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WiSARD é um classificador n-upla, historicamente usado em tarefas de reconhe-

cimento de padrões em imagens em preto e branco. Infelizmente, não era comum

que este fosse usado em outras tarefas, devido à sua incapacidade de arcar com

grandes volumes de dados por ser senśıvel ao conteúdo aprendido. Recentemente, a

técnica de bleaching foi concebida como uma melhoria à arquitetura do classificador

n-upla, como um meio de coibir a sensibilidade da WiSARD. Desde então, houve

um aumento na gama de aplicações constrúıdas com este sistema de aprendizado.

Pelo uso frequente de corpora bastante grandes, a etiquetação gramatical mul-

tiĺıngue encaixa-se neste grupo de aplicações. Esta tese aprimora o mWANN-Tagger,

um etiquetador gramatical sem peso proposto em 2012. Este texto mostra que a

pesquisa em etiquetação multiĺıngue com WiSARD foi intensificada através do uso

de lingúıstica quantitativa e que uma configuração de parâmetros universal foi encon-

trada para o mWANN-Tagger. Análises e experimentos com as bases da Universal

Dependencies (UD) mostram que o mWANN-Tagger tem potencial para superar os

etiquetadores do estado da arte dada uma melhor representação de palavra.

Esta tese também almeja avaliar as vantagens do bleaching em relação ao mod-

elo tradicional através do arcabouço teórico da teoria VC. As dimensões VC destes

foram calculadas, atestando-se que um classificador n-upla, seja WiSARD ou com

bleaching, que possua N memórias endereçadas por n-uplas binárias tem uma di-

mensão VC de exatamente N (2n − 1) + 1. Um paralelo foi então estabelecido entre

ambos os modelos, onde deduziu-se que a técnica de bleaching é uma melhoria ao

método n-upla que não causa prejúızos à sua capacidade de aprendizado.
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WiSARD is an n-tuple classifier, historically employed in pattern recognition

tasks involving black-and-white images, like recognition handwritten characters.

Unfortunately, it was not commonly used in other tasks, for its inability to han-

dle large loads of data, as it was sensitive to the learned content. Recently, the

bleaching technique was conceived as an enhancement to the n-tuple classifier ar-

chitecture as a means to curb WiSARD sensitiveness. Since then, there has been an

increase in the range of applications built with this learning system.

Multilingual part-of-speech (POS) tagging is one of such applications, given its

frequent use of large corpora. This thesis improves mWANN-Tagger, a multilingual

weightless neural network POS-tagger proposed in 2012. The text herein presented

shows that the research on multilingual POS-tagging with WiSARD was intensified

through the use of quantitative linguistics and that a universal parameter config-

uration was found for mWANN-Tagger. Further analyses and experiments with

Universal Dependencies (UD) treebanks show that mWANN-Tagger has potential

to outperform state-of-the-art POS-taggers given a better word representation.

This thesis also aims to assess the advantages of bleaching towards the traditional

model through the theoretical framework of VC theory. The VC dimensions of

both architectures were calculated, attesting that an n-tuple classifier, WiSARD

or bleaching alike, which has N memory nodes addressed by binary n-tuples has

VC dimension of exactly N (2n − 1) + 1. A parallel was then drawn between both

models, where it was deduced that the bleaching technique is an enhancement to

the n-tuple method that does little to no harm to its learning capacity.
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Chapter 1

Introduction

The Wilkie, Stonham and Aleksander Recognition Device (WiSARD) [5, 6] is

a versatile weightless artificial neural network (WANN). Its origins date back to

the n-tuple classifier, which was initially proposed in [7] and then formally defined

in [8]. WiSARD has a very modular architecture and trains unseen patterns in a

single pass, making it an efficient learning machine. However, little attention was

given to this model because it could not handle large loads of data. The bleaching

technique [9], a recent enhancement developed for WiSARD, solved this issue. Ap-

plications built employing this technique indicated their ability to handle large loads

of data [10–13]. When compared with state-of-the-art systems, these applications

showed competitive results, sometimes outperforming them.

Part-of-speech (POS) tagging1 is one kind of application that requires learning

machines capable of handling a large load of data, given that some corpora (and tree-

banks) can have from tens of thousands to some million tokens to be learned. The

multilingual weightless artificial neural network part-of-speech tagger (mWANN-

Tagger) [10–12] is a part-of-speech tagger which employs a bleaching n-tuple clas-

sifier to acquire knowledge on the tokens of a given textual base. This tagger had

a group of parameters to determine the kind of knowledge it should get from a

sentence in order to learn how to accurately tag others. However, fine-tuning a

parameter configuration can be very time-consuming, and for a multilingual part-

of-speech tagger this procedure needs to be done for several documents with diverse

linguistic structures. This thesis describes the research made towards a heuristic

that could provide the most suited parameter configuration for a given document

according to its lexical diversity.

The capabilities brought by the bleaching technique led to the assembling of

1Part-of-speech tagging is the task of assigning a part-of-speech tag to each word in a given
text. A part of speech is a category of lexical items which have similar grammatical properties.
Common listed English parts of speech are noun, verb, adjective, adverb, pronoun, preposition,
conjunction, interjection, and sometimes numeral, article or determiner.
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accurate and precise applications [11–16]. A theoretical research was conducted

to unveil the reasons responsible for the improvement in WiSARD performance.

Bleaching is a recent technology and no theoretical background has been derived

up to this point. This thesis provides a mathematical foundation for the bleaching

n-tuple classifier, by analyzing the generalization capacity of both traditional and

bleaching recognition schemes.

1.1 Motivation

In the last decade, given the availability of corpora in several distinct languages,

research on multilingual part-of-speech tagging started to grow [1–4, 10–12, 17–24].

Part-of-speech tagging, as the basis for several other natural language processing

tasks, needs to be as accurate as possible, so to avoid that potential mistakes propa-

gate in cascade to the following tasks. There are two major issues that prevent part-

of-speech tagging from being a fully straightforward process, they are homonymy

and out-of-vocabulary (OOV) words. The former consists of a word having at least

two different meanings (or parts of speech) while the latter are words that need to

be tagged but were not seen during the training phase. Those issues can be much

of a trouble in multilingual part-of-speech tagging, since they arise from the basic

nature of languages and how these encode information into words. A same heuristic

may work for one language and not for the other because they treat information in

different ways.

Some languages have a small lexicon, mostly with words of atomic meaning, and

build sentences using many of them in a very fixed order. Other languages prefer to

have a freer word order, but their words tend to have more complex meanings and

new ones can always be coined by appending affixes to other existing words. The

languages of the former group are known as isolating and the ones of the latter as

synthetic [25].2 A same language can encode distinct pieces of information in very

different manners. This way, languages can be classified in a syntheticity spectrum

that range from fully isolating languages at one end to fully synthetic at the other.

It is important to know where a language lies in this spectrum, so that one might

determine if the tagger must be more concerned about homonymy or OOV words.

Part-of-speech taggers may use some additional information to disambiguate

words that can be classified by more than a single part of speech. The context of

2Languages can be classified according to a morpheme-to-word ratio. A language is said to be
isolating if this ratio is on average close to 1. This kind of languages contain very little inflection,
instead relying on features like word order and auxiliary words to convey meaning. Synthetic
languages have a higher morpheme-to-word ratio, as they prefer to form words by affixing a given
number of dependent morphemes to a root morpheme. A language is said to be polysynthetic is
the morpheme-to-word ratio is high enough, so that some words in these languages are equivalent
to whole sentences in others.
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a word, i.e., its adjacent words, could provide enough information to disambiguate

homonymy in sentences of languages with a more fixed word order. Besides, suffixes

can be used to avoid the problem of OOV words, since even if a given word does

not show up during the training phase of the tagger, it is quite probable that some

part of it would do show up. This thesis presents mWANN-Tagger, a part-of-speech

tagger that makes use of context and word endings to mitigate misclassification

due to homonymy and OOV words, respectively. It also introduces a heuristic to

determine how much knowledge mWANN-Tagger should obtain from the words of

a corpus and from their adjacencies. It was intended to devise a heuristic based

on the lexical diversity of a corpus to build an accurate part-of-speech tagger that

works well with any language.

The successful performance of mWANN-Tagger [10–12] and other applica-

tions [13–16], and the absence of a theoretical background for the bleaching n-tuple

classifier were the main motivations behind the rendering of a mathematical foun-

dation for that learning machine. The framework of statistical learning theory was

chosen in a means of exploring the theoretical characteristics concerning the gener-

alization capacity of the bleaching n-tuple classifier. Furthermore, a previous study

on the search of the Vapnik-Chervonenkis (VC) dimension [26, 27] of the traditional

WiSARD n-tuple classifier was devised, but no exact value was found, letting its VC

dimension defined by a lower and an upper bound [28, 29]. This thesis intends to

deliver exact values for the VC dimensions of both variations, which should provide

future insights on how these learning machines can be enhanced and how they relate

to other weighted learning systems.

1.2 Related Works

Once the amount of annotated corpora in very distinct languages started to grow,

research on multilingual part-of-speech tagging appeared as an almost immediate

consequence. Universal tagsets [20], large inventories of multilingual corpora [22, 23],

use of translated parallel sentences to help in tag disambiguation [17–19, 21, 24]

and language-agnostic part-of-speech taggers [1, 2, 4, 10–12] are some examples of

research done on multilingual part-of-speech tagging.

Part-of-speech taggers often make use of features, such as context, affixes, word

shapes, characters and others. They tend to have relevant information about a

word being trained (or tagged). The use of language-independent features for part-

of-speech tagging may be traced back to RATNAPARKHI [30]. Seven years later,

TOUTANOVA et al. [31] also proposed a feature-rich part-of-speech tagger, the

Stanford Tagger. Nowadays, those features are more commonly employed in neural

taggers [4, 11, 32–36], but are also found in other architectures, like stochastic
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ones [1].

Zipf’s law [37, 38] (or Zipf distribution) and its generalization, the Zipf-

Mandelbrot (ZM) distribution [39] are empirical laws that describe many types

of data, including how words are distributed in a corpus, i.e., its lexical diversity.

These probability distributions have been extensively studied since they were pro-

posed in the first half of the previous century. Studies regarding parts of speech

and power law distributions are considerably common in the literature [40–49]. The

study of the Zipf’s law was also employed to help part-of-speech taggers classify

OOV words [50]. Those power laws also prove useful for other fields that are closely

related to natural language processing (NLP). For instance, in information retrieval

(IR) tasks, the Zipf’s law was applied in the construction of sets of stopwords [51]

and for heuristics in document retrieval [52].

Theoretical researches and architecture improvements were performed on the

traditional WiSARD n-tuple classifier [9, 28, 29, 53–69]. One of the main issues

raised by those studies was how to find a means to mitigate memory saturation. As

WiSARD was fed with (especially if noisy) data, it started filling up every position

of its memory nodes, deteriorating its capability of discriminating patterns.

Among the studies intended to lessen the effects of saturation, it is worth men-

tioning the work of BRADSHAW [28], where lower and upper bounds for the VC

dimension of WiSARD n-tuple classifier were calculated. No exact value for this

measure was found. The research made by BRADSHAW [28] provided a fertile

ground for further analyses on this field. Unfortunately, the solution to the satu-

ration problem there proposed was not that successful, as it relied on convergence

and had no guarantee that it would actually happen whatsoever.

In 2010 [9] an actual way of mitigating saturation was devised, called the bleach-

ing technique. It allowed the network to be exposed to loads of data (noisy and

unnoisy) and yet keep the fidedignity of its pattern discrimination capability. This

improvement considerably enhanced both accuracy and precision of traditional WiS-

ARD n-tuple classifier applications with no performance harm on their training pro-

cedures and just a small bit on the classification step [11–16]. Despite its empirical

results, no theoretical background was provided for the bleaching variation of the

n-tuple classifier up to this publication.

1.3 Goals and Contributions

This thesis aims to present the potential of the bleaching n-tuple classifier for natural

language processing, with a special focus in part-of-speech tagging. Its ability to

handle large loads of data and still train in an agile fashion makes it a promising

learning architecture for such tasks. It was also intended to determine through this
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thesis the role quantitative linguistics measures might have in aiding part-of-speech

taggers disambiguate the words in a corpus. Multilingual part-of-speech tagging

appears as an adequate scenario for this, given that a greater variety of lexical

diversity can be found when employing corpora of very diverse languages.

It is also a goal of this thesis to introduce a mathematical foundation for the

bleaching n-tuple classifier through the study of its generalization capacity. Because

BRADSHAW [28] did not find an exact value for the VC dimension of the traditional

WiSARD n-tuple classifier, this thesis intends to search for an alternative way to

calculate it in order to attain its exact value.

This thesis fulfills its objectives concerning mWANN-Tagger by finding a univer-

sal parameter configuration. In other words, a balance was met between how much

knowledge mWANN-Tagger should extract from the word itself and how much from

its adjacencies. This way, a single mWANN-Tagger instance was assembled, such

that it produces a high level of accuracy for any annotated textual base. This con-

tribution puts an end to the need for fine-tuning and makes mWANN-Tagger ready

to be employed in any corpus regardless of its lexical diversity or language.

The theoretical research on the generalization capacity of WiSARD and bleaching

n-tuple classifiers also delivers what it was intended to. A mathematical formulation

is given to the bleaching n-tuple classifier. Also, a same exact value is calculated for

the VC dimensions of these learning machines. Further discussions concerning this

result provide insights on how to achieve a lower VC dimension for the bleaching

n-tuple classifier and its impacts on the classification capabilities of that learning

machine. This work may contribute as a fertile ground for future researches con-

cerning the bleaching n-tuple classifier, such as the development of new tie-breaking

policies.

In summary, the main contributions of this thesis are:

• Test the capabilities of the bleaching n-tuple classifier through the exposure

to large loads of data;

• Verify the potential of the bleaching n-tuple classifier for natural language

processing, with a special focus in multilingual part-of-speech tagging;

• Study the role quantitative linguistics measures might have in aiding part-of-

speech taggers disambiguate words in a corpus;

• Provide a universal parameter configuration for mWANN-Tagger, so it can be

applied to new corpora with no need of fine-tuning its design parameters;

• Introduce a mathematical foundation for the bleaching n-tuple classifier;
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• Determine the exact value of the VC dimension of the traditional WiSARD

n-tuple classifier;

• Determine the VC dimension of the bleaching n-tuple classifier;

• Discuss what the VC dimensions of both variants tell about the improvement

provided by the bleaching technique;

• Discuss how the value calculated for the VC dimension relates to the presented

practical application, and how one can improve the bleaching n-tuple classifier.

1.4 Thesis Structure

Chapter 2 contains the background in n-tuple classifiers. It presents WiSARD and

bleaching architectures and their training and recognition procedures. A mathe-

matical formulation is provided for both models. One similar to that of STECK

[8] as used for the WiSARD model, and an analogous version was devised for its

bleaching variant. This chapter also opens a discussion about tie-breaking policies

for the bleaching n-tuple classifier, as it proves necessary for the assembling of a

formal mathematical formulation for that learning machine. As a consequence, a

subclass of bleaching n-tuple classifier is defined for that purpose.

Chapter 3 revisits mWANN-Tagger, initially proposed in [10]. It gives insights

on how lexical diversity may contribute in multilingual part-of-speech tagging and

provides background on Zipf’s law and its extension, the Zipf-Mandelbrot distri-

bution. The chapter then describes a series of experiments and analyses meant

to detect a relation between the parameters of these probability distributions and

those of mWANN-Tagger. Through those analyses, a universal parameter configu-

ration is found and its impact in mWANN-Tagger performance is tested through a

comparison with other state-of-the-art multilingual part-of-speech taggers.

Chapter 4 presents the calculations of the VC dimensions of WiSARD and bleach-

ing n-tuple classifiers. At first, the chapter offers a background on statistical learning

theory needed to understand the following content. Through this background, the

importance of discovering the VC dimension of the bleaching n-tuple classifier is

made clear. A finite VC dimension needed be found, so to guarantee that the model

is consistent with the empirical risk minimization principle [27]. Exact (finite) val-

ues are met for both learning machines. The proofs that lead to these results are

rendered in this chapter.

Finally, Chapter 5 contains a summary of the thesis, along with conclusions that

can be drawn from the work here presented. It also offers suggestions for how this

research may be extended in the future.
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Chapter 2

The WiSARD Model

WiSARD is an n-tuple classifier, and as such, it has two key features. The split-

ting of its input into various n-tuples and the storage of its learned knowledge in

memory nodes, which are addressed by those n-tuples. This chapter contemplates

the traditional WiSARD model and its enhanced version produced by the bleaching

technique.

The learning of new patterns is made through simple changes in the content

of the memory nodes of the system. There is no need for convergence-dependable

processes or pretty complex calculations. In other words, n-tuple classifiers have

efficient training procedures and so, they are adequate for empirical studies where

there is a large amount of hyperparameters to be tuned and massive loads of data

to be learned.

2.1 The Traditional WiSARD n-tuple Classifier

The n-tuple method was initially proposed in [7] and formally defined in [8]. Its

most widely known implementation, WiSARD, was made in 1982 [5, 6]. It showed

that it was actually possible to assemble the n-tuple classifier.

The WiSARD n-tuple classifier is considered a weightless neural network for the

resemblance of its memory nodes to actual neurons. The weightless paradigm is

characterized by the network learned knowledge being stored inside its neuronal

nodes whereas weighted models store it in their synaptic connections. WiSARD is

also known as a RAM-based neural network since the implementation of its memory

nodes was effected with actual random access memories (RAMs). Due to this, the

network memory nodes are also known as RAM-nodes or simply RAMs.
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Figure 2.1: Traditional WiSARD classifier

2.1.1 System Architecture

The traditional WiSARD n-tuple classifier is a Boolean neural network. It receives

bit strings as inputs and assign to them classes. This is made through the use of

structures called discriminators. Each discriminator is associated to a single class.

