dataset in four groups,

assigning a different label for each group. Thus, label 1 is given to the 25% less

active airports, and so on. Note that all classes (labels) have the same size (number

of airports). Moreover, classes are related more to the role played by the airport.

We learn latent representations for nodes of each air-traffic network using

struc2vec and node2vec using a grid search to select the best hyperparameters for

each case (see Table 6.4). Note that this step does not use any node label infor-

mation. The latent representation for each node becomes the feature that is then

used to train a supervised classifier (one-vs-rest logistic regression with L2 regular-

ization). We also consider just the node degree as a feature since it captures a very

basic notion of structural identity. Last, since classes have identical sizes, we use

just the accuracy to assess performance. Experiments are repeated 10 times using

random samples to train the classifier (80% of the nodes used for training) and we

report on the average performance.

6.4.1 Results

Figure 6.10 shows the classification performance of the different features for all

air-traffic networks. Clearly, struc2vec outperforms the other approaches, and its

optimizations have little influence. As the networks have labels related with the

structural equivalence of nodes, struc2vec can help to predict airports with structural

equivalences.

For the Brazilian network, struc2vec improves classification accuracy by 50%

in comparison to node2vec. Interestingly, for this network node2vec has average

performance (slightly) inferior to node degree, indicating the importance played

by the structural identity of the nodes in classification. Surprisingly, versions of

struc2vec using optimization 2, have superior performance. We believe that it occurs

58

Figure 6.10: Average accuracy for multi-class classification in air-traffic networks of
Brazil, USA and Europe for different node features used in supervised learning, with
80% of the nodes labeled for training. The values are the average of 10 executions
with random sample initializations.

because the network has many vertex with similar degrees (see Figure 6.9), and

forcing compare each network node with only Θ(log n) more similar vertices (rather

than compare with all other vertices), makes the random walks step between more

structurally similar vertices, consequently, refining the context better.

For the American and European air-traffic network, we achieve an improvement

over node2vec of 8% and 20% in accuracy, respectively. In some cases, using the

optimizations proposed in section 5.6 causes the score values to drop slightly. This is

expected because the framework will have less information to generate the network

used for the generation of vertex contexts.

In American and European air-traffic networks, node2vec has a relatively good

performance. We believe that this occurred because node2vec can generate repre-

sentations mixing homophily and structural equivalence. As similar airports usually

have routes between them, homophily is also present in these networks. For exam-

ple, large airports, such as ATL, have routes to other major airports, such as LAX,

making labels also related to homophily.

Lastly, the labels were generated in a arbitrary way, so airports similar, from the

point of view of the number of people who passed through it or of its movements,

can be in different class if they are near to the boundary that was used to separate

the class. This may have affected the performance of struc2vec.

59

6.5 Scalability

In order to illustrate its scalability, we apply struc2vec with the first two optimiza-

tions to instances of the Erdös-Rényi random graph model [48]. The following values

were used for the parameters: dimensions (d): 128, number of walks per node (γ):

10, walk length (t): 80, Skip-Gram window-size (w): 10.

We compute the average execution time for 10 independent runs on graphs with

sizes from 100 to 1,000,000 nodes and average degree of 10. In order to speed up

training the language model, we use Skip-Gram with Negative Sampling [29].

To perform the scalability experiments, a computer with the following configu-

rations was used: Processor: Intel(R) Xeon(R) CPU E5-2630, 2.60GHz (24 cores);

Memory: 62GB; Operating System: Ubuntu 12.04.5 LTS.

Figure 6.11 shows the execution time, in log-log scale, indicating that struc2vec

scales super-linearly but closer to linear than to n1.5 (dashed lines). The sampling

time comprises of calculations of distances between the vertex pairs, the creation

of the multi-layer graph M and simulation of random walks. The training time

comprises of learning of representations using Skip-Gram.

Thus, despite its unfavorable worst case time and space complexity, in practice

struc2vec can be applied to very large networks.

Figure 6.11: Average execution time of struc2vec on Erdös-Rényi graphs with aver-
age degree of 10. Training time refers to the additional time required by Skip-Gram.

60

Chapter 7

Conclusion and future work

7.1 Work considerations

Structural identity is a concept of symmetry in networks in which nodes are identified

using just the network structure, along with their relationship to other vertices. The

concept is strongly related to the notion of function, in which nodes tend to play

particular roles in the network. Thus, identifying nodes with similar identity has

long been investigated, in social sciences and hard sciences.