The discriminators have a very simple structure. They consist of a pseudorandom

mapping that shuffles the bits of the network input and split them into tuples, which

address memory nodes. Figure 2.1a portrays a picture mapped into the series of

tuples 10 : 01 : 10 : 10 : 01 : 10. An n-tuple classifier is defined according to its

tuple length n and the amount of memory nodes in each discriminator N .

In a canonical n-tuple classifier a same pseudorandom mapping can be used for

every discriminator. This way, N n-tuples address all memory nodes of each discrim-

inator. Figure 2.1b depicts a canonical n-tuple classifier, where the same series of

tuples produced in Figure 2.1a addresses the memory nodes of both discriminators,

D◦ and D×.

2.1.2 Training Procedure

Training starts by the network setup, where all memory positions are initialized

with 0. Every time a training observation and its corresponding class are sent to the

network, the model selects the discriminator of that class and marks every memory

position addressed by the observation. Positions marked this way have their stored
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values set to 1. At the end of the training procedure, every memory position should

store a 1 if they were addressed at least once, and 0 otherwise.

2.1.3 Recognition Procedure

If a new input pattern is presented to the network, every discriminator responds

with a similarity score, representing how close this new pattern is to the learned

knowledge stored in the discriminator. The similarity score is defined as the amount

of memory nodes whose addressed positions store 1, i.e. those positions which

were accessed at least once during the training step. This score is represented by

summation devices Σ◦ and Σ× in Figure 2.1b.

The network opts for the discriminator whose score is the highest and assigns

its class to the input pattern. If there are at least two discriminators that share the

highest response, then the network outputs that a tie happened. In the latter case,

the classification system may apply some policy to choose one class or use a draw

procedure.

The discriminator similarity score is the number of addressed memory positions.

It implies that the number of nodes N (or the size of the addressing tuples n)

plays an important role in defining the generalization capability of the WiSARD

classifier. High values of N (or small ones of n) reduces the chance of the similarity

score getting too low if a newly presented pattern is slightly different from what was

learned by the network by only a few bits. For example, given a network that is

presented to a 30-bit input pattern and only one of its RAMs does not recognize

it, then (i) if there are 30 RAMs addressed by 1-bit tuples, the similarity score of

the classifier will be 29/30; (ii) if there are 15 RAMs addressed by 2-bit tuples,

the similarity lowers to 14/15; and (iii) if there is only one RAM addressed by the

whole network input, then the similarity will be 0. So, the greater is N the more

generalizing is the WiSARD system.

2.1.4 Mathematical Formulation

An n-tuple classifier is defined according to N , its amount of memory nodes, n,

their address length, and C = {ca, cb, . . .}, the set of classes it can discriminate. Let

X be an ordered set of input data points, X = {x1,x2, . . .}. An input xk ∈ X

must be such that xk ∈ {0, 1}Nn for it to be read by the n-tuple classifier. The

example of Figure 2.1b employs two discriminators, D◦ and D×, each one assigned

to a particular class (◦ and ×, respectively). There are N = 6 memory nodes in

each discriminator, which are addressed by n-tuples of length n = 2.

Any input xk ∈ X is firstly transformed into a feature matrix Zk ∈ {0, 1}N×2n

via an addressing function A : {0, 1}Nn → {0, 1}N×2n , which is pseudorandomly
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generated at the network setup. The feature matrix Zk produced this way has a

single element per row equal to 1 and the remaining ones to 0. This is a direct

consequence of the fact that each n-tuple produced by A(xk) addresses one and

only one memory position. For instance, input xk = 10 : 01 : 10 : 10 : 01 : 10 given

in Figure 2.1b, is converted into feature matrix

Zk =



0 0 1 0

0 1 0 0

0 0 1 0

0 0 1 0

0 1 0 0

0 0 1 0


. (2.1)

By assigning the feature matrix first column to address 00, the second one to 01,

the third to 10 and the last to 11, one can verify that every n-tuple 10 (the first,

third, fourth and last) is represented by matrix row (0 0 1 0). The remaining rows

of Zk represent n-tuples 01.

Let WN,n,C be the family of functions that denotes every n-tuple classi-

fier defined by parameters N , n and C (W stands for WiSARD). Let also

WN,n,C(·; Ma,Mb, . . .) ∈ WN,n,C be a function representing an n-tuple classifier in-

stance defined as above, whose learned knowledge on any class c is characterized by a

memory matrix Mc ∈ {0, 1}N×2n . Every network instance WN,n,C(·; Ma,Mb, . . .) has

card(C) discriminators, denoted Da,Db, . . .. They are represented by Ma,Mb, . . .,

the memory matrices which store their learned knowledge. Mc is defined as

Mc = [mc,i,j]N×2n , where mc,i,j ∈ {0, 1}. The example of Figure 2.1b has two

discriminators, D◦ and D×, which are mathematically represented by memory ma-

trices

M◦ =



0 0 1 0

0 1 0 0

0 0 1 0

0 0 1 0

0 1 0 0

0 0 1 0


(2.2)

and

M× =



0 1 0 0

0 0 1 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1


, (2.3)
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respectively. Each row of these matrices corresponds to the content of their respec-

tive RAM node. For instance, the first row of M◦ is (0 0 1 0), which is exactly the

same sequence of values in the memory positions of d◦1.

For any feature matrix Zk mapped from an input xk ∈ X,

WN,n,C(Zk; Ma,Mb, . . .) produces a score vector s = [sa, sb, . . .]
T, where

sc ∈ {0, 1, . . . , N} is the score of Dc, defined as

sc =
N∑
i=1

2n∑
j=1

mc,i,jzk,i,j, (2.4)

where zk,i,j is the element at i-th row and j-th column of Zk. Given the score vector

s, function WN,n,C(Zk; Ma,Mb, . . .) returns the corresponding class as

WN,n,C(Zk; Ma,Mb, . . .) = argmax
c∈C

sc. (2.5)

The n-tuple classifier of Figure 2.1b produces scores s◦ = 6 and s× = 1, which

are the outputs of D◦ and D×. Because the chosen class is that whose score is the

highest, then that n-tuple classifier opts for ◦ as the class to be applied to input

xk = 10 : 01 : 10 : 10 : 01 : 10.

2.2 The Bleaching Technique

Traditional n-tuple classifiers tend to experience misclassification problems when

trained with large amounts of data. This occurs because many memory positions

should be set to 1 even if they were accessed only once due to a slightly noisy

observation. This problem is known as saturation and is considered one of the

major disadvantages of the traditional n-tuple classifier since its conception [7].

Some attempts were performed in order to overcome this drawback [28, 53, 56,

58, 68]. A solution was devised in 2010, the bleaching technique [9]. Its contribution

as a major upgrade to the traditional architecture allowed the production of very

accurate and precise applications [11–15].

2.2.1 Training Procedure

Bleaching n-tuple classifier training procedure differs from the traditional one by the

storage of any integer value in the memory positions, instead of only 0 and 1. Every

element of the memory nodes initialize as 0 during the network setup, just like in

the traditional process. When a position is addressed at training, its stored value

is incremented by 1, whereas it would only be set to 1 in the traditional procedure,

independently on its original value. Summarizing, at the end of the training step,
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each memory position stores how many times it was accessed.

2.2.2 Recognition Procedure

The integer values stored in the memory nodes give the network a better repre-

sentation of the trained data. However, another structure must be added to the

traditional architecture for a proper classification. The bleaching technique intro-

duces a threshold β (known as the bleaching threshold). It is responsible for defining

which memory positions should contribute to the similarity score of the class.

Threshold β is a non-negative integer number. The canonical bleaching n-tuple

classifier employs a single threshold for the whole network. If a memory position is

addressed during the classification step, then it should be further subjected to β. A

node fires 1 if its addressed position stores a value greater than β, otherwise it fires

0. So, the similarity score of a discriminator of a fixed-threshold bleaching n-tuple

classifier is the amount of its accessed positions whose stored value is greater than

β. Figure 2.2 portrays the classification of an input pattern by a bleaching n-tuple

classifier with β = 2.
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Figure 2.2: Bleaching classifier.

In practical applications, however, a dynamic threshold is employed instead.

The threshold is initialized as β = 0 at the network setup. Thus, at first glance the

dynamic-threshold bleaching n-tuple classifier works like the traditional classifier,

where the score of a discriminator is defined as the number of accessed positions
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whose stored value is greater than 0. If a selection criterion for a given class is not

satisfied at the classification of a pattern, β is incremented by 1 and a new score is

calculated. The iterative procedure keeps going until that criterion is satisfied.

Tie-breaking Policies – Min-max Bleaching n-tuple Classifier

There are several possible criteria to select a winning discriminator. As a direct

extension to the traditional n-tuple method, the most straightforward criterion con-

sists of electing the discriminator with the single highest score. If two or more

discriminators share the same highest response, then there is a tie and the bleaching

threshold β must be increased. This may produce some anomalous cases for dis-

crimination among three or more classes. For instance, in the case given in Table 2.1

there are always at least two discriminators whose output is the highest.

Table 2.1: Ambiguous scenario, where an input pattern is not clearly recognized by
any single discriminator.

Accessed β

Contents 0 1 2 3

D1

v1,1 : 2

3 2 0 0v1,2 : 2

v1,3 : 1

D2

v2,1 : 3

3 1 1 0v2,2 : 1

v2,3 : 1

D3

v3,1 : 3

2 2 1 0v3,2 : 2

v3,3 : 0

A tie-breaking policy less prone to those anomalous cases was employed for

mWANN-Tagger. There all discriminators begin as valid candidates a priori and

the bleaching threshold is set up to β = 0. For an ever-increasing β, the scores

of the candidate discriminators are compared. A discriminator ceases to be can-

didate if its score is not the highest being compared. Once there is only a single

candidate discriminator, then its class is assigned to the network input. If there are

at least two candidate discriminators at the end of the iterative process, then the

network outputs that a tie happened. Similarly to the traditional model, in such

case, the classification system may apply some policy to choose one class or use a

draw procedure.
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In the scenario displayed in Table 2.1, the chosen class would be that of D1,

since it would be the only remaining candidate discriminator after two iterations.

At β = 0, D3 would be discarded because its score, 2, is lower than the highest

attained, 3. Next, at β = 1, D2 ceases to be considered a valid candidate, for D1

has a highest score.

For the determination of the VC dimension, this tie-breaking policy is degen-

erated to a simpler case, for the VC theory paradigm relies on biclass learning

systems. The chosen class is the one whose similarity score is the greatest when β is

the lowest one for which there is no tie between the scores. This learning system is

henceforth named minimum-threshold maximum-score bleaching n-tuple classifier,

or min-max bleaching n-tuple classifier for short. Every further mention in

this thesis on bleaching n-tuple classifiers refers to this particular family of machine

learning schemes.

2.2.3 Mathematical Formulation

Let BN,n,C be the family of functions that denotes every min-max bleaching n-tuple

classifier defined by parameters N , n and C defined in Section 2.1.4 (B stands for

bleaching). Let alsoBN,n,C(·; Ma,Mb, . . .) ∈ BN,n,C be a function representing a min-

max bleaching n-tuple classifier instance defined as above, whose learned knowledge

on any class c is characterized by memory matrix Mc. Let BN,n,C(·; Ma,Mb, . . .)

be defined in an analogous way to WN,n,C(·; Ma,Mb, . . .) (see Section 2.1.4). The

only difference lies on the memory matrices Mc, which are now defined as Mc =

[mc,i,j]N×2n , where mc,i,j ∈ N. Figure 2.2 presents a bleaching n-tuple classifier with

two discriminators D◦ and D×. They are mathematically represented by memory

matrices

M◦ =



0 0 2 1

0 2 0 1

0 0 3 0

0 0 3 0

0 2 0 1

0 0 2 1


(2.6)

and

M× =



0 2 0 1

0 0 3 0

0 2 1 0

0 2 1 0

0 0 3 0

0 2 0 1


, (2.7)
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respectively. One can note that the same relation between memory matrix rows and

RAM node contents mentioned in Subsection 2.1.4 applies to the bleaching variants

of M◦ and M×.

Let s(β) =
[
s

(β)
a , s

(β)
b , . . .

]T

be the score vector of the bleaching n-tuple classifier

for a given fixed threshold β. The scores s
(β)
c ∈ {0, 1, . . . , N} represent the number

of nodes of discriminator Dc whose addressed positions store values greater than β.

So, they can be defined as

s(β)
c =

N∑
i=1

2n∑
j=1

1(β,∞)(mc,i,jzk,i,j) , (2.8)

where 1S(x) is the indicator function that returns 1 if x ∈ S and 0 otherwise.

mc,i,j and zk,i,j are respectively elements of matrices Mc and Zk. Figure 2.2 shows

the scores produced by a bleaching n-tuple classifier when subjected to a bleaching

threshold β = 2. In this case, the learning machine produces scores s
(2)
◦ = 2 and

s
(2)
× = 0.

At last, two mathematical formulations for the output of the min-max bleaching

n-tuple classifier are given, one for the multiclass model and a simpler one for its

biclass variant. The definition of the latter is relevant for the determination of the

VC dimension of this learning system.

Let BN,n,C(·; Ma,Mb, . . .) ∈ BN,n,C be a function representing a multiclass min-

max bleaching n-tuple classifier, whose learned knowledge is stored in memory ma-

trices Ma,Mb, . . .. For a feature matrix Zk mapped from an input xk, BN,n,C returns

BN,n,C(Zk; Ma,Mb, . . .) = c, (2.9)

such that for every c′ 6= c ∈ C, argmin
β′

s
(β′)
c > s

(β′)
c′ < argmin

β′
s

(β′)
c < s

(β′)
c′ . This

procedure is exemplified in Subsection 2.2.2, where a classification scenario is offered

in Table 2.1 and further explained in the nearby text.

In a biclass variant, with a class set C = {ca, cb}, this procedure can be written

in a simplified form. In such case, for a feature matrix Zk, BN,n,C returns the

corresponding class as

BN,n,C(Zk; Ma,Mb) = argmax
c∈{ca,cb}

s(β)
c , (2.10)

where β = argmin
β′

s
(β′)
a 6= s

(β′)
b . This part of the mathematical formulation refers to

the explanation given in the last paragraph of Subsection 2.2.2. There it is written

that the chosen class is the one whose score is the highest, given a bleaching threshold

β that is the lowest one for which there is no tie between the discriminators.
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Chapter 3

mWANN-Tagger

mWANN-Tagger [11] constitutes a multilingual language-independent part-of-speech

tagger. It is a solution to the training performance problem that arises when the

number of languages used by a POS-tagger increases. It is intended to profit from the

efficiency of weightless artificial neural networks in classification tasks and a method

to straightforwardly predict the optimal values for some classification parameters.

It is an evolution of WANN-Tagger [70], a part-of-speech tagger whose architecture

is based on the WiSARD model.

mWANN-Tagger is intended to be used for very diverse languages. The tagger

has distinct forms to treat each language. Some require information to disambiguate

a word that can be attained through context, whereas others get information from

parts of word itself. mWANN-Tagger needs to balance the importance of context

and of the form of the word itself. This chapter describes how mWANN-Tagger

should do this balance and how it is related to the syntheticity of a language.

3.1 Basic Concepts: Quantitative Linguistics

There are two major issues that prevent part-of-speech tagging from being a fully

straightforward process: homonymy and OOV words. The former consists of a word

having at least two different meanings (or parts of speech) while the latter are words

that need to be tagged but were not seen during the training phase.

These issues arise from the basic nature of languages and how they encode in-

formation into words. Some languages have a small lexicon, mostly with words of

atomic meaning, and build sentences using many of them in a very fixed order.

Other languages prefer to have a freer word order, but their words tend to have

more complex meanings and new ones can always be coined by appending affixes to

other existing words.

The languages of the former group are known as isolating and the ones of the

latter as synthetic [25]. A same language can encode distinct pieces of information in
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very different ways. This way, languages can be classified in a syntheticity spectrum

that range from fully isolating languages at one end to fully synthetic at the other.

It is important to know where a language lies in this spectrum, so that one might

determine if the tagger must be more concerned about homonymy or OOV words.

GREENBERG [71] proposed the index of synthesis, a straightforward form to

quantify the syntheticity of a language. It is simply the average number of mor-

phemes per word in a given corpus. However, this metric requires every word of

a corpus to be morphemically divided and there is no automatic way of doing it.

Besides, a same word may be morphemically divided in different ways depending on

what can be considered a morpheme.

An alternative to this metric can be achieved through an analysis of the lexical

diversity of a corpus. Isolating languages tend to have small sets of words, as most of

its words represent atomic meanings. On the other hand, synthetic languages tend

to have a large set of words, which can always be increased by appending affixes

to existing ones. Those distinct natures of encoding information reflect in the word

distribution of texts in those languages.

Some languages prefer to apply more synthetic strategies in some kind of in-

formation and more isolating ones in some other. This way, the classification of

languages according to its degree of synthesis can be seen as the task of finding its

position on a syntheticity spectrum. The fully isolating languages lie on one end of

the spectrum and the fully synthetic on the other. Languages that are neither fully

isolating nor fully synthetic should lie somewhere in between those extrema.

For the sake of comparison, translations of the 9th article of the Universal Dec-

laration of Human Rights in languages of very distinct degrees of synthesis are given

below. Firstly, the English version of the article is presented, then the same article

appears in some languages, ordered according to their syntheticity. It can be seen

that languages encode a same information in very different ways. Vietnamese, an

isolating language employs many small words (most of them monosyllabic) whereas

Greenlandic, a polysynthetic language, prefers fewer larger words.

• English: No one shall be subjected to arbitrary arrest, detention or exile;

• Vietnamese: Không ai bị bắt, giam giữ hay đày đi nơi khác một cách độc

đoán;

• Finnish: Ketään ei saa mielivaltaisesti pidättää, vangita tai ajaa maan-

pakoon;

• Greenlandic: Kinaluunniit namminissarsiortumik tigusarineqassanngliq,

tigummigallagassanngortitaassanani imaluunniit nunagisamit peersitaas-

sanani.
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The way languages encode information into words affects their lexical diversity.

Isolating languages have a fairly small set of words, which may be used for diverse

meanings (sometimes with different parts of speech). Synthetic words are less prone

to homonymy. Tagging sentences on those languages may yet be a challenge, since

new words can be created through affixation and there is a high probability of finding

words not seen during the training phase. In other words, there is an intuitive rela-

tion between isolating languages and homonymy, and between synthetic languages

and OOV words. A comparison between properties of isolating and synthetic lan-

guages is offered in Table 3.1.

Table 3.1: Comparisons of properties of isolating and synthetic languages

Property
Language

Isolating Synthetic
Word information Atomic Complex
Word order Fixed Free
Lexical diversity Low High
Problem in POS-tagging Homonymy OOV words

Heuristics may be used to resolve ambiguities that arise from homonymy and

OOV words. Single words that can belong to a vast variety of parts of speech may

have this ambiguity mitigated by the use of the contexts where those words appear.

That is, adjacent terms may help the part-of-speech tagging of a word by restricting

the amount of possible parts of speech it may assume. The issue of OOV words can

also become less troublesome if the endings of the words are also considered during

the training phase. Most of the languages prefer suffixing to prefixing [72], so those

endings could help with hints on the part of speech of an OOV word. Even if the

word does not show up in the training corpus it is highly probable that another

word which shares its endmost affix does show up. Hence, one may determine

which heuristics a part-of-speech tagger should use by knowing how synthetic is the

language of a corpus. How much focus is given to each of those heuristics depends

on knowing how synthetic is the language.

3.2 Basic Concepts: Statistics of Word Distribu-

tion

Words in a text are distributed according to a power law [37, 38]. Such behavior was

extensively observed in languages, even in extinct and yet-untranslated ones [73].

It was empirically verified that the frequency of every word is proportional to the

frequency of the most common one by a power of its rank. That is, if the words of

a text are ranked according to its frequency (from the most common to the rarest),
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then the r-th most frequent word is proportional to the most frequent word by a

factor of r−α1 , where α1 is a positive real number. This specific kind of power law is

known as the Zipf’s law. The effect of different values of α1 for the Zipf distribution

can be checked in Figure 3.1, where curves are plotted for five different values of α1,

0.5, 0.75, 1.0, 1.25 and 1.5. Values of α1 closer to 0 are represented by darker colors.
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(b) Log-log plot

Figure 3.1: Word rank per word frequency graphs depicting the effect of α1 on the
steepness of the Zipf curve.

Zipf’s law was further generalized by MANDELBROT [39], who noted that the

highest ranked elements appeared less frequently than what was initially expected

by the Zipf’s law. To overcome this discrepancy of the distribution function in

relation to the collected data, MANDELBROT [39] proposed the addition of an

offset parameter α2, which would penalize the highest ranked elements but not the

remaining ones. This generalization is known as the Zipf-Mandelbrot law (ZM law)

or the Zipf-Mandelbrot distribution (ZM distribution) and is characterized by the

formula

f(r;α1, α2) ∝ (r + α2)−α1 . (3.1)

It can be noted that the penalization produced by the offset parameter only

affects the highest ranked elements, because it would make the numerator of Equa-

tion 3.1 become much smaller when r is small enough. On the other hand, for large

values of r the penalizing effect of α2 would be negligible. The effect of different

values of α2 for the ZM distribution can be checked in Figure 3.2, where curves are

plotted for a fixed α1 = 1 and five different values of α2, −0.5, 0.0, 0.5, 1.0 and 2.0.

Values of α2 closer to −1 are represented by lighter colors.

Isolating languages use words with specific functions (e.g., copula and auxiliary

verbs, pronouns and adpositions) far more often than other words. So, the steepness

of their Zipf curves is very high and it is reflected on the distribution exponent α1

tending to be greater than 1. In synthetic languages this special kind of words is

rarely employed. Usually the use of such words would be substituted by an affix

that would be appended to another one, creating a brand new word. In other words,
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Figure 3.2: Word rank per word frequency graphs depicting the effect of penalizing
parameter α2 on the ZM curve.

synthetic languages have larger vocabularies, but almost none of its words appear

much more often than any other. Consequently, their Zipf curves are much less

steep and have heavier tails. The exponent α1 of those distributions tends to be

somewhere between 0 and 1. The closer it is to 0 the more synthetic is a language.
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Figure 3.3: Zipf curves for different languages. The curves are fitted according to the
dots, which express the observed data. The horizontal and vertical axes represent a
same word rank and frequency, respectively.

The difference between the steepness of the Zipf curve of different languages

is displayed in Figure 3.3. It depicts the rank-frequency relation between every

word (represented by a dot) of the Universal Declaration of Human Rights in four

very different languages, Hawaiian – the most isolating, English, Hungarian and

Greenlandic – the most synthetic. The more synthetic a language the darker the

color used in the graph of Figure 3.3. This way, the position of a language in the

syntheticity spectrum can be quantified by knowing the steepness of this power law.

The relation between language syntheticity and lexical diversity [74–76] as well
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as the application of ZM parameters as quantitative measures for lexical diver-

sity [77, 78] corroborate the plausibility of employing ZM parameters as syntheticity

indicators.

ZM parameters α1 and α2 of a textual base can be estimated through a maximum

likelihood (ML) estimation procedure [79]. Each type is ranked according to its

frequency in that given text, assigning rank 1 for the most frequent type, rank 2 for

the second most frequent one, and so on. This way, a textual base is converted to

pairs (rank, frequency) and through them ML estimators α̂1 and α̂2 can be produced.

These estimators should work as close estimators of the actual ZM parameters α1

and α2.

3.3 mWANN-Tagger Architecture

mWANN-Tagger is a feature-rich part-of-speech tagger and as such it has some

design parameters that need to be tuned. The tagger was intended to be used

for multilingual POS-tagging. Consequently, a fast-training learning model was

employed as the core learning mechanism of mWANN-Tagger. It allowed for an

exhaustive search for the best suited parameter configurations to be successfully

done. mWANN-Tagger has two distinct modes, the training and the tagging mode.

The tagger parameters can be checked in the schematic diagrams of the these modes,

which are depicted in Figures 3.4a and 3.4b, respectively.

At the training mode (Figure 3.4a), mWANN-Tagger receives an annotated cor-

pus as input and through the use of four of its design parameters it assembles a

mapping matrix. The parameters used this way are called mapping parameters.

They inform mWANN-Tagger which parts of the words in the corpus have relevant

information capable of aiding mWANN-Tagger in accurately tagging OOV words.

The mapping matrix works like a dictionary where each token extracted from the

corpus is associated to a vector of relative frequencies, indicating how probable a

token can be marked with a given tag. A context window is also used to prevent

problems caused by homonymy. Two design parameters are used to produce this

window, they are the number of words that precede the one being processed by

mWANN-Tagger, and also the number of words that follow it. The tagging can

then produce input patterns for training, by reading the words with their contexts

in the annotated corpus and by mapping them to their corresponding vectors of

relative frequencies. The WiSARD network only works with binary input data. To

solve this, each relative frequency of the input pattern is encoded into an array of

bits. The size of this array is defined by another mWANN-Tagger design parameter.

Given a binary input, the WiSARD network can finally train that input pattern.

The architecture of the employed network depends on a last design parameter, the

21



Mapping Matrix
Assembly

Creation of
Training Patterns

Encoding of
Probabilities

Training of
mWANN-Tagger

Annotated
corpus

Mapping
matrix

RAM content
values

Mapping parameters:

• Size of smallest ending

• Size of largest ending

• Size of the smallest root

• Number of unique words

Context window parameters:

• Number of preceding words

• Number of following words

Probability discretization
degree

RAM address length

(a) Training mode

Creation of
Input Patterns

Encoding of
Probabilities

mWANN-Tagger
Classifier

Text to be
tagged

Mapping
matrix

RAM content
values

Context window parameters:

• Number of preceding words

• Number of following words

Probability discretization
degree

RAM address length

(b) Tagging mode

Figure 3.4: mWANN-Tagger modes

RAM address length. At this step, the RAM content values are read and updated

for each new input pattern.

At the tagging mode (Figure 3.4b), mWANN-Tagger follows similar steps. It

creates input patterns given a text to be tagged, the mapping matrix assembled at

the training mode, and the design parameters that define a context window. Each

input pattern produced this way is then encoded into an array of bits, which is sent

to the WiSARD network to be classified in one of a group of tags. This classification

is only possible due to the bleaching technique, since the RAM content values read

in this step can be notably high for the network exposure to a large load of data.
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3.3.1 Tagset

A universal tagset was proved necessary to create a multilingual POS-tagger. A

correlation among the grammatical classes of every language and a normalization

of the tagsets were intended, so that mWANN-Tagger could be of help for other

multilingual NLP applications. Another benefit of the universal tagset was the

adoption of a fixed amount of tags, reducing the differences among the datasets,

so that only the parameters of the tagger need to be tuned. This was important

because one of the goals of this work was to investigate a correlation between the

ZM parameters, α1 and α2, and mWANN-Tagger design parameters. Furthermore,

PETROV et al. [20] results corroborate the use of a universal tagset instead of

specific ones for each language. The tagset employed by mWANN-Tagger has T = 14

tags (Table 3.2) and is similar to ones adopted in other works [18, 20].

Table 3.2: Tagset of mWANN-Tagger

N Noun ADJ Adjective
ADV Adverb V Verb

PRON Pronoun DET Determiner
ADP Adposition NUM Cardinal Number
CJ Conjunction MW Measure Word

PART Particle INTJ Interjection
PUNC Punctuation MISC Miscellaneous

3.3.2 mWANN-Tagger Design Parameters

The WiSARD-based tagger mWANN-Tagger employs eight adjustable design pa-

rameters during its training and tagging modes, as depicted in Figures 3.4a and 3.4b.

These design parameters are from now on referred solely as parameters. Four of those

are related to word structure and are used to mitigate the problem of OOV words.

They are hereinafter referred to as mapping parameters for their use in the mapping

matrix assembly. Also, mWANN-Tagger is a sliding window tagger, and so two

other parameters are needed to determine how much adjacent context is relevant for

the tagging process. The last two parameters are related to characteristics of the

WiSARD classifier employed as the core of this tagger.

As it is graphically explained in Figure 3.4a, the annotated corpus is initially

read and through this a mapping matrix is assembled. This matrix works like a

dictionary, where every line has a word and a list of relative frequencies (real values

between 0 and 1) of this word to each tag. The number of relative frequencies

assigned to a given word is equal to the number of possible tags. The mapping

matrix structure is shown in Figure 3.5a. The relative frequency f of tag tj assigned
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ADJ ADP ADV CJ DET INTJ MISC MW N NUM PART PRON PUNC V

we 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

saw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.98

her 0.0 0.0 0.0 0.0 0.64 0.0 0.0 0.0 0.0 0.0 0.0 0.36 0.0 0.0

duck 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.29 0.0 0.0 0.0 0.0 0.71

in 0.0 0.98 0.02 0.0 0.0 0.0 2e-4 0.0 5e-5 0.0 0.0 0.0 0.0 0.0

the 0.0 0.0 0.0 0.0 1.0 0.0 5e-5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
...

. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
...

-ell 0.01 0.0 0.39 0.0 6e-4 0.08 0.0 0.0 0.28 0.0 0.0 0.0 0.0 0.24

-ness 0.0 0.0 0.0 0.0 0.0 0.0 8e-4 0.0 0.99 0.0 0.0 0.0 0.0 6e-3

-ly 0.08 0.0 0.85 0.0 0.0 1e-4 7e-5 0.0 0.05 0.0 0.0 0.0 0.0 0.01
...

- 0.07 0.11 0.06 0.05 0.12 5e-4 1e-3 0.0 0.23 0.01 0.01 0.05 0.13 0.16

(a) Mapping matrix example lines

We saw her duck in the dell.

[we|PRON] [saw|V] [her|PRON] [duck|V] [in|ADP] [the|DET] [dell|N] [.|PUNC]

(b) Sentence and its corresponding annotated version

we

saw

b

a

T

ADJ ADP ADV CJ DET INTJ MISC MW N NUM PART PRON PUNC V

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.98

(c) Training pattern example with b = 1, a = 1 and T = 14 tags

the

-ell
.

ADJ ADP ADV CJ DET INTJ MISC MW N NUM PART PRON PUNC V

0.0 0.0 0.0 0.0 1.0 0.0 5e-5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.01 0.0 0.39 0.0 6e-4 0.08 0.0 0.0 0.28 0.0 0.0 0.0 0.0 0.24

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

(d) Training pattern example with ending -ell

Figure 3.5: mWANN-Tagger procedure of encoding sentences into arrays of proba-
bilities

to word wi is

f(wi, tj) =
Q(wi, tj)∑
j Q(wi, tj)

, (3.2)

where Q(wi, tj) is a counting function that returns how many times wi appears

tagged as tj in the annotated corpus.

The mapping matrix also has lines for every ending that counts as relevant

according to the mapping parameters. A sequence of characters is considered a

valid key to the mapping matrix if it is L characters long, such that Lmin ≤ L ≤
Lmax, where Lmin and Lmax are two mapping parameters, the ‘size of the smallest

ending’ and the ‘size of the largest ending’, respectively. Very small endings

must be discarded, because they are not very informative. Usually such endings are
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common to many words of pretty distinct parts of speech, and so employing them

would eventually bias the tagger towards an undesired tag, harming its accuracy.

Too large endings must also be set aside because they would make the mapping

matrix unnecessarily big, decreasing the tagger performance.

Even if a sequence fulfills the above constraint, it can only be added as an entry of

the mapping matrix if it appears as the ending of at least U unique words that have

Lroot + L or more characters, where U and Lroot represent parameters ‘amount

of unique words’ and ‘size of the smallest root’, respectively. This further

constraint is proposed for two reasons. Firstly, an ending should be common to a

certain amount of distinct words, for they are more probable of being present in

an OOV word and also because this restriction avoids the mapping matrix getting

filled with endings that happen only once. The second reason lies in the fact that

some endings should not be treated as suffixes, but as parts of the root instead. For

instance, the ending -ly is often associated with adverbs, like in fairly. However,

neither ugly nor fly are adverbs. In the former the actual suffix is only -y, which

stands for adjectives, while in the latter both characters belong to the root.

The training patterns are then created, given the mapping matrix, the annotated

corpus and the desired amount of adjacent words in the sliding window, which is

provided by two more parameters, the ‘number of preceding words’ b and the

‘number of following words’ a. They consist of arrays of relative frequencies,

which are assigned to a particular tag. They are formed by concatenating smaller

arrays obtained from the mapping matrix lines whose keys are the words of the

context window, or their corresponding endings. Figure 3.5c shows an example

where the context window [–,we, saw] from the sentence “We saw her duck in the

dell.” is encoded into an array of relative frequencies. It is worth noting that if the

context window exceeds the limits of a sentence, empty strings are used to ensure

that the tagger input size is kept. This example will be revisited in Section 3.3.3,

where the tagger input construction will be explained in greater detail.

The remaining parameters of mWANN-Tagger are the ‘probability discretiza-

tion degree’ δ and the ‘RAM address length’ n. The former is responsible for

encoding the training pattern arrays of relative frequencies into bit strings, for the

WiSARD input is composed only by bits. In this encoding procedure every relative

frequency is transformed into a bit array through the thermometer code. That is,

given a discretization degree δ, one must pick δ (usually equally-spaced) values from

the interval [0, 1], p1, p2, . . ., pδ. A relative frequency f encodes into a δ-bit string,

such that each i-th bit is 1 if f is greater than pi and 0 otherwise. For example, if

one wants to discretize the value f = 0.7 into δ = 4 bits by using the values 0.0, 0.25,

0.5 and 0.75 for p1, p2, p3 and p4, respectively, then its resulting bit string would be

1110, since f = 0.7 is lesser than p4 = 0.75, but greater than the remaining pis (see
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Figure 3.6 for a graphical representation).

δ = 4

f = 0.7
⇒

0.0 1.00.7

0.25 0.5 0.75

⇒ 1110

Figure 3.6: Discretization of a relative frequency into a string of bits

3.3.3 Input Construction

Each term in a sentence becomes a different input for mWANN-Tagger. For example,

in the sentence “We saw her duck in the dell.”, there should be eight different inputs,

one for each term, we, saw, her, duck, in, the, dell and the period (.).

For each one of those terms, the tagger takes into account its context window,

i.e. its adjacent words, to disambiguate any potential homonymy. The size of this

window varies according to the syntheticity of the employed corpus. For instance, in

Figure 3.5c the depicted context window consists of an empty string and words we

and saw. The example shows a context of one word before (represented by b = 1)

and one after (a = 1). The word being tagged is we and the surrounding others are

saw, which lies right after the main word, and the empty string, that precedes it.

Every word of the sliding window is encoded into an array of empirical prob-

abilities, which are actually its relative frequencies to each part of speech of the

tagset (see Equation 3.2 and Figure 3.5c). This array represents the a priori word

class empirical distribution of the encoded term. It is employed to aid the tagger in

understanding what is intended to be tagged. Those empirical distributions are in-

directly obtained from the corpus through the mapping matrix, which was described

in Section 3.3.2.

If the term being encoded appears as the key of one of the mapping matrix

lines, then the array of empirical probabilities is straightforwardly obtained from

this line. If it does not show at the mapping matrix (in Figure 3.5d this happens

to the word dell), then the chosen mapping matrix line is the one whose key is the

largest existing ending of that term. For example, in Figure 3.5d the largest existing

ending of dell is -ell, so its probability array should be used instead.