In this dissertation, we studied representation learning in networks to capture

the structural identity of nodes. Learning representations is a important task in ma-

chine learning. Recent works have focused on using neural networks models to build

general word representations [29] [27]. A neural language model is a language model

based on neural networks, exploiting their ability to learn distributed representa-

tions. Recently, DeepWalk and node2vec brought the representation learning for the

context of networks using neural language models. These works propose strategies of

learning latent representations for nodes: while DeepWalk creates latent representa-

tions capturing the homophily present in networks, node2vec learns representations

pursuing to capture a mixing of homophily and structural equivalence. Even though

the experiments suggest that node2vec captures structural equivalence, structurally

equivalent vertices will never share the same context if their distance (hop count)

is larger than the Skip-gram window, being possible for structurally similar vertices

to be far in the latent space.

We proposed struc2vec, a flexible framework to learn representations that cap-

tures the structural identity of nodes in a network. struc2vec assesses the structural

similarity of node pairs without leveraging node or edge attributes, including node

labels. It also uses a hierarchy to measure structural similarity at different scales, us-

ing ordered node degree sequence within the k-hop neighborhood node pairs. These

structural distances are used to construct a multilayer weighted graph that encodes

61

structural similarities among all nodes in the network. Biased random walks on this

multilayer graph are used to generate the structural context for every node.

As we have shown, some techniques fail to learn representations that can effec-

tively capture structural identity, while struc2vec overcomes their limitations and

excels in this task, in comparison. We applied our framework in different scenar-

ios, demonstrating its effective capacity to capture the structural equivalence of

vertices. Specifically, we conducted an experiment with an egonet extracted from

Facebook, showing the robustness of the framework in uncovering the structural

identity of nodes even in the presence of structural noise, modeled through edge

removals. Lastly, we executed a classification experiment to find similar airports,

based on the network structure. In contrast, struc2vec was not designed to capture

node homophily, a common property in networks that can be leveraged for solving

many (supervised) classification task.

7.2 Limitations and future work

There is room for further development on a few directions, and we present some of

them worth pursuing:

• struc2vec only address the structural identity of nodes. Can structural identity

and homophily of nodes be adequately captured by a latent representations?

On the one hand, structural identity is a concept independent of network

position, while on the other hand, homophily is a concept tied to network

proximity. Reconciling these two fundamental aspects of network nodes is an

open and active research question.

• To create a ordered sequence degree for each vertex a BFS is required, that is

a costly procedure, having complexity O(|V | + |E|) per vertex. Besides that,

we have adopted only the vertex degree. Using more node features than just

degree (combining them, for example), as closeness or clustering coefficient,

could improve the latent representations.

• Using another approach to generate sequences of nodes in a way different from

random walks. A possible attempt would be defining a distance function that

returns in a stochastic way, sequences of nodes that are structurally similar,

or that has a certain property to be captured by the representations in the

latent space.

• struc2vec was only tested in unweighted undirected networks. A generalization

to operate with directed networks or/and weighted networks will increase the

range of applications that can benefit from the method.

62

Bibliography

[1] LORRAIN, F., WHITE, H. C. “Structural equivalence of individuals in social

networks”, The Journal of mathematical sociology, v. 1, n. 1, pp. 49–80,

1971.

[2] SAILER, L. D. “Structural equivalence: Meaning and definition, computation

and application”, Social Networks, v. 1, n. 1, pp. 73–90, 1978.

[3] SINGH, R., XU, J., BERGER, B. “Global alignment of multiple protein in-

teraction networks with application to functional orthology detection”,

Proceedings of the National Academy of Sciences, v. 105, n. 35, pp. 12763–

12768, 2008.

[4] ATIAS, N., SHARAN, R. “Comparative analysis of protein networks: hard

problems, practical solutions”, Communications of the ACM, v. 55, n. 5,

pp. 88–97, 2012.

[5] PIZARRO, N. “Structural Identity and Equivalence of Individuals in Social

Networks Beyond Duality”, International Sociology, v. 22, n. 6, pp. 767–

792, 2007.

[6] KLEINBERG, J. M. “Authoritative sources in a hyperlinked environment”,

Journal of the ACM (JACM), v. 46, n. 5, pp. 604–632, 1999.

[7] LEICHT, E. A., HOLME, P., NEWMAN, M. E. “Vertex similarity in networks”,

Physical Review E, v. 73, n. 2, pp. 026120, 2006.

[8] FOUSS, F., PIROTTE, A., RENDERS, J.-M., et al. “Random-walk compu-

tation of similarities between nodes of a graph with application to col-

laborative recommendation”, IEEE Transactions on knowledge and data

engineering, v. 19, n. 3, 2007.

[9] BLONDEL, V. D., GAJARDO, A., HEYMANS, M., et al. “A measure of sim-

ilarity between graph vertices: Applications to synonym extraction and

web searching”, SIAM review, v. 46, n. 4, pp. 647–666, 2004.

63

[10] ZAGER, L. A., VERGHESE, G. C. “Graph similarity scoring and matching”,

Applied mathematics letters, v. 21, n. 1, pp. 86–94, 2008.

[11] HENDERSON, K., GALLAGHER, B., ELIASSI-RAD, T., et al. “Rolx: struc-

tural role extraction & mining in large graphs”. In: Proceedings of the 18th

ACM SIGKDD international conference on Knowledge discovery and data

mining, pp. 1231–1239. ACM, 2012.

[12] GROVER, A., LESKOVEC, J. “node2vec: Scalable Feature Learning for Net-

works”. In: ACM SIGKDD, 2016.

[13] NARAYANAN, A., CHANDRAMOHAN, M., CHEN, L., et al. “subgraph2vec:

Learning Distributed Representations of Rooted Sub-graphs from Large

Graphs”. In: International Workshop on Mining and Learning with

Graphs, 2016.

[14] PEROZZI, B., AL-RFOU, R., SKIENA, S. “DeepWalk: Online Learning of

Social Representations”. In: ACM SIGKDD, 2014. ISBN: 978-1-4503-

2956-9.

[15] TANG, J., QU, M., WANG, M., et al. “LINE: Large-scale Information Network

Embedding”. In: WWW, 2015.

[16] FORTUNATO, S. “Community detection in graphs”, Physics reports, v. 486,

n. 3, pp. 75–174, 2010.

[17] R. RIBEIRO, L. F., P. SAVERESE, P. H., R. FIGUEIREDO, D. “struc2vec:

Learning Node Representations from Structural Identity”. In: ACM

SIGKDD, 2017.

[18] NEWMAN, M. “Networks: an introduction. 2010”, United Slates: Oxford

University Press Inc., New York, pp. 1–2.

[19] BARABÁSI, A.-L. “Network science book”, Boston, MA: Center for Complex

Network, Northeastern University, 2014.

[20] DE LAS RIVAS, J., FONTANILLO, C. “Protein–protein interactions essen-

tials: key concepts to building and analyzing interactome networks”, PLoS

Comput Biol, v. 6, n. 6, pp. e1000807, 2010.

[21] WINSHIP, C., MANDEL, M. “Roles and positions: A critique and extension

of the blockmodeling approach”, Sociological methodology, v. 14, pp. 314–

344, 1983.

64

[22] WEST, D. B., OTHERS. Introduction to graph theory, v. 2. Prentice hall Upper

Saddle River, 2001.

[23] MATHON, R. “A note on the graph isomorphism counting problem”, Infor-

mation Processing Letters, v. 8, n. 3, pp. 131–136, 1979.

[24] SIMÕES, J. E. Two Problems On The Structure-Identity Relationship On Net-

works. Tese de Doutorado, Universidade Federal do Rio de Janeiro, 2016.

[25] RONG, X. “word2vec parameter learning explained”, arXiv preprint

arXiv:1411.2738, 2014.

[26] BENGIO, Y., COURVILLE, A., VINCENT, P. “Representation learning: A

review and new perspectives”, IEEE transactions on pattern analysis and

machine intelligence, v. 35, n. 8, pp. 1798–1828, 2013.

[27] BENGIO, Y., DUCHARME, R., VINCENT, P., et al. “A neural probabilistic

language model”, Journal of machine learning research, v. 3, n. Feb,

pp. 1137–1155, 2003.

[28] MIKOLOV, T., CHEN, K., CORRADO, G., et al. “Efficient Estimation of

Word Representations in Vector Space”. In: ICLR Workshop, 2013.

[29] MIKOLOV, T., SUTSKEVER, I., CHEN, K., et al. “Distributed Representa-

tions of Words and Phrases and their Compositionality”. In: Advances in

Neural Information Processing Systems 26, pp. 3111–3119, 2013.

[30] COLLINS, M. “Language Modeling - Course notes for NLP, Columbia Univer-

sity”, 2013.

[31] RUMELHART, D. E., HINTON, G. E., WILLIAMS, R. J. Learning internal

representations by error propagation. Relatório técnico, DTIC Document,

1985.