Note that the ending chosen this way must not conflict with the constraint im-

posed by the size of the smallest root. For example, ending -ell may only be employed

if the size of the smallest root is 1 or smaller, since d- contains one character. If the

size of the smallest root were 2, then the employed ending should be -ll instead.

Seldom if ever a term is not represented by any line of the mapping matrix, it

is then encoded according to a default case, which is an array with the proportions

26



of each part of speech in the whole corpus. The default case and its corresponding

array of probabilities is depicted in the last mapping matrix line of Figure 3.5a.

The concatenation of those arrays is sent to mWANN-Tagger as its input. At

the training mode, the tagger receives this input and its expected word class. Only

the nodes of the corresponding discriminator are accessed, having their stored values

incremented accordingly. In the tagging mode, the tagger sends the input to all its

discriminators. The output of mWANN-Tagger is then the word class associated to

the discriminator chosen by its WiSARD network.

It is important to remind that the WiSARD network only receives Boolean val-

ues. So, mWANN-Tagger probabilities are sent to its core classifier as several binary

inputs, according to its discretization degree δ, as presented in Section 3.3.2.

3.4 Experiments

Next, one intended to discover potential benefits that previous knowledge on the

word distribution of a corpus has in part-of-speech tagging. In order to do so, a

set of corpora was collected, with distinct ways of encoding information. In other

words, a set of annotated corpora in languages with contrasting degrees of synthesis

and lexical diversities was used.

At first, mWANN-Tagger parameters were finely tuned in search for the most

suitable parameter configurations for eight corpora in notably different languages.

These annotated corpora were employed as a means to have a good representation

of a large slice of the syntheticity spectrum. Next, ML estimators α̂1 and α̂2 were

obtained from these corpora. Pearson coefficients were calculated to verify if there is

some correlation between mWANN-Tagger finely tuned design parameters and the

ZM parameter estimators α̂1 and α̂2.

Preliminary analyses suggested that a single parameter configuration may be ap-

plied to the eight aforementioned languages and that the mWANN-Tagger instance

produced by this configuration was as accurate as the language-dependent ones ob-

tained through tuning. That single parameter configuration was subjected to six

additional corpora representing different parts of the syntheticity spectrum, includ-

ing both extrema. Finally, the performance of this universal instance of mWANN-

Tagger was compared to those of state-of-the-art multilingual part-of-speech taggers

through experiments on Universal Dependencies treebanks [22].

3.4.1 The Zipfian Nature of Languages

Eight corpora were used to verify a potential relation between the lexical diversity

(and syntheticity) of a corpus and the parameter configuration that produces the
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best performing mWANN-Tagger instance for that corpus.

This choice of datasets came up from the fact that this set of corpora is satis-

factorily heterogeneous, i.e., their languages use very different (and sometimes even

contrasting) forms of encoding information into text. The main goal of this work

was that one could gauge the optimal parameter configuration for any other cor-

pus given its ZM parameters. So, the heterogeneity is crucial for the assessment

of the aforementioned relation between lexical diversity and the mWANN-Tagger

parameter configuration. The employed corpora are presented in Table 3.3.

Table 3.3: Original corpora

Short name Corpus Language # types # tokens

BNC
Brown National Corpus

[80]
English 55819 1166139

NEGRA NEGRA Corpus [81] German 47921 337881

TUT
Turin University Treebank

[82]
Italian 10828 76927

TüBa-J/S
Tübinger Baumbank des

Japanischen Spontansprache
[83]

Japanese 3249 156543

PennChinese
Penn Chinese Treebank 6.0

[84]
Mandarin
Chinese

52120 1098801

Bosque
Bosque (Floresta Sintá(c)tica)

[85]
Portuguese 27686 214003

RNC
Russian National

Corpus [86]
Russian 122597 1288969

METU
METU-Sabancı Turkish

Treebank [87]
Turkish 19381 53869

The corpora appear in eight different languages. They are English, German,

Italian, Japanese, Mandarin Chinese, Portuguese, Russian and Turkish. They range

from analytic and rather isolating languages, like Mandarin Chinese and English, to

synthetic ones, like Russian and Turkish. These languages show very distinct ways

of organizing information into sentences. A brief explanation on their main char-

acteristics, concerning syntheticity and some particular peculiarities, are presented

below:

• English: Nouns are inflected by number, but there is no gender. Every word

that modifies a noun is kept uninflected. Verbs inflect in tense and mood, but

neither in person nor in number. Notable exceptions are the verb ‘to be’ and

the present tense third person singular form of most verbs. It is very common

to use periphrastic constructions, like auxiliary verbs or words (do, have, be,

will, shall) together with non-finite verb forms [88–90];
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• German: It retains several synthetic elements of its Indo-European ancestry,

like compound words and intricate verb conjugation, case and plural systems.

However, some simplifications also occurred through time, e.g., there is no

gender distinction in plural words, the case system almost never applies to the

nouns (but applies to adjectives, determiners and pronouns), and some word

classes may also have a simplified declension, also known as weak declension.

Besides, despite its synthetic trait, German has a not so free word order [91,

92];

• Italian: As a Romance language, its verb conjugation system is quite complex.

There are three plural markers, they are -i, -e and -a. Italian has a very

fusional nature. For instance, it employs many contractions and its plural

markers are used by substituting the final vowel of a word by them and not

only appending them to its end [93];

• Japanese: It is slightly more synthetic than English due to a more complex verb

system and to compound words borrowed from Chinese languages. Japanese

also uses a large inventory of particles, which make the language seem more

synthetic when they are counted as clitics and not as words on their own [94];

• Mandarin Chinese: It is an analytic language, i.e. none of its words suffers

any kind of inflection. There is no plural, and tense and mood are represented

by additional words instead of suffixes, as in English. However, many words

are composed by two or more roots [95, 96];

• Portuguese: It has a very complex verb system, like all Romance languages.

However, its nouns and adjectives suffered a simplification process, in which

their plural form are made by simply appending the plural marker -s at the

end of the word (with a few exceptions) [97, 98];

• Russian: It is an Indo-European language. It suffered far less simplifications

than its sibling languages, making it a very synthetic one. For instance, its

case system contains 6 cases, compared to 4 of German, and they inflect nouns,

and not only adjectives, determiners and pronouns. Its word order is also freer

than that of any aforementioned language [99];

• Turkish: It is a very synthetic and agglutinative language. Many words can

be coined by appending suffixes to simpler words. More than ten suffixes can

be appended this way [100].

In Section 3.1, it was said that words (and other strings of symbols) of a text

are distributed according to a Zipf-Mandelbrot distribution, which contains two
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parameters, α1 and α2, and that they can be approximated by ML estimators α̂1

and α̂2. Such estimators were produced for every corpus presented on Table 3.3.

Their values are displayed at Table 3.4.

Table 3.4: Zipf-Mandelbrot parameters of the original corpora

Corpus Language α̂1 α̂2

BNC English 1.108 1.442
NEGRA German 1.042 0.889

TUT Italian 1.063 0.771
TüBA-J/S Japanese 1.337 2.755

PennChinese Mandarin Chinese 1.048 0.512
Bosque Portuguese 1.071 0.348
RNC Russian 1.036 0.309

METU Turkish 0.815 -0.769

It can be perceived in Table 3.4 that the values for α̂1 do not necessarily follow the

syntheticity of languages. This occurs due to the very different nature of the texts

of the corpora used. For instance, Japanese is more synthetic than English, but the

steepness parameter α̂1 of TüBA-J/S was farther from 0 than BNC’s. TüBA-J/S is

a corpus composed of sentences extracted from spontaneous speech, whereas BNC

was produced with texts from a wide variety of genres, including spoken, fiction,

magazines, newspapers, and academic sources.

Several distinct sets of mWANN-Tagger parameters were used to find which

parameter configuration would produce the best performing tagger for each corpus

of Table 3.3. Configurations found this way and also their corresponding accuracies

and sample deviations are described in Table 3.5.

Two parameters were not included in Table 3.5, the size of the largest ending

and the discretization degree. The values of those parameters are not provided be-

cause they work in a quite particular way. Searches for optimal values for those

parameters showed that the higher their values the higher is the tagger accuracy.

This improvement, however, is negligible when their values lie above given thresh-

olds (approximately 7 for the size of the largest ending and close to 160 for the

discretization degree). This way, the use of any value above those thresholds would

produce a quite accurate tagger. The values 10 and 200 were respectively employed

for the size of the largest ending and the discretization degree in the configurations

presented in Table 3.5.

As a first step to show a potential relation between ZM and mWANN-Tagger

parameters, Pearson correlation coefficients between them were extracted. A co-

efficient with an absolute value close to 1 would indicate that there is an almost

clear relation between an mWANN-Tagger and a ZM parameter. The results of this

task are depicted in Figure 3.7. Only the context window parameters show a no-
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Table 3.5: Empirically-obtained mWANN-Tagger parameter configurations for the
corpora of Table 3.3. The numbers in parentheses in column “Acc.” represent its
sample deviation (%) in a 10-fold-cross-validation procedure.

Language α̂1 α̂2
Smallest
ending

Smallest
root

# unique
words

Context
window

Address
length (n)

Acc. (%)

English 1.108 1.442 2 1 1 [1,1] 122
97.76
(0.05)

German 1.042 0.889 1 2 1 [1,1] 108
97.23
(0.15)

Italian 1.063 0.771 1 1 2 [1,1] 85
96.32
(0.26)

Japanese 1.337 2.755 1 0 1 [1,1] 80
98.88
(0.09)

Mandarin 1.048 0.512 1 2 1 [1,1] 118
94.17
(0.08)

Portuguese 1.071 0.348 1 2 2 [1,1] 86
97.01
(0.12)

Russian 1.036 0.309 1 1 1 [1,1] 60
97.53
(0.15)

Turkish 0.815 -0.769 3 1 1 [2,3] 50
92.34
(0.40)

table correlation coefficient absolute value. Every other parameter has a correlation

coefficient whose absolute value is lower than 0.5.
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Figure 3.7: Correlation between mWANN-Tagger and Zipf-Mandelbrot parameters
of corpora of Table 3.3.

Because the correlation coefficient were low, a further experiment was required.

A cross-linguistic analysis was made to determine if the configurations presented in

Table 3.5 were truly best suited for their corresponding corpora. This analysis con-

sisted in subjecting each corpus of Table 3.3 to all tagger parameter configurations

of Table 3.5. It was intended to verify how better a tagger can be compared to

others, when it was employing the parameter configuration best suited for a given
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corpus. The experiment, however, showed that there were little to no variation in

the tagger accuracy if it employed a particular parameter configuration. Table 3.6

shows that there were even some cases where a corpus was most accurately tagged

with configurations best suited for other corpora.

Table 3.6: Cross-linguistic analysis. Rows represent the corpora being tested and
columns the corresponding tagger configurations. Table cells show the accuracy (%)
of a tagger in this particular scenario. Bolded cells represent the greatest accuracy
achieved for a given corpus.

English German Italian Japanese Mandarin Portuguese Russian Turkish
English 97.76 97.75 97.69 97.74 97.75 97.74 97.75 97.50
German 97.26 97.19 96.97 97.19 97.23 97.22 97.14 96.09
Italian 96.10 96.22 96.37 96.08 96.15 96.35 96.11 95.32

Japanese 98.86 98.87 98.82 98.87 98.84 98.84 98.89 98.37
Mandarin 94.12 94.15 94.02 94.09 94.16 94.10 94.01 93.73

Portuguese 96.90 96.97 96.93 96.93 97.00 97.00 96.90 96.56
Russian 97.03 97.02 96.87 97.02 97.07 96.99 97.09 96.80
Turkish 91.90 91.87 91.07 91.92 91.87 91.48 92.04 92.38

3.4.2 The Optimal Set of Parameters

The correlation test performed on Section 3.4.1 indicated that only the context

window has correlation greater than 0.5 for both ZM parameters. The size of the

smallest ending is also another parameter that has correlation greater than 0.5 with

ZM-distribution steepness parameter α1.

During the search for the optimal set of parameters described in Section 3.4.1,

two of them showed to be indifferent to language syntheticity. Most of the remaining

tagger parameters also had an absolute correlation coefficient less than 0.5 to the

ZM parameters – some of them pretty close to 0, like the number of unique words.

The cross-linguistic analysis also indicated no noteworthy variation for the tagger

accuracy when using a configuration distinct from the one presented in Table 3.5. A

single tagger parameter configuration was then proposed. It was such that the tagger

assembled from that configuration should achieve accuracies for Table 3.3 corpora

that were close to the language-specific ones of Table 3.5. To test its robustness

and reliability, a sensitivity analysis was done, by testing some variations in the

parameter configuration. The same sensitivity analysis procedure was done to six

new corpora to further test the robustness and reliability of the tagger configuration.

mWANN-Tagger Universal Parameter Configuration

Several parameters of Table 3.5 showed little variation among the different lan-

guages. This can be verified by how close are the accuracies achieved by different
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instances of mWANN-Tagger when subjected to a same corpus. Due to that little

variation, a universal tagger parameter configuration was assembled. The values of

its components were derived from the mode of the values of their corresponding pa-

rameters. The only exception being the RAM address length, for which the average

was used instead.

(a) Size of smallest ending (b) Size of smallest root

(c) Number of unique words (d) Number of words before

(e) Number of words after (f) RAM address length

English German Italian Japanese

Mandarin Portuguese Russian Turkish

Figure 3.8: Sensitivity analysis for the tagger parameters. Graphs depict the accu-
racy variation caused by fluctuations on parameter values.

Table 3.7 revisits the parameter configurations presented in Table 3.5 and in-

troduces the universal configuration produced by the aforementioned procedure. It

was tested on every corpus of Table 3.3 and mWANN-Tagger achieved accuracies

close to the ones displayed in Table 3.5. Table 3.8 shows that mWANN-Tagger is

as quite as accurate with the universal configuration as it is using the empirically

obtained language-specific ones of Table 3.5.
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Table 3.7: mWANN-Tagger parameter configurations of Table 3.5 and the derived
universal configuration

Language α̂1 α̂2
Smallest
ending

Smallest
root

# unique
words

Context
window

Address
length (n)

English 1.108 1.442 2 1 1 [1,1] 122
German 1.042 0.889 1 2 1 [1,1] 108
Italian 1.063 0.771 1 1 2 [1,1] 85

Japanese 1.337 2.755 1 0 1 [1,1] 80
Mandarin 1.048 0.512 1 2 1 [1,1] 118

Portuguese 1.071 0.348 1 2 2 [1,1] 86
Russian 1.036 0.309 1 1 1 [1,1] 60
Turkish 0.815 -0.769 3 1 1 [2,3] 50

Universal
config.

— — 1 1 1 [1,1] 88

Table 3.8: Accuracies for the empirical and universal configurations. The numbers
in parentheses in column “Acc.” represent its sample deviation (%) in a 10-fold-
cross-validation procedure.

Language
Empirical

config. (%)
Universal

config. (%)
English 97.76 (0.05) 97.76 (0.04)
German 97.23 (0.15) 97.20 (0.14)
Italian 96.32 (0.26) 96.15 (0.22)

Japanese 98.88 (0.09) 98.88 (0.10)
Mandarin 94.17 (0.08) 94.11 (0.07)

Portuguese 97.01 (0.12) 96.96 (0.13)
Russian 97.53 (0.15) 97.53 (0.04)
Turkish 92.34 (0.40) 92.10 (0.41)

To evaluate the robustness and reliability of the configuration, a sensitivity anal-

ysis was performed. It constituted of testing mWANN-Tagger for similar configu-

rations close to the universal one. Those similar configurations were produced by

fixing every parameter but one, which could assume values close to the correspond-

ing parameter of the universal configuration. Figure 3.8 shows that the highest

accuracies are achieved when the parameters assume the values they already have

at the desired configuration, indicating the robustness of mWANN-Tagger with this

language-independent configuration.

Summary of Results: In this section, a universal parameter configuration for

mWANN-Tagger was introduced and its accuracy was compared to the accuracies

for language-specific configurations. It was then subjected to a sensitivity analysis,

where mWANN-tagger was tested with similar configurations. The universal config-

uration showed to be robust, for the highest accuracy achieved on those experiments
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Table 3.9: New corpora

Short name Corpus Language # types # tokens
BTB BulTreeBank [101] Bulgarian 34365 253124

TDT
Turku Dependency Treebank

[102]
Finnish 49935 181022

Paris7
French Treebank – Paris 7

[103]
French 38520 587149

LDT
Latin Dependency Treebank

[104]
Classical

Latin
23474 165551

Pirahã
MIT Pirahã Corpus

[105]
Pirahã 1253 3720

VLSP
VLSP Vietnamese Treebank

[106]
Vietnamese 13666 223303

were produced by mWANN-Tagger with that same configuration. Even when some

of its parameters changed by only a small amount, the tagger accuracy lowered by

solely a tiny fraction.

New Corpora

To further ensure the applicability and robustness of the universal configuration, the

aforementioned procedures should be performed to new corpora, especially for lan-

guages that are at least somewhat different from the ones of Table 3.3. Six new cor-

pora were used to subject this configuration to further tests. Table 3.9 presents the

chosen corpora. They are documents composed in very distinct kinds of language,

ranging from the very isolating Vietnamese (VLSP Vietnamese treebank [106]) to

a polysynthetic Amazonian language, Pirahã (MIT Pirahã Corpus [105]). The cor-

pora of Table 3.9 were chosen due to their languages, which have some peculiarities

that made them good test cases for mWANN-Tagger universal configuration. These

languages and their main peculiarities are:

• Bulgarian: It is one of the least synthetic Slavic language together with Mace-

donian, especially concerning their noun systems. It suffered a simplification

process common to all the Balkans linguistic area. The Slavic background,

responsible for a historically complex grammar and a more recent simplifica-

tion on its grammatical structure makes Bulgarian a good candidate to test

mWANN-Tagger universal configuration. Even more because the configura-

tion already applies to another Slavic language (Russian) and to languages far

less synthetic than the ones of Slavic family [107];

• Finnish: It is a member of the Uralic family, known for having a very complex

grammar, with several grammatical cases and conjugations, but no gender.
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Finnish is a very agglutinative language and possesses a consonant gradation

system, which makes some roots look notably different from their base forms.

Its highly agglutinative nature and the use of consonantal gradation make

Finnish a good candidate. The fact that the universal configuration applies

to Turkish, an agglutinative language with no consonantal gradation, corrob-

orates the choice for Finnish [108];

• French: It is a Romance language, like Italian and Portuguese, which were in

Table 3.3. But differently from the two mentioned languages, French passed

through enormous phonetic changes, producing several homophones. However,

its spelling barely changed since Old French. The effects of this process can be

perceived in words like chantez, chanter and chanté, which are all pronounced

the same but are spelled quite differently. Hence, French has a hybrid na-

ture. It remains with a high lexical diversity due to the variety of inflections

(plural markers, conjugation and so on), but it also shows characteristics of

analytic languages, like the extensive use of pronouns and a quite regular word

order. The hybrid nature of French is the main reason it was chosen as a test

case [109];

• Classical Latin: It was chosen due to its relation to the Romance languages

already presented, but also because it is far more synthetic than all its daugh-

ter languages. For example, no Romance language retains Classical Latin six

grammatical cases or its passive voice conjugation system. The contrast be-

tween the similarities it has with its daughter languages and the syntheticity

it had and its daughter languages no longer do is the main reason for the use

of Classical Latin [110];

• Pirahã: It is a polysynthetic Amazonian language. It represents an extremum

in the syntheticity spectrum that mWANN-Tagger was not yet subjected to.

Pirahã is also quite known for neither having a counting system nor recursive

sentence-embedding structures [105, 111];

• Vietnamese: It is a remarkable example of a language of the Mainland South-

east Asia (MSEA) linguistic area, which is mainly composed by analytical

and isolating languages. Vietnamese is an isolating language, whose words

are mostly monosyllabic and some others are disyllabic. Its word order is

very fixed and almost no composition or derivation occurs. For belonging to

a region of the syntheticity spectrum that mWANN-Tagger was not yet sub-

jected to, Vietnamese was chosen as a candidate to test the applicability and

robustness of the universal parameter configuration [112].
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ML estimators were produced for the ZM parameters of the corpora of Table 3.9,

as explained in Section 3.1. Table 3.10 introduces the estimators α̂1 and α̂2 for the

corpora of Table 3.9. It also informs the accuracy of mWANN-Tagger with the

universal parameter configuration for the same corpora.

Table 3.10: Zipf-Mandelbrot parameters and accuracy for the new corpora. The
numbers in parentheses in column “Acc.” represent its sample deviation (%) in a
10-fold-cross-validation procedure.

Corpus Language α̂1 α̂2
Accuracy for the

universal config. (%)
BTB Bulgarian 1.019 0.415 98.03 (0.10)
TDT Finnish 0.870 -0.518 95.35 (0.17)
Paris7 French 1.108 1.393 97.81 (0.08)
LDT Classical Latin 0.982 1.284 96.17 (0.15)

Pirahã Pirahã 0.832 -0.558 87.84 (1.50)
VLSP Vietnamese 1.153 6.246 92.43 (0.14)

Sensitivity analysis on the new corpora

The same sensitivity analysis procedure of Section 3.4.2 was done for the corpora

of Table 3.9. It was intended to verify if the accuracies in Table 3.10 were actually

the best for those corpora. This experiment was important because the tagger

was subjected to more extreme conditions, like very isolating and polysynthetic

languages.

The result of the sensitivity analysis is depicted in Figure 3.9, where it can be

seen that either the highest accuracies were achieved by the universal configuration

or the sensitivity analysis produced little to no accuracy variation. The same result

appeared in the sensitivity analysis of Section 3.4.2 (cf. Figure 3.8). The only

exception lies with the Pirahã corpus, as there are configurations that perform better

than the universal one by up to 1% (cf. Figure 3.9c).

However, the Pirahã corpus is very small when compared to other bases, as

can be perceived in Tables 3.3 and 3.9. The effects of its tiny size can be noted

in the relatively high sample deviation of its accuracy, in Table 3.10. The 1.5%

sample deviation of the tagger accuracy for the Pirahã corpus with the universal

configuration is even higher than the aforementioned 1% accuracy difference in the

sensitivity analysis. So, although there are configurations that seem to perform a

little bit better than the universal one, the sensitivity analysis for the Pirahã corpus

is yet inconclusive and the universal parameter configuration can still be considered

a good candidate for the best mWANN-Tagger parameter configuration for any

language.
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(a) Size of smallest ending (b) Size of smallest root

(c) Number of unique words (d) Number of words before

(e) Number of words after (f) RAM address length

Bulgarian Finnish French

Latin Pirahã Vietnamese

Figure 3.9: Sensitivity analysis for the new corpora. Graphs depict the accuracy
variation caused by fluctuations on parameter values.

3.4.3 Comparison with the State of the Art

To ensure the multilingual part-of-speech tagging capability of the universal instance

of mWANN-Tagger, it was subjected to every treebank of Universal Dependencies

(UD) project [22] (version 1.4). Each treebank of UD has a training, a development

and a test dataset. For each treebank, mWANN-Tagger was trained on its train-

ing dataset and tested on the respective test dataset. The accuracies achieved by

mWANN-Tagger were compared to those of state-of-the-art part-of-speech taggers.

The ones chosen for this experiment were the Ripple Down Rules Part-of-Speech-

Tagger (RDRPOSTagger) of NGUYEN et al. [2], Bidirectional Long Short-Term

Memory Tagger (bi-LSTM) of PLANK et al. [4] and Yet Another Parser (YAP)

of MORE and TSARFATY [3], for they had a sufficient amount of performance
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results on UD treebanks. Comparisons were also made with MarMoT, the higher

order conditional random field (CRF) morphological tagger of MÜLLER et al. [1],

because it was the most accurate part-of-speech tagger found in literature.

Table 3.11: Comparison between part-of-speech accuracies (%) on UD treebanks.
Columns mWANN – Suffix and mWANN – Ext. offer the accuracies of (suffix-
based) mWANN-Tagger universal configuration and its extension, respectively. The
remaining ones, labeled MM, RDR, YAP, bi-LSTM and MM, hold the results of
MarMoT [1], RDRPOSTagger [2], YAP [3] and bi-LSTM [4]. Highlighted cells
represent cases where no statistically significant difference was attested between the
performances of mWANN-Tagger extension and MarMoT.

Treebank
mWANN

MM RDR YAP
bi-LSTM

Suffix Ext. ~w ~w + ~c
Ancient Greek 92.14 93.36 93.98 91.57 92.0 – –
Ancient Greek – PROIEL 95.87 96.76 97.07 95.72 97.3 – –
Arabic 93.66 94.76 95.82 94.41 95.9 95.48 98.89
Basque 91.77 94.12 94.67 92.43 94.8 88.00 94.91
Bulgarian 96.15 96.98 97.64 96.13 97.9 95.12 98.25
Catalan 95.84 97.11 97.84 96.52 97.7 – –
Chinese 90.52 91.28 92.12 89.45 91.4 – –
Coptic 89.23 91.57 93.21 – – – –
Croatian 94.47 95.39 95.83 93.87 95.1 89.24 95.59
Czech 97.46 97.89 98.32 97.68 – 93.77 97.93
Czech – CAC 97.44 97.75 98.28 97.83 98.3 – –
Czech – CLTT 97.69 97.37 97.73 97.01 95.8 – –
Danish 92.42 93.85 95.56 93.47 95.4 91.96 95.94
Dutch 87.80 88.43 89.34 88.76 90.2 84.96 92.07
Dutch – LassySmall 94.28 95.35 96.36 94.36 95.6 – –
English 92.11 93.03 94.43 92.70 94.2 92.10 94.61
English – LinES 94.35 94.69 95.84 94.39 95.0 – –
Estonian 93.69 94.86 95.26 93.84 95.1 – –
Finnish 92.37 94.65 95.34 92.24 95.0 87.95 95.18
Finnish – FTB 91.40 93.51 94.15 90.96 88.3 – –
French 94.99 95.75 96.44 95.23 95.9 94.44 96.04
Galician 96.51 96.63 97.16 96.31 97.1 – –
Galician – TreeGal 92.58 95.14 95.96 – – – –
German 90.93 92.24 92.67 90.40 92.9 90.33 93.11
Gothic 94.47 95.83 95.70 93.85 95.3 – –
Greek 97.00 97.72 97.65 96.86 97.8 – –
Hebrew 93.07 94.08 94.95 93.52 96.7 93.97 95.92
Hindi 94.72 95.12 96.32 95.02 95.3 95.99 96.64
Hungarian 89.11 92.96 94.57 88.69 91.5 – –
Indonesian 90.30 93.22 93.63 90.75 93.2 90.48 92.79
Irish 90.26 91.42 91.39 90.61 90.0 – –
Italian 95.95 96.69 97.69 96.48 97.0 96.57 97.64
Japanese 89.53 93.77 93.08 – – – –
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Table 3.12: Comparison between part-of-speech accuracies (%) on UD treebanks.
Columns mWANN – Suffix and mWANN – Ext. offer the accuracies of (suffix-
based) mWANN-Tagger universal configuration and its extension, respectively. The
remaining ones, labeled MM, RDR, YAP, bi-LSTM and MM, hold the results of
MarMoT [1], RDRPOSTagger [2], YAP [3] and bi-LSTM [4]. Highlighted cells
represent cases where no statistically significant difference was attested between the
performances of mWANN-Tagger extension and MarMoT. (cont.)

Treebank
mWANN

MM RDR YAP
bi-LSTM

Suffix Ext. ~w ~w + ~c
Kazakh 82.25 84.88 84.72 79.22 – – –
Latin 90.42 92.76 92.98 90.40 89.7 – –
Latin – ITTB 97.82 97.88 98.60 98.24 98.6 – –
Latin – PROIEL 95.49 96.40 96.75 95.79 96.9 – –
Latvian 87.04 89.37 90.70 86.35 88.0 – –
Norwegian Bokmål 94.45 95.68 97.28 94.60 97.1 94.39 97.77
Old Church Slavonic 95.06 96.10 96.26 94.63 96.5 – –
Persian 96.12 96.34 96.57 96.00 96.0 95.31 96.89
Polish 94.06 95.09 96.26 94.08 96.1 89.73 96.62
Portuguese 94.55 95.63 96.89 95.08 96.7 94.24 97.48
Portuguese – BR 94.45 95.94 97.25 95.09 – – –
Portuguese – Bosque 89.23 92.20 93.80 – – – –
Romanian 95.37 96.13 96.90 94.52 96.1 – –
Russian 92.11 94.02 95.57 – 95.6 – –
Russian – SynTagRus 96.77 97.65 98.32 97.65 – – –
Sanskrit 62.29 69.92 65.68 – – – –
Slovak 89.57 91.32 93.85 – – – –
Slovenian 93.74 94.75 96.22 94.03 95.8 91.09 97.78
Slovenian – SST 90.51 91.26 91.66 91.16 89.5 – –
Spanish 94.08 94.91 95.08 95.13 95.5 93.60 95.34
Spanish – AnCora 96.34 97.32 98.17 96.79 – – –
Swedish 94.55 95.05 96.25 94.40 95.4 93.32 96.30
Swedish – LinES 94.36 95.11 95.83 94.47 95.5 – –
Tamil 85.02 86.38 87.53 82.09 85.6 – –
Turkish 92.54 94.20 94.16 91.93 89.3 – –
Ukrainian 80.52 85.06 80.52 – – – –
Uyghur 81.09 82.43 83.38 – – – –
Vietnamese 88.50 89.97 90.09 – – – –

Tables 3.11 and 3.12 present the accuracies of the universal configuration of

mWANN-Tagger at column mWANN – Suffix and of other part-of-speech taggers on

UD treebanks at the remaining ones. The data for RDRPOSTagger do not appear

in [2], but can be found at http://github.com/datquocnguyen/RDRPOSTagger/

blob/master/Models/UniPOS/Readme.md. RDRPOSTagger and YAP [3] accura-

cies were obtained through experiments on release 1.3 of Universal Dependencies.

The ones of bi-LSTM were achieved by tests on release 1.2 [4]. Several instances

of bi-LSTM are introduced in [4]. Here bi-LSTM~w and bi-LSTM~w+~c are used. The
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former was chosen for being the one that is most equivalent to mWANN-Tagger,

as it uses only word knowledge. The latter is also employed in this comparison

because it had the highest accuracy among all instances. PLANK et al. [4] also

offer bi-LSTM instances that apply off-the-shelf Polyglot word embeddings [113] for

accuracy improvement, but they are not used for comparison because none of the

remaining taggers make use of external word vector representations. The accuracies

for MarMoT were produced by training it with its default parameters on the UD

train files and then using it on the corresponding test files.

Tables 3.11 and 3.12 show that the universal configuration of mWANN-Tagger

performs worse than MarMot and bi-LSTM~w+~c, although it is competitive to RDR-

POSTagger and bi-LSTM~w, and performs better than YAP in 8 treebanks. A possi-

ble explanation of this may lie on the fact that RDRPOSTagger and bi-LSTM~w rely

solely on words, whereas the others employ additional information. Furthermore,

MarMoT makes use of not only suffixes like mWANN-Tagger, but also prefixes.

An extension to mWANN-Tagger was then proposed, by allowing it to employ

much more information than just the suffixes of words within a context window.

Initially, given a sentence w = [w1, w2, . . . , wn], if one wanted to tag its i-th word,

wi, mWANN-Tagger used the empirical conditional probabilities of wi being tagged

ti given σi−1, σi, σi+1, i.e., its suffix and the ones of its adjacent words. Its extension

differed from mWANN-Tagger by using not only the empirical conditional probabil-

ities concerning σi−1, σi and σi+1, but also πi−1, πi and πi+1, the prefixes of those

same words. It also applied the empirical conditional probabilities of tagging wi as

ti given (ti−1, πi) and (ti−1, σi), that is, wi having σi as its suffix (or πi as its prefix)

and wi−1 being tagged ti−1.

Column mWANN – Ext. of Tables 3.11 and 3.12 display how the addition of pre-

fix information as well as the tag of the previous word enhanced mWANN-Tagger

performance and how it came closer to that of MarMoT. A McNeman test was

done to assess the statistical significance of its results when compared to those of

MarMoT. The extension of mWANN-Tagger outperforms the state of the art in

Sanskrit, Ukrainian and Japanese treebanks with statistical significance (p < 0.05

for Sanskrit and Ukrainian, and p < 0.001 for Japanese). In eleven other textual

bases, there is no statistically significant difference between the performance of both

models (p > 0.05), as it is displayed in Tables 3.11 and 3.12. It is interesting to

note that the accuracy difference in Coptic is not statistically significant, despite

it being greater than 1.5% and existing lower accuracy differences with statistical

significance, e.g. Persian. This happens potentially due to the size of Coptic tree-

bank, whose test dataset has only 427 tokens to be tagged, whereas the one of

Persian has 16024 tokens. At last, this mWANN-Tagger extension does not employ

character-level representation, such as bi-LSTM~w+~c and to a lesser extent MarMoT.
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Such feature would eventually bring mWANN-Tagger even higher and thus it could

get competitive with MarMoT even in the larger treebanks.

3.5 Discussion

This chapter presented a single universal parameter configuration for mWANN-

Tagger, so that it could be applied to any corpora and achieve accuracies extremely

close to the highest possible ones. It was subjected to several corpora of very differ-

ent languages, from isolating to polysynthetic ones. Sensitivity analyses indicated

that mWANN-Tagger obtains very satisfactory accuracies when using that single

parameter configuration for any corpora, especially those in predominantly suffix-

ing languages. Experiments with state-of-the-art part-of-speech taggers also showed

that mWANN-Tagger has some room for improvement, as including additional fea-

tures to the tagger input raised its accuracy on every UD treebank. In particular,

mWANN-Tagger might also benefit from better word representations, as a means to

aid it in disambiguating tags even further and improving its accuracy.

Two additional points could be considered to further advance the research with

mWANN-Tagger. They are:

1. A most widely accepted universal tagset could be used instead of the one of

Table 3.2, e.g., Google Universal Tagset [20]. However, by the time mWANN-

Tagger was conceived, no widely accepted universal tagset existed. Also,

changing mWANN-Tagger tagset would imply in redoing some key points of

the research, making it take longer. The Google Universal Tagset could be a

good candidate for an alternative tagset for mWANN-Tagger as it is already

used in the UD project [22, 23], even though there were some changes in the

tagset from its conception up to now. By the time this thesis was written

(June 2017), Google Universal Tagset was lastly changed for the Universal

Dependencies v2 (March 2017).

2. Another word representation could be employed for mWANN-Tagger.

Character-level representations that use different parts of the word being

tagged prove to produce pretty accurate taggers (see Section 3.4.3). mWANN-

Tagger could also benefit from word representations that do not depend on

the size of particular parts of the word, because languages use diverse ortho-

graphical rules and writing systems that work in varied ways, e.g., alphabets,

abjads, abugidas, syllabaries, logographic and hybrid scripts. A more compact,

but yet very informative, word representation is also pertinent for mWANN-

Tagger. The tagger architecture can become very big by employing word

representations that produce long chains of bits. As a consequence of such a
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big system architecture, the training of the universal mWANN-Tagger instance

was slightly slower than MarMoT’s. Unfortunately, no further study was con-

ducted on word representations. The comparisons made in Section 3.4.3 were

performed after the universal mWANN-Tagger parameter configuration was

assembled. Furthermore, much of the issues raised by the comparison dis-

played in Tables 3.11 and 3.12 could only be verified recently (close to June

2017), since most POS-taggers used there were published in 2016 and also

because Universal Dependencies notably grew just close to 2016.
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Chapter 4

VC Dimension of n-tuple Learning

Models

Saturation was a common problem of WiSARD n-tuple classifier. As the recognition

machine was fed with (especially if noisy) data, it started filling up every position

of its memory nodes, deteriorating its capability of discriminating patterns. Among

the studies intended to lessen the effects of saturation, it is worth mentioning the

work of BRADSHAW [28], where lower and upper bounds for the VC dimension of

WiSARD n-tuple classifier were calculated. Despite not finding an exact value for

that measure, the research made by BRADSHAW [28] provided a fertile ground for

further analyses on this field. Unfortunately, the solution to the saturation problem

there proposed was not that successful, as it relied on convergence and had no

guarantee that it would actually occur whatsoever.