[32] MORIN, F., BENGIO, Y. “Hierarchical Probabilistic Neural Network Language

Model”. In: Cowell, R. G., Ghahramani, Z. (Eds.), Proceedings of the

Tenth International Workshop on Artificial Intelligence and Statistics, pp.

246–252, 2005.

[33] GUTMANN, M. U., HYVÄRINEN, A. “Noise-contrastive estimation of unnor-

malized statistical models, with applications to natural image statistics”,

Journal of Machine Learning Research, v. 13, n. Feb, pp. 307–361, 2012.

65

[34] SHERVASHIDZE, N., SCHWEITZER, P., VAN LEEUWEN, E. J., et al.

“Weisfeiler-Lehman Graph Kernels”, J. Mach. Learn. Res., v. 12,

pp. 2539–2561, nov. 2011. ISSN: 1532-4435.

[35] ZACHARY, W. W. “An information flow model for conflict and fission in small

groups”, Journal of anthropological research, v. 33, n. 4, pp. 452–473, 1977.

[36] KNUTH, D. E. The Stanford GraphBase: a platform for combinatorial com-

puting, v. 37. Addison-Wesley Reading, 1993.

[37] ZAFARANI, R., LIU, H. “Social Computing Data Repository at ASU

[http://socialcomputing. asu. edu]. Tempe, AZ: Arizona State University,

School of Computing”, Informatics and Decision Systems Engineering,

2009.

[38] BREITKREUTZ, B.-J., STARK, C., REGULY, T., et al. “The BioGRID

interaction database: 2008 update”, Nucleic acids research, v. 36, n. suppl

1, pp. D637–D640, 2008.

[39] MAHONEY, M. “Large text compression benchmark”, URL: http://www.

mattmahoney. net/text/text. html, 2011.

[40] TANG, L., LIU, H. “Leveraging social media networks for classification”, Data

Mining and Knowledge Discovery, v. 23, n. 3, pp. 447–478, 2011.

[41] TANG, J., QU, M., WANG, M., et al. “Line: Large-scale information net-

work embedding”. In: Proceedings of the 24th International Conference

on World Wide Web, pp. 1067–1077. ACM, 2015.

[42] RAKTHANMANON, T., CAMPANA, B., MUEEN, A., et al. “Addressing

big data time series: Mining trillions of time series subsequences under

dynamic time warping”, ACM Transactions on Knowledge Discovery from

Data (TKDD), v. 7, n. 3, 2013.

[43] SALVADOR, S., CHAN, P. “FastDTW: Toward accurate dynamic time warp-

ing in linear time and space”. In: Workshop on Mining Temporal and

Sequential Data, ACM SIGKDD, 2004.

[44] MÜLLER, M. “Dynamic time warping”, Information retrieval for music and

motion, pp. 69–84, 2007.

[45] SENIN, P. “Dynamic time warping algorithm review”, Information and Com-

puter Science Department University of Hawaii at Manoa Honolulu, USA,

v. 855, pp. 1–23, 2008.

66

[46] PEDARSANI, P., GROSSGLAUSER, M. “On the privacy of anonymized net-

works”. In: ACM SIGKDD, 2011.

[47] LESKOVEC, J., MCAULEY, J. J. “Learning to discover social circles in ego

networks”. In: Advances in neural information processing systems, pp.

539–547, 2012.

[48] ERDÖS, P., RÉNYI, A. “On random graphs, I”, Publicationes Mathematicae

(Debrecen), v. 6, pp. 290–297, 1959.

67

	List of Figures
	List of Tables
	Introduction
	Contributions
	Organization

	Structural Identity
	Motivation
	Related work

	Learning representations
	Data representation
	Language Modeling
	Neural Language Models
	Continuous Bag-of-Words Model (CBOW)
	Continuous Skip-gram Model
	Optimizing Computational Efficiency

	Learning representations from networks
	Introduction
	DeepWalk
	node2vec
	Multi-label classification

	Framework struc2vec
	Introduction
	Measuring structural similarity
	Dynamic Time Warping (DTW)
	Using DTW to compare degree sequences

	Constructing the multilayer graph
	Generating context for vertices
	Learning a language model
	Computational complexity
	Reducing the length of degree sequences (OPT1)
	Reducing the number of pairwise similarity calculations (OPT2)
	Reducing the number of layers (OPT3)

	Experimental Evaluation
	Barbell graph
	Karate network
	Robustness to edge removal
	Classification
	Results

	Scalability

	Conclusion and future work
	Work considerations
	Limitations and future work

	Bibliography