In 2010 [9] an actual way of mitigating saturation was devised, called the bleach-

ing technique. It allowed the network to be exposed to loads of data (noisy and

unnoisy) and yet keep the fidedignity of its pattern discrimination capability. This

improvement considerably enhanced both accuracy and precision of traditional WiS-

ARD n-tuple classifier applications with no performance harm on their training pro-

cedures and just a small bit on the classification step [11, 13–16]. That technique

granted WiSARD competitiveness with trending learning systems, by achieving high

accuracies with low variance in experimental works. However, there was no theoret-

ical background for bleaching up to this point.

4.1 Basic Concepts: Introduction to Learning

Theory

Given a limited number of examples, learning algorithms look for a desired de-

pendence that best explains them. VAPNIK [27] described the learning process
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through three components, a generator G, a supervisor S and a learning machine

L. G randomly generates input vectors x ∈ X , where X is the input space. These

vectors are drawn by an unknown probability distribution P (x). They are pre-

sented to supervisor S, which returns a label y ∈ Y , where Y is the system output

space. The label production of S is defined by the conditional probability distribu-

tion P (y |x), also unknown. The learning machine L implements a set of functions

H = {h(x; θ) : θ ∈ Θ}, where Θ is the set of parameters of the learning machine and

h is a function h : X ×Θ→ Y . Given a training dataset D = {(x1, y1) , . . . , (x`, y`)}
of length ` drawn according to P (x, y) = P (x)P (y |x), the learning machine then

must choose from the functions inH the one that best approximates the supervisor’s

response.

4.1.1 Risk Minimization

For that choice to produce the function that works as the best approximation to the

supervisor’s response, one should use of a loss function V (y, h(x, θ)) to represent

the discrepancy between the supervisor’s response y to input x and the output

h(x, θ) yielded by the learning machine. The objective of the learning machine is

to find the θ∗ ∈ Θ that minimizes the expected value of this loss, given by the risk

functional

R(θ) = E[V (y, h(x, θ))] =

∫
V (y, h(x, θ)) dP (x, y) . (4.1)

Since P (x, y) is unknown, there is no straightforward way to minimize Equa-

tion 4.1. However, this procedure can be done by using training dataset D =

{(x1, y1) , . . . , (x`, y`)} instead and substituting R(θ) by the empirical risk func-

tional Remp(θ)Empirical risk functional

Remp(θ) =
1

`

∑̀
i=1

V (yi, h(xi, θ)) . (4.2)

This way, one may find the θ∗` ∈ Θ that minimizes Remp(θ), which should work

as an approximation to the θ∗ ∈ Θ that minimizes R(θ). This principle is called

empirical risk minimization (ERM principle).

4.1.2 Bounding the Risk

VAPNIK and CHERVONENKIS [26] showed that the risk functional is bounded by

its empirical form plus a quantity derived from the learning machine itself. This

quantity depends on some keys concepts that need to be defined, e.g., dichotomies.
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Let X be a set of data points to be classified and Θ a set of parameterizations

of a learning machine L. L classifies data points x ∈ X with labels y ∈ {−1, 1}
according to a parameter vector θ ∈ Θ. In other words, a learning system L can be

seen as a function g : X ×Θ→ {−1, 1}.
Definiton 1. Let x1,x2, . . . ,x` ∈ X. The set of dichotomies L can realize on X

is defined as

∆Θ(X) = {(g(x1; θ) , g(x2; θ) , . . . , g(x`; θ)) : θ ∈ Θ} . (4.3)

That is, the dichotomies are the distinct forms a learning machine can split a set

of points into two, each one assigned to a different class. For instance, Figure 4.1

presents all eight dichotomies a linear separator can make on a set of three points.

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

Figure 4.1: A linear separator shatters a set with three points

The amount of dichotomies a learning system L realizes on a set X plays an

important role in VC dimension study. The growth function and the concept of

shattering derive from that quantity.

Definiton 2. A set X is said to be shattered by a learning system L if

card(∆Θ(X)) = 2card(X).

In other words, shattering means every subset of X can be separated from the

rest. X is shattered by L if L can implement all possible dichotomies of X. Fig-

ures 4.1 and 4.2 shows that the linear separator can shatter a set with three points,

but not one with four points. There is no single line one can draw that splits the

set depicted in Figure 4.2 according to the colors there displayed.

Definiton 3. The growth function ΠΘ(`) : N → N is defined as the maximum

number of dichotomies L can implement on samples of size `, i.e., the growth function

is defined as

ΠΘ(`) = max
X:card(X)=`

card(∆Θ(X)) . (4.4)
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x1

x2

Figure 4.2: A linear separator does not shatter a set with four points

Definitions 2 and 3 imply that the growth function ΠΘ(`) is 2` if there is at least

one set X, card(X) = `, that is shattered by L. Note that if L shatters a set X,

it also does every subset X ′ ⊂ X. So, if ΠΘ(`) = 2`, then ΠΘ(k) = 2k for every

k ≤ `. However, the growth function may have a non-exponential nature if ` is

large enough, so that there is no set L can shatter. The largest value of ` for which

the growth function ΠΘ(`) is 2` is called the VC dimension of learning machine

L [26, 27, 114].

Definiton 4. The VC dimension dV C of learning machine L is defined as the

cardinality of the largest set X that is shattered by L. If for every `, L shatters a

set of such cardinality, then dV C(L) is infinite.

So, the linear separator used as a learning machine example has a VC dimension

dV C = 3, because it shatters a set with three points, but does not a set with

four points. In the next subsections this same capacity measure is determined for

the traditional WiSARD n-tuple classifier and for the min-max bleaching n-tuple

classifier.

The growth function is a key part of the upper bound given by VAPNIK and

CHERVONENKIS [26]. For a given error ε, inequality

P

(
sup
θ∈Θ
|R(θ)−Remp(θ)| > ε

)
≤ 4ΠΘ(2`) e−

`ε2

8 (4.5)

holds true. In other words, given a tolerance level

η = 4ΠΘ(2`) e−
`ε2

8 , (4.6)

0 < η < 1, the risk functional is bounded above by

R(θ) ≤ Remp + ε = Remp(θ) +

√
8

`
ln

4ΠΘ(2`)

η
(4.7)

with probability 1− η.
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Except for a few trivial learning machines, the growth function is not easily

calculated. However, it can be represented by an upper bound that shows that it is

strongly constrained by the VC dimension of the learning machine [115, 116]. For a

given learning machine L with VC dimension dV C , its growth function is bounded

above by

ΠΘ(`)

{
= 2` , if ` ≤ dV C

≤∑dV C

i=0

(
`
i

)
, if ` > dV C

. (4.8)

And because

dV C∑
i=0

(
`

i

)
≤
(

`

dV C

)dV C dV C∑
i=0

(
`

i

)(
dV C
`

)i
≤
(

`

dV C

)dV C
(

1 +
dV C
`

)`
<

(
e`

dV C

)dV C

,

(4.9)

then Equation 4.8 can be rewritten as

ΠΘ(`)

 = 2` , if ` ≤ dV C

<
(

e`
dV C

)dV C

, if ` > dV C
. (4.10)

Equation 4.5 indicates that Remp(θ) converges to R(θ) when `→∞ when ΠΘ(2k)

is polynomial. This way, e−
`ε2

8 tends to 0 faster than the growth function reaches

infinity. VAPNIK [27] called it that the ERM principle is consistent. Through

Equation 4.10, it can be deduced that this consistency is achieved if the VC dimen-

sion is finite. BRADSHAW [28] argued that the ERM method is always consistent

for finite sets of functions, such as those produced by the traditional WiSARD n-

tuple classifier. However, the same cannot be affirmed for the bleaching variant, for

its memory positions can store any integer value, and so, the model can produce

an infinite set of functions. In light of this, it is important to discover if the VC

dimension of bleaching n-tuple classifier is finite.

4.2 Determination of the VC Dimension of WiS-

ARD n-tuple Classifier

Studies on the VC dimension of the traditional WiSARD n-tuple classifier were

first conducted in [28]. The work intended to find the generalization bounds on

this learning system, as a means to allow potential comparisons with other machine

learning models, as well as to find ways to improve its generalization and mitigate

the saturation problem.

BRADSHAW [28] achieved an exact value for the VC dimension of the maximal-

discriminator n-tuple classifier, that is a network with a single discriminator, which

accepts an input if its score is maximum, and rejects otherwise. BRADSHAW [28]
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found dV C = N (2n − 1) for this model, where dV C is the VC dimension, and N and

n are the amount of nodes and the addressing tuple length, respectively.

Nevertheless, no exact value was found for the VC dimension of the two-

discriminator n-tuple classifier. The studies of BRADSHAW [28] fixed lower and

upper bounds for this dimension, asserting that it should be N (2n − 1) ≤ dV C ≤
log2 3 ·N2n. Lastly, BRADSHAW [28] suggested as a conjecture that an exact value

for the VC dimension of the two-discriminator architecture is attainable, and that

it is dV C = N (2n − 1).

4.2.1 Preliminaries

It is important to raise some points before entering the proof itself. Firstly, only

n-tuple classifiers with two discriminators are considered, despite the multiclass

potential of the model. This is done because the VC dimension is defined upon

the idea of dichotomies (see Section 4.1.2). Secondly, the addressing function is

pseudorandomly generated at the network setup and it is not changed afterwards.

Inserting new knowledge to the network does not affect its pseudorandom mapping.

So, that mapping function does not count as an effective parameter of the n-tuple

classifying learning model, not playing any role on its learning capacity. This way,

every time an input observation should be considered, its equivalent feature vector is

used instead. It brings the benefit of easing the comprehension of the proof without

jeopardizing it. Thirdly, an arbitrary class must be chosen in the case of a draw.

This work uses 1 as the opted class. Lastly, a sketch of the proof and a compilation

of the needed notation is presented in this section on an attempt to aid the reader.

Sketch of Proof

The proof of the VC dimension is divided in two parts, the proof of its lower bound

and the one of its upper bound. A flowchart is provided in Figure 4.3 to aid the

reader in following the idea of the proof. To prove the first part, it is defined a set

of points whose cardinality is the intended lower bound. Then, it is shown that for

each possible class attribution there is one n-tuple classifier capable of classifying

that set of points accordingly. This proves that the n-tuple classifying model can

shatter that set of points, concluding this part of the proof. To prove the upper

bound, a system of linear inequalities is produced. This system is based on the

score measure of Equation 2.4. It should represent the classification of a generic set

of points, whose cardinality is higher than the intended upper bound, into an also

generic set of classes. Next, it is proved that there is no solution to such system

of inequalities. So, there is at least one set of classes in which there is no way to

classify a set of points that large, and thus this set is not shattered. This concludes
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the proof of the upper bound. Given that the inner and upper bounds are identical,

the VC dimension has an exact value.

Definition of
set of points

Special case
labelled as 1

Special case
labelled as -1

Proof of lower bound

Inequality
system

Lack of
solution

Proof of
upper bound

Proof of exact VC dimension

=

Figure 4.3: Proof flowchart for determination of the VC dimension of traditional
WiSARD n-tuple classifier.

Notation

The VC dimension is a measure used for systems capable of disambiguating between

two classes, i.e. functions that partition a set of points into two subsets, each one

assigned to a particular class. Let C = {−1, 1} be the class set employed for the

proof. A generic class of this set is herein denoted by c, c ∈ {−1, 1}. Let N

and n ∈ N stand for the number of nodes of an n-tuple classifier and the length

of their addressing tuples. The family of functions that represent the N -node n-

tuple classifying models is denoted by WN,n. It supersedes the notation of WN,n,C

introduced in Section 2.1.4 for set C = {−1, 1}.
Every n-tuple classifier of WN,n has two discriminators, D−1 and D1. Their

learned knowledge is represented by memory matrices M−1 and M1 ∈ {0, 1}N×2n .

Henceforth Dc and Mc are used to represent discriminators and memory matrices

of class c. Each discriminator Dc is composed of N nodes dc,i, i ∈ {1, . . . , N}. Each

node dc,i has 2n addressable positions and can store either 0 or 1. The content of
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the j-th position of dc,i is represented by mc,i,j, the element of i-th row and j-th

column of Mc (m−1,i,j for M−1 and m1,i,j for M1).

Let X be an ordered set of input data points. Its k-th element is denoted

xk ∈ {0, 1}Nn. Each input data point xk can also be characterized by an addressing

nomenclature. For the sake of readability, xk can be rewritten as xk,1 : xk,2 : . . . :

xk,N , where xk,i represents the i-th n-tuple of xk, which addresses every memory

node dc,i. These n-tuples can be 0n, an all-zero n-tuple, 1n, an all-one one, or {0, 1}n,

a generic binary one.

Let Z be an ordered set of the respective feature matrices produced by the

addressing function A : {0, 1}Nn → {0, 1}N×2n that describes the pseudorandom

mapping of that WiSARD learning machine. The k-th element of Z is denoted

Zk ∈ {0, 1}N×2n . Its i-th row, zk,i, characterizes which position should be addressed

in nodes d−1,i and d1,i. zk,i,j, its j-th element, is 1 if the j-th positions of those

nodes are addressed, and 0 otherwise. Also, let y be a generic vector of classes. It

should have as many elements as Z, so that yk ∈ {−1, 1}, k-th element of y, be the

expected class of Zk.

Let WN,n(·; M−1,M1) ∈ WN,n be the function that represents the N -node n-

tuple classifier defined by memory matrices M−1 and M1. It is a function WN,n :

{0, 1}N×2n → {−1, 1}, which given a feature matrix Zk returns a class c ∈ {−1, 1}.
The return of WN,n(Zk; M−1,M1) is obtained through scores s−1(Zk) and s1(Zk),

which are defined according to Equation 2.4. These scores can be organized in a

score vector s(Zk) = [s−1(Zk) , s1(Zk)]
T. The class chosen by WN,n(Zk; M−1,M1) is

the one whose score is the greatest.

Part of the notation presented in this subsection was introduced in Section 2.1.4

and was herein revisited. The notation is condensed in Table 4.1 for future reference.

4.2.2 The Lower Bound

As explained in Section 4.2.1, the proof of the lower bound of the VC dimension is

attained by construction, where a set of points X is presented and there are n-tuple

classifiers that can categorize it in every 2card(X) possible ways. X must be such that

its cardinality is equal to the intended lower bound for the VC dimension.

Lemma 1. The VC dimension, dV C, of a model WN,n, as defined in Section 4.2.1,

is bounded below by N (2n − 1) + 1.
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Table 4.1: Notation for traditional n-tuple classifier.

N Number of nodes

n Addressing tuple length

WN,n N -node n-tuple classifying model

c Generic class (−1 or 1)

M−1 Memory matrix of class −1

M1 Memory matrix of class 1

Mc Memory matrix of class c

mc,i,j Element at i-th row and j-th column of Mc

WN,n(·; M−1,M1) N -node n-tuple classifier with memory

matrices M−1 and M1

D−1 Discriminator for class −1

D1 Discriminator for class 1

Dc Discriminator for class c

dc,i i-th memory node of Dc
X Ordered set of input data points

xk k-th element of X

xk,1 : . . . : xk,N Addressing representation of xk
xk,i i-th n-tuple of xk, which addresses dc,i
{0, 1}n Generic binary n-tuple

0n All-zero n-tuple

1n All-one n-tuple

Z Ordered set of feature matrices

Zk k-th element of Z

zk,i i-th row of Zk

zk,i,j j-th element of zk,i
y Vector of classes, one for each element of Z

yk k-th element of y, expected class of Zk

s−1(Zk) Score of D−1 for Zk

s1(Zk) Score of D1 for Zk

s(Zk) Score vector s(Zk) = [s−1(Zk) , s1(Zk)]
T

Proof. Let X be an ordered set of input data points defined as

X =

N︷ ︸︸ ︷
{0, 1}n : 0n : . . . : 0n ∪
0n : {0, 1}n : . . . : 0n ∪
. . . ∪
0n : 0n : . . . : {0, 1}n. (4.11)

To verify if WN,n shatters X, two particular cases should be analyzed: a) when
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0n : 0n : . . . : 0n is classified as 1; and b) when it is classified as −1.

To ease the understanding of this proof, an example is provided for each

particular case. Both examples describe dichotomies a W2,2 n-tuple classifying

model (i.e. N = 2 and n = 2) can perform on a set of input points. By

applying N = 2 and n = 2 to set X, displayed in Equation 4.11, one gets

X2,2 = {00:00, 01:00, 10:00, 11:00, 00:01, 00:10, 00:11}. It is not possible to

consider every 27 dichotomies W2,2 can perform on X2,2, but two of them will be

described, one for each particular case. Also, a way to generalize them to every

other possible dichotomy, and for all values of N and n, is provided as well. In

both dichotomies, 10 : 00, 00 : 10 and 00 : 11 are to be classified as 1, and 01 : 00,

11 : 00 and 00 : 01 as −1. Input point 00 : 00 is going to be classified according to

the description of each particular case. For a quick reference, these dichotomies are

disposed in Table 4.2.

Table 4.2: Dichotomies of X2,2

Classified as Particular
case1 −1

10:00 01:00
00:0000:10 11:00

00:11 00:01

It is worth noting that X is the set with every input point with at most one non-

null addressing n-tuple. Its first line refers to all input points whose first addressing

n-tuple can be any binary sequence, but the remaining ones must be all-zero n-

tuples. Its second line refers the input points whose second n-tuple can be any

sequence of binary values and the remaining ones must be composed only by 0s.

The same pattern applies to every other line of X. This is reflected on X2,2, which

has elements 00 : 00, 01 : 00, 10 : 00 and 11 : 00 corresponding to the first line of X,

and 00 : 00, 00 : 01, 00 : 10 and 00 : 11 for another line. Note that 00 : 00 repeats in

both groups of input points, but it is only shown once in X2,2, for it is a set.

The main intuition behind the choice for X lies in that fact that it is the largest

set of input points that does not allow an undesirable property. It does not have a

subset of four points, where each of them differs from two of the other points by a

single n-tuple, e.g., the set composed by 00 : 00, 01 : 00, 01 : 01 and 00 : 01. Such set

of points, or any other that contains it, cannot be shattered. There is no WiSARD

n-tuple classifier that can classify 00 : 00 and 01 : 01 as 1, and 01 : 00 and 00 : 01 as

−1. This scenario is analogous to the one depicted in Figure 4.2, where there were

no line that could be drawn in that plane, splitting it into two regions, such that all

red squares would lie in one region and all blue circles in the other.
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0n : 0n : . . . : 0n classified as 1: Given a class vector y = [y1, y2, . . .]
T, let M−1

and M1 be memory matrices, whose elements mc,i,j are given by

mc,i,j =

{
1 , if xk,i 6= 0n addresses j-th position of dc,i and yk = c

0 , otherwise
.

This filling of the memory positions of the WiSARD n-tuple classifier can be noted

in Figure 4.4a, where position 10 of d1,1, and positions 10 and 11 of d1,2 store the

value 1. These positions are respectively the ones addressed by the non-null n-tuples

of 10 : 00, 00 : 10 and 00 : 11, the input points to be classified as 1. Analogously,

positions 01 and 11 of d−1,1 and position 01 of d−1,2 also store 1 because they are

addressed by the non-null n-tuples of the input points to be classified as −1.

D1D−1

d1,1d−1,1

00
01
10
11

0
0
0
0

00
01
10
11

0
0
0
0

d1,2d−1,2

00
01
10
11

0
0
0
0

00
01
10
11

0
0
0
0

1
1

1

1
1

1

Σ1Σ−1

(a) 00:00 as 1

D1D−1

d1,1d−1,1

00
01
10
11

0
0
0
0

00
01
10
11

0
0
0
0

d1,2d−1,2

00
01
10
11

0
0
0
0

00
01
10
11

0
0
0
0

1
1

1

1

1
1

1

Σ1Σ−1

(b) 00:00 as −1

Figure 4.4: WiSARD memory position fillings

Let there be an n-tuple classifier WN,n(·; M−1,M1) ∈ WN,n. If an entry xk ∈
X \{0n : 0n : . . . : 0n} is presented to the classifier, it yields a score vector s = [1, 0]T

if yk = −1, or s = [0, 1]T if yk = 1. This happens because only one non-null position

is addressed. This can be confirmed by checking Figures 4.5a, 4.6a, 4.7a and 4.8a. It

is easy to verify that the same result occurs for every other input point of Table 4.2

that is not 00:00. Also, this result can be reproduced even if given higher values of

N or n, or any other dichotomy that is considered by the particular case.
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Figure 4.5: Classification of 01 :00

If WN,n(·; M−1,M1) receives xk = {0n : 0n : . . . : 0n}, its score vector is s =

[0, 0]T, and thus the network opts for class 1, as expected, for it is a draw. Figure 4.9a
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Figure 4.6: Classification of 10 :00
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Figure 4.7: Classification of 00 :01
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Figure 4.8: Classification of 00 :10
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Figure 4.9: Classification of 00 :00

shows how this classification proceeds in the example with N = 2 and n = 2 through

the obtention of a tie between the network discriminators. One can visualize that a

similar procedure happens for higher values of N and n.

In short, WN,n(·; M−1,M1) accurately classifies any xk ∈ X \ {0n : 0n : . . . : 0n}
and also 0n : 0n : . . . : 0n if it is to be classified as 1.
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0n : 0n : . . . : 0n classified as −1: Given a class vector y = [y1, y2, . . .]
T, let M−1

and M1 be memory matrices, whose elements mc,i,j assume the same values of the

previous case. The only single exception being m−1,1,1, which should always be equal

to 1. This memory position filling is depicted in Figure 4.4b. The content of the

network memory nodes are identical to those of Figure 4.4a, except for position 00

of d−1,1, which stores 1 in Figure 4.4b, whereas it stores 0 in Figure 4.4a.

Let there be an n-tuple classifier WN,n(·; M−1,M1) ∈ WN,n. If an entry xk ∈
{{0, 1}n : 0n : . . . : 0n} is presented to the classifier, it yields a score vector s = [1, 0]T

if yk = −1, or s = [0, 1]T if yk = 1. A particular case being xk = 0n : 0n :

. . . : 0n, where s = [1, 0]T. This happens because only one non-null position is

addressed. Figures 4.5b and 4.6b show how their instance of the n-tuple classifying

model produce the same scores, and consequently the same correct classification, of

Figures 4.5a and 4.6a. This happens because the first addressing n-tuple is not 00,

so position 00 of d−1,1 is not addressed. Since the only difference between these n-

tuple classifiers does not play any role in the classification of those input points, this

classification procedure can be generalized, likewise that of Figures 4.5a and 4.6a.

The particular case of 00 : 00 is presented in Figure 4.9b. Unlike what happens in

Figure 4.9a, this classification produces a different score for each discriminator. An

identical score would favor class 1, but the scenario of Figure 4.9b shows a clear

winning of class −1, as intended. Any higher value of N or n would keep the score

of D−1 greater than that of D1. So, any point 0n : 0n : . . . : 0n would be correctly

classified as −1 for every N and n.

IfWN,n(·; M−1,M1) receives xk ∈ X\{{0, 1}n : 0n : . . . : 0n}, two possible scenar-

ios may occur: (i) if yk = −1, then the network produces a score vector s = [2, 0]T,

due to its non-all-zero addressing n-tuple and to m−1,1,1; and (ii) if yk = 1, the

attained score is s = [1, 1]T, for the same reason. The first scenario is represented

in Figure 4.7b, where the first n-tuple addresses position 00 of d−1,1, and the other

n-tuple addresses a position of d−1,2 which stores 1. If n were higher a similar result

would be produced. If a higher N were given, every other addressing n-tuple would

be 00 and would address positions storing 0 in both discriminators. This way, the

score vector s = [2, 0]T would be obtained in this scenario for all possible values of

N and n. If a different dichotomy were used, a different memory node filling would

be generated, but it would lead to this same result. The second scenario is depicted

in Figure 4.8b, where only position 00 of d−1,1 contributes positively to the score

of D−1. Likewise, the only memory node that produces a positive output for D1 is

the one that also does it in Figure 4.6a. This scenario can be generalized for higher

values of N and n, and also for other dichotomies, for the same reasons that apply

to the previous one.

In short, WN,n(·; M−1,M1) classifies any entry xk ∈ {{0, 1}n : 0n : . . . : 0n}
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accurately. Its score vector shows that the network also correctly does it for

xk ∈ X \ {{0, 1}n : 0n : . . . : 0n} if yk = −1. For the scenario where yk = 1, its

score vector points to a draw, which properly leads the classifier to the expected

class, yk = 1.

So, there exists at least one n-tuple classifier WN,n(·; M−1,M1) capable of clas-

sifying the set X in every possible class vector y for both cases (0n : 0n : . . . : 0n

classified as either 1 or −1). Since each of those cases comprehend half of every

2card(X) possible classifications and their intersection is empty, there exists at least

one n-tuple classifier WN,n(·; M−1,M1) capable of classifying X in all 2card(X) pos-

sible manners. As a direct consequence, WN,n shatters X and the VC dimension of

this model is bounded below by card(X) = N2n − (N − 1) = N (2n − 1) + 1. It is

worth noting that this result proves wrong the conjecture proposed by BRADSHAW

[28], which supposed the VC dimension of the traditional WiSARD n-tuple classifier

would be slightly smaller.

4.2.3 The Upper Bound

The VC dimension upper bound of an n-tuple classifying model is obtained through

a linear algebra approach. In Section 4.2.1, it was advanced that a system of linear

inequalities should be derived from the score formula, presented in Equation 2.4. The

relation between the values of scores s−1 and s1 plays a vital role on determining the

suitable class for a given input, and this is the main intuition behind the development

of that system of inequalities.

Proposition 1. An n-tuple classifying modelWN,n shatters a set of feature matrices

Z, card(Z) = `, if and only if given a generic class vector y ∈ {−1, 1}`, there exists

a set of memory matrix elements mc,i,j ∈ {0, 1} that solves

N∑
i=1

(
1−

2n∑
j=2

zk,i,j

)
(m1,i,1 −m−1,i,1) +

N∑
i=1

2n∑
j=2

zk,i,j (m1,i,j −m−1,i,j) = ykµk −
1

2
, (4.12)

for all k ∈ {1, . . . , `}, where µk ∈
{

1
2
, 3

2
, . . . , 2N+1

2

}
, and zk,i,j and yk are defined as

in Section 4.2.1.
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Proof. Let νk be the difference between scores s1(Zk) and s−1(Zk). That is,

s1(Zk)− s−1(Zk) = νk
N∑
i=1

2n∑
j=1

zk,i,j (m1,i,j −m−1,i,j) = νk. (4.13)

νk can assume any integer value at interval [−N,N ]. If it is negative, then it means

that the classifier should choose class −1. Otherwise, it should choose 1 (even if

there is a draw).

By defining a slack variable µk ∈
{

1
2
, 3

2
, . . . , 2N+1

2

}
, one can rewrite νk as

νk = ykµk −
1

2
. (4.14)

This way, one gets the difference of the scores as a linear function of yk. This can

be checked by verifying that when yk = 1, νk ∈ {0, 1, . . . , N}, i.e., any possible

non-negative score difference between discriminators with N memory nodes. On

the other hand, when yk = −1, νk ∈ {−1,−2, . . . ,−N − 1} ⊃ {−1,−2, . . . ,−N},
i.e., any possible negative score difference between discriminators with N memory

nodes. Although Identity 4.14 allows νk to be −N − 1, it does not truly occur. It

poses no problem nevertheless, as every value of νk ∈ [−N,N ] could successfully be

represented as a linear function of yk, as it was intended.

As mentioned in Section 2.1.4, a feature matrix Zk has the property of having a

single element equal to 1 in each row. The remaining elements of Zk are all equal to

0. Given this property, it is straightforward that any element of zk,i can be defined

as a function of the remaining elements through the identity

zk,i,q = 1−
2n∑
j=1
j 6=q

zk,i,j. (4.15)

Combining Equations 4.13, 4.14 and 4.15 (for q = 1 without loss of generality),

N∑
i=1

(
1−

2n∑
j=2

zk,i,j

)
(m1,i,1 −m−1,i,1) +

N∑
i=1

2n∑
j=2

zk,i,j (m1,i,j −m−1,i,j) = ykµk −
1

2
. (4.16)

So, M−1 and M1 must be such that Equation 4.16 holds true for an n-tuple

classifier WN,n(·; M−1,M1) to correctly categorize a feature matrix Zk. As an im-

mediate consequence, if there exist M−1 and M1 such that Equation 4.16 holds true
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for every k ∈ {1, . . . , `}, then WN,n(·; M−1,M1) accurately assigns every feature

matrix Zk ∈ Z to its corresponding class yk ∈ y.

Finally, if those same memory matrices satisfy Equation 4.16 for every k ∈
{1, . . . , `} and for any generic class vector y ∈ {−1, 1}`, then for every 2` possible

instances of y, WN,n(·; M−1,M1) can precisely classify every Zk ∈ Z. In other

words, model WN,n shatters Z.

Next, it is intended to show that if the amount ` of equations of the present

system (see Equation 4.12) is larger than a given upper bound, then there are

no memory matrices M−1 and M1 that satisfy it for every possible set of classes

y ∈ {−1, 1}`.

Proposition 2. There exist no memory matrices M−1 and M1 for which system of

Equations 4.12 holds true for a generic set of classes y ∈ {−1, 1}`, if the amount of

equations ` > N (2n − 1) + 1.

Proof. System of Equations 4.12 is linear, and so it can be expressed in the form

Ax = b. According to Rouché-Capelli theorem [117], a system of linear equations

has a solution if and only if the rank of its coefficient matrix A is equal to the rank

of its augmented matrix [A |b]. Because many columns of the coefficient matrix of

System 4.12 can be produced through linear combinations of others, eliminations

must be done to determine its rank.

At first, the system of equations has N2n+1 variables and so the rank of its

coefficient matrix is at most that same value. Next, the coefficients of all variables

m−1,i,j can be eliminated, for their columns can be combined to those of m1,i,j.

Further eliminations can be done, because

1−
2n∑
j=2

zk,i,j = 1−
2n∑
j=2

zk,1,j +
2n∑
j=2

zk,1,j −
2n∑
j=2

zk,i,j. (4.17)

Identity 4.17 implies that the coefficient matrix columns related to m1,i,1, i ≥ 2

can be combined to those related to m1,1,1, m1,1,j and m1,i,j (j ≥ 2). In summary,

two significant elimination processes were made to determine that there are at most

N2n+1−N2n− (N − 1) = N (2n − 1) + 1 linearly independent columns. Therefore,

when the system of Equations 4.12 has more than N (2n − 1)+1 equations, the rank

of its coefficient matrix is at most N (2n − 1) + 1.

Because there is no prior linear relation between class vector y and the ordered set

of feature matrices Z, then the rank of the augmented matrix is greater than the one

of the coefficient matrix if their corresponding system have more than N (2n − 1)+1

equations. Hence, there is no solution for such system of linear equations.
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Due to results of Propositions 1 and 2, it is straightforward to determine an

upper bound for the VC dimension of the traditional n-tuple classifier.

Lemma 2. The VC dimension, dV C, of a model WN,n, as defined in Section 4.2.1,

is bounded above by N (2n − 1) + 1.

Proof. There is no solution for system of Equations 4.12 if it has at least N (2n − 1)+

2 equations. It implies that WN,n does not shatter any set of feature matrices Z,

card(Z) = N (2n − 1) + 2.

Theorem 1. The VC dimension, dV C, of a modelWN,n, as defined in Section 4.2.1,

is given by N (2n − 1) + 1.

Proof. The VC dimension of WN,n is bounded above and below by N (2n − 1) + 1.

Then, it is exactly N (2n − 1) + 1.

4.3 Determination of the VC dimension of bleach-

ing n-tuple classifier

The bleaching technique provided an advantage to the n-tuple classifier by mitigating

its proneness to saturation. Results on experiments conducted with this architecture

indicated a noticeable improvement to what could be achieved by the traditional

learning model [9, 11, 13–16]. Historically, the n-tuple classifier accuracy tended to

worsen if the amount of data to be learned by the system were large enough. The

capability of learning from massive data without getting saturated showed that the

classifier could achieve higher accuracies (with lower variance) as more data was

presented to it.

The model, however, lacked a theoretical foundation. A study on its general-

ization capacity could bring a better comprehension on how the network works and

also could provide insights on how it could be further improved.

4.3.1 Preliminaries

The proof of the VC dimension of the min-max bleaching n-tuple classifier is split

into two parts, the proofs of its lower and upper bounds, as depicted in the flowchart

of Figure 4.10. The lower bound is immediately obtained from the fact that the min-

max bleaching n-tuple classifier is a generalization of traditional WiSARD.

To prove the upper bound, a new score measure must be defined. The discrimi-

nators yield scores that depend on the bleaching threshold. So, if a proof procedure

were made and it were similar to the one done for the traditional model, the VC

dimension of the bleaching architecture would be dependent on a fixed threshold
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Proof of lower bound

Definition of
score measure

Inequality system

Lack of solution

Proof of upper bound

Proof of exact VC dimension

=

Figure 4.10: Proof flowchart for determination of the VC dimension of min-max
bleaching n-tuple classifier.

value. But the classification process does not depend on this threshold, given its

potential dynamic nature. That means, two distinct input patterns can achieve their

classification with very different values of the bleaching threshold. So, it is impera-

tive to have a score measure that does not depend on that threshold. Afterwards,

it is important to prove that this defined score does really reproduce the intended

outcome of the class selection criterion of min-max bleaching n-tuple classifier, as

introduced in Section 2.2.2.

The use of this score measure leads to a system of linear equations, similar

to the one of Proposition 1. By a similar procedure to that of Proposition 2, one

deduces that the system of equations has no solution if it has more equations than the

intended upper bound of the VC dimension. Therefore, this upper bound is attained.

Again the lower and upper bounds are the same, and as so the VC dimension of the

min-max bleaching n-tuple classifier has an exact value.

As previously mentioned in Section 2.2.3, the notation used for the proof of

the VC dimension of the min-max bleaching n-tuple classifier is almost the same

as that for the traditional model. Every notation needed is already introduced in

Sections 2.2.3 and 4.2.1. This way, the notation included in Section 2.2.3 is revisited

herein, in order to supersede some definitions set in Section 4.2.1. This notation is

condensed in Table 4.3 for future reference.
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Table 4.3: Notation for min-max bleaching n-tuple classifier.

BN,n Bleaching N -node n-tuple classifying model

BN,n(·; M−1,M1) Bleaching N -node n-tuple classifier with

memory matrices M−1 and M1

β Bleaching threshold

s
(β)
−1 (Zk) Score of D−1 for Zk and threshold β

s
(β)
1 (Zk) Score of D1 for Zk and threshold β

s(β)(Zk) Score vector s(β)(Zk) =
[
s

(β)
−1 (Zk) , s1(Zk)

]T

s−1(Zk) β-independent score of D−1 for Zk

s1(Zk) β-independent score of D1 for Zk

s(Zk) Score vector s(Zk) = [s−1(Zk) , s1(Zk)]
T

Let M−1 and M1 ∈ NN×2n be memory matrices, and let m−1,i,j and m1,i,j be

respectively the elements of their i-th row and j-th column. Let BN,n be the family of

functions that represents the biclass min-max bleaching N -node n-tuple classifying

model. Let BN,n(·; M−1,M1) ∈ BN,n be a function BN,n : {0, 1}N×2n → {−1, 1} that

given a feature matrix Zk returns a class c ∈ {−1, 1}. BN,n(·; M−1,M1) represents

an n-tuple classifier whose learned knowledge is stored in the memory matrices M−1

and M1.

Let there also be s(β)(Zk) =
[
s

(β)
−1 (Zk) , s

(β)
1 (Zk)

]T

a β-dependent score vector

composed of s
(β)
−1 (Zk) and s

(β)
1 (Zk), the scores yielded by D−1 and D1 over Zk, re-

spectively, given a bleaching threshold β ∈ N. Those scores are defined according

to Equation 2.8. Finally, s(Zk), s−1(Zk) and s1(Zk) are defined in Definition 6 and

they respectively express the β-independent score vector, and the β-independent

scores yielded by D−1 and D1.

4.3.2 The Proof Itself

The proof of the VC dimension of the min-max bleaching n-tuple classifying model

starts by proving its lower bound.

Corollary 1. The VC dimension, dV C, of a model BN,n, as defined in Section 4.3.1,

is bounded below by N (2n − 1) + 1.

Proof. The bleaching n-tuple classifier is a generalization of traditional WiSARD,

for the former works exactly like the latter if its memory matrices only store binary

values. Consequently, dV C is bounded below by N (2n − 1) + 1, the VC dimension

of the traditional n-tuple classifier as indicated by Theorem 1.

The proof of the upper bound of the VC dimension of the bleaching learning

model needs the introduction of a score measure that independs from the bleaching
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threshold β for the reasons exposed in Section 4.3.1.

Definiton 5. Let Λ−1 = [λ−1,i,j]N×2n and Λ1 = [λ1,i,j]N×2n be matrices with same

dimensions of M−1 and M1, respectively. For a given class c ∈ {−1, 1}, the elements

of Λc are defined as λc,i,j = −N−mc,i,j .

Definiton 6. Let s(Zk) = [s−1(Zk) , s1(Zk)]
T be a β-independent score vector. For

a given class c ∈ {−1, 1},

sc(Zk) =
N∑
i=1

2n∑
j=1

λc,i,jzk,i,j = −
N∑
i=1

2n∑
j=1

N−mc,i,jzk,i,j. (4.18)

Corollary 2.

BN,n(Zk; M−1,M1) = argmax
c∈{−1,1}

sc(Zk) . (4.19)

Proof. Let v−1,i and v1,i ∈ N respectively be the values of the accessed position of

i-th node of D−1 and D1, hereinafter denoted as node scores. Suppose, without

loss of generality, that v−1,i ≥ v−1,j and v1,i ≥ v1,j if i < j, i.e. nodes of both

discriminators are sorted, so as the highest accessed positions belong to the ones

with lowest indices.

Suppose also, without loss of generality, that BN,n(Zk; M−1,M1) = 1, i.e. 1 was

the class chosen by the classifier. So, according to the mathematical formulation

given in Section 2.2.3, there is a bleaching threshold β = argmin
β′

s
(β′)
1 > s

(β′)
−1 .

For a bleaching n-tuple classifier to produce such scores, there must exist an

N ′ ≤ N , such that the learning machine has the following node scores: (i) v1,i ≥
β + 1 and v−1,i ≥ β, for every i < N ′; (ii) v1,N ′ ≥ β + 1; (iii) v−1,N ′ = β; and

(iv) v1,i = v−1,i ≤ β, for every i > N ′. A classifier with these node scores opts

for class 1 (as intended), because β is the smallest threshold for which there is a

tie-break, with s
(β)
1 = N ′ and s

(β)
−1 ≤ N ′ − 1.

Because it was supposed, without loss of generality, that the classifier would

select class 1, then β-independent score s1 must be greater than s−1 for the corollary

statement to be proven true. As

s1 ≥ −
N∑

i=N ′+1

N−v1,i −N ′N−β−1, (4.20)

s−1 < −
N∑

i=N ′+1

N−v−1,i −N−β (4.21)

and

v1,i = v−1,i ≤ β, for every i > N ′, (4.22)
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then

s1 − s−1 > −N ′N−β−1 +N−β ≥ −N−β +N−β = 0. (4.23)

That is, s1 > s−1.

Supposing the selected class to be −1 would lead to an analogous proof, that

would result in s−1 < s1, as expected. Finally, for a draw scenario, every node score

s1,i should be equal to s−1,i, for every i. This way, β-independent scores s1 and s−1

would also be equal.

Summarizing, when s1(Zk) > s−1(Zk), the network opts for class 1; if s−1(Zk) >

s1(Zk), it chooses −1; and if both β-independent scores are identical, the classi-

fier outputs that there is a draw. Thus, it confirms the identity proposed by this

corollary.

The use of β-independent scores makes the function BN,n(·; M−1,M1) equiva-

lent to WN,n(·; Λ−1,Λ1) (compare Definition 6 and Corollary 2 to Equations 2.4

and 2.5). Consequently, a system of linear equations with similar characteristics to

Equation 4.12 can be derived from the relation between the β-independent scores,

as mentioned in Section 4.3.1.

Lemma 3. The VC dimension, dV C, of a model BN,n, as defined in Section 4.3.1,

is bounded above by N (2n − 1) + 1.

Proof. Analogously to Proposition 1, the formulas of β-independent score measures

s−1(·) and s1(·) lead to a system of linear equations, whose coefficient matrix is

the same. The column that represents the right hand side of the equations is also

linearly independent from those of the coefficient matrix. Therefore, there lacks a

solution for such system if it has at least N (2n − 1) + 2 equations. Then, BN,n does

not shatter any set of feature matrices Z, card(Z) = N (2n − 1) + 2.

Theorem 2. The VC dimension, dV C, of a model BN,n, as defined in Section 4.3.1,

is given by N (2n − 1) + 1.

Proof. The VC dimension of BN,n is bounded above and below by N (2n − 1) + 1.

Then, it is exactly N (2n − 1) + 1.

4.4 Discussion

Calculations on the VC dimensions of WiSARD and bleaching n-tuple classifiers

show that their values are the same, indicating that there is at least one bleach-

ing technique that mitigates the saturation and does little to no harm to the net-

work generalization capacity. Their values, however, are higher than what would

be expected from previous experimental works. For instance, the WiSARD network
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employed in the universal configuration of Table 3.7 has discriminators with more

than 95 nodes, each one addressed by n-tuples of length 88. The VC dimension

of this learning machine is approximately 3 · 1028, which is far greater than the

size of the largest dataset it was subjected to (less than 1.3 · 106 elements). The

determination of the VC dimension of traditional and bleaching n-tuple classifiers

was performed for dichotomous classifications. Despite the polychotomous nature

of part-of-speech tagging, the analysis here given provides an insight on the learning

capacity of those learning machines in a practical application. Yet, classically in

the literature multiclass classification is often executed through algorithms that use

dichotomous classifications, e.g., multiclass support vector machines (SVMs) [118].

The VC dimensions of both models suggest a similarity between them and other

learning machines whose input is transformed into a feature vector, which is affected

by the model effective parameters to produce the system output. For instance, ex-

treme learning machines (ELMs) [119, 120] have pseudorandomly generated weights

that connect its input layer to its hidden one. These weights are analogous to the

addressing function introduced in Section 2.1.4. Besides, the content of the hidden

layer neurons are affected by an weighted sum, which produces the ELM output.

A similar process happens in WiSARD and bleaching n-tuple classifiers, where the

feature vector generated by the addressing function is subjected to the system mem-

ory matrices in order to yield the network response. A comparison between the VC

dimensions of those models also indicates a similarity between them. The VC di-

mension of ELMs is determined by the number of weights connecting its hidden to

its output layer [121]. In a similar fashion, the number of addressable positions of

an n-tuple classifier is tightly related to its VC dimension.

Despite their similarities, the weightless recognition methods differ in some points

from their weighted counterparts. The latter ones rely on optimization methods and

update all their weights at a training procedure, while the former ones only change

the memory matrix elements that are addressed when the network is being trained.

This way, WiSARD and bleaching n-tuple classifiers can generalize pretty well even

if the amount of training data is far smaller than their VC dimension. The same

does not happen in ELMs [121]. Actually, both weightless learning systems seem

to have fewer effective parameters than their VC dimension imply. They have a

pay-only-for-what-you-use policy, where the only positions to be updated are the

ones that reveal to be relevant during the training procedure.

One might get a glimpse of the impact of this policy by calculating the VC di-

mension of a particular subset of WiSARD and bleaching N -node n-tuple classifying

models. If a WiSARD network is exposed to a training dataset D composed of ω1

observations associated to class 1 and ω−1 to class −1, then every node d1,i of dis-

criminator D1 should have at most ω1 positions storing 1. Analogously, every node
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d−1,i of D−1 should have at most ω−1 positions storing 1. This way, by appending

inequalities
2n∑
j=1

mc,i,j ≤ ωc, ∀i ∈ {1, . . . , N} and c ∈ {−1, 1} (4.24)

to the system introduced in Proposition 1, one could obtain a capacity measure

lower than the calculated VC dimension, which would better depict how that policy

affects WiSARD generalization capacity. The bleaching n-tuple classifier has a very

characteristic property. If a learning machine of this sort is exposed to that same

training dataset, then the sum of the contents of every node dc,i of a discriminator

Dc is always ωc. So, to attain the desired measure, it would be necessary to append

equations
2n∑
j=1

mc,i,j = ωc, ∀i ∈ {1, . . . , N} and c ∈ {−1, 1} (4.25)

to its equivalent linear system. But, because the system relies on the modified

memory matrices Λ−1 and Λ1, and not on M−1 and M1, appending those equations

would introduce a nonlinearity to the system that should toughen its resolution.

That task becomes easier if those equations are replaced by

− 2nN−2−nωc ≤
2n∑
j=1

λc,i,j ≤ −2n + 1−N−ωc ,∀i ∈ {1, . . . , N} and c ∈ {−1, 1} .

(4.26)

However, this might pose another problem, as it is quite improbable to find an exact

solution. So, this measure would have to be expressed by lower and upper bounds.

The bounds presented in Equation 4.26 represent the most extreme forms in

which the content of a memory matrix may be distributed. Its left hand side cor-

responds to a memory matrix where every position store the same amount, 2−nωc.

Conversely, its right hand side corresponds to one where a single memory position

store ωc and the 2n − 1 others store 0.

Finally, Equation 4.25 leads to the conclusion that the VC dimension of the

bleaching n-tuple classifier can be lower than that of the traditional model. Some

memory contents do not correspond to a bleaching n-tuple classifier that is trained

like it was presented in Section 2.2.1. If one restricts the family of functions a

bleaching n-tuple classifier can characterize to only those that a training procedure

could provide, then Equation 4.25 holds true, and so does

2n∑
j=1

mc,i,j −mc,1,j = 0, ∀i ∈ {2, . . . , N} and c ∈ {−1, 1} . (4.27)

This way, further constraints that do not depend on the training data can be
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added to the linear inequality system derived during the proof of the upper bound

for the VC dimension of the bleaching n-tuple classifier, leading to a VC dimen-

sion lower than that of WiSARD. However, this restriction might only be of aid in

the calculation of the VC dimension of the bleaching model if a new tie-breaking

policy is designed, such that discriminator scores can be produced through linear

combinations of the contents of its memory matrices.

Although there is room for improvement in the determination of the VC di-

mension of bleaching n-tuple classifier, this was not done in this work. This thesis

intended to show the potential of the bleaching n-tuple classifier and introduce

a theoretical background for this technique concerning its generalization capacity.

Comparisons with weighted learning machines and studies on tie-breaking policies

are immediate directions to be taken to advance the theoretical research on the

bleaching n-tuple classifier.
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Chapter 5

Conclusion

This thesis delivered an exact value for the VC dimension of the traditional WiS-

ARD n-tuple classifier and also supplied a theoretical background for the bleaching

n-tuple classifier, by introducing a mathematical study on its generalization capac-

ity and leaving some insights on how these weightless models can be compared to

weighted learning machines. This work also explored the capabilities of the bleach-

ing n-tuple classifier by revisiting an application that required the handle of a large

amount of data, mWANN-Tagger, a multilingual part-of-speech tagger initially pro-

posed in [10] and improved in [11] and [12]. The thesis also provided a universal

parameter configuration for mWANN-Tagger as a means to guarantee its applica-

bility to multilingual part-of-speech tagging, given that the tagger could then be

promptly employed in a new corpus with no need of fine tuning of parameters.

5.1 Summary of the Thesis

Here is offered a brief recap of what was presented and what was achieved in each

chapter of this thesis.

5.1.1 Chapter 1

Chapter 1 introduced the aims and contents of this thesis. It served as a motivation

for the reader, showing the reasons that led to this research and how it was related

to other published works.

5.1.2 Chapter 2

In Chapter 2, the traditional WiSARD n-tuple classifier was described. Its architec-

ture was detailed, as well as its training and recognition procedures. A mathematical

formulation for this learning machine similar to the one provided by STECK [8] was
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also settled. The saturation problem was mentioned, along with the technique pro-

posed by GRIECO et al. [9] to mitigate it.

The description of the bleaching n-tuple classifier was also divided in three parts.

Its architecture and training procedures were explained almost straightforwardly,

because it was only a matter of explaining that the memory positions could store

any positive number, and that they needed to be incremented by 1 every time they

were accessed during the training phase, instead of only set to 1 as soon as they were

accessed for the first time. The bleaching threshold was introduced, as well as its

function in the recognition procedure of the bleaching n-tuple classifier. A discussion

on tie-breaking policies was made and the min-max bleaching n-tuple classifier was

defined, since it was necessary for the settling of a mathematical formulation for

that model.

5.1.3 Chapter 3

mWANN-Tagger had the advantage of using a weightless architecture that works

well with a big amount of data, so it could train several large corpora in a quite agile

fashion. However, it had some parameters that needed to be finely tuned and so,

it could represent a step back in the search for a multilingual part-of-speech tagger.

This chapter aimed to show a relation between the lexical diversity of a corpus and

the most suited parameter configuration for this textual base.

For a better comprehension of the content of this chapter, a brief introduction to

quantitative linguistics was given. A discussion on the diverse forms a same piece of

information can be encoded into words was provided and metrics to quantify it were

proposed. It was then chosen to employ the parameters of the Zipf-Mandelbrot

distribution, as a means to store in two small numbers, α and β, the knowledge

about how a language encodes information in sentence.

In this chapter, mWANN-Tagger [10–12] was revisited. Its architecture and

how it encodes words in a sentence into bit arrays were explained with the aid

of an example. Its parameters were reintroduced and tests were made to verify if

there was any relation between the best suited parameter configuration for a given

corpus and parameters α and β of the Zipf-Mandelbrot distribution that describes

its lexical diversity. This test was performed for eight corpora in languages that

encode information into sentences in quite different ways, but no clear relation was

found whatsoever.

It was then noted that despite the differences between the languages, their pa-

rameter configurations looked very similar, except for a few cases. A cross-linguistic

analysis was conducted on those corpora in order to attest if there was actually a

configuration best suited for a given corpus, or if all of them were interchangeable
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and mWANN-Tagger would perform well with any one of them. The sensitivity

analysis showed that the configurations were actually interchangeable and that a

single parameter configuration could be employed in all those corpora. In light of

this, a universal parameter configuration was then devised.

That single common configuration was subjected to several tests to check its

potential for universality. A sensitivity analysis was conducted on that configuration,

where each one of its parameters was slightly changed and mWANN-Tagger accuracy

was collected. The best accuracies achieved in this analysis were those produced by

the common configuration with no change in its parameters, indicating its potential

for universality. That configuration was then put to test on six other corpora in

languages that ranged from very isolating to polysynthetic ones. Another sensitivity

analysis was conducted and again the best accuracies achieved were those of the

common configuration for almost every corpus. That was only not the case for

some parameters when employing the Pirahã dataset. However, that corpus was

extremely small when compared to the others and that discrepancy could be caused

by it. Finally, the performance of mWANN-Tagger with the universal configuration

is compared to those of state-of-the-art multilingual part-of-speech taggers in the

treebanks of Universal Dependencies project (v. 1.4). This comparison showed that

mWANN-Tagger can outperform some state-of-the-art part-of-speech taggers if a

better word representation is provided to the tagger.

The chapter ended with a discussion, where it was mentioned that a single univer-

sal parameter configuration was found for mWANN-Tagger and that it was subjected

to several tests that indicate its actual potential for universality. It was also com-

mented that mWANN-Tagger still has room for improvement and that better word

representations, like character-level ones, might enhance the tagger performance.

5.1.4 Chapter 4

The chapter started by reminding the reader of the problem posed by memory satu-

ration and how BRADSHAW [28] used learning theory to try to find a way to lessen

its effects. As a counterpoint, the bleaching technique proved to be capable of miti-

gating the saturation of WiSARD through a series of works where it was exposed to

large loads of data, but no theoretical studies were carried out on this architecture of

the n-tuple classifier. The aim of Chapter 4 was to provide a theoretical background

for the bleaching n-tuple classifier linked to its generalization capacity.

Like in Chapter 3, some basic concepts were given in Section 4.1 for a better

comprehension of the study there described. A brief introduction on the ERM prin-

ciple and some key definitions were offered. The idea of consistency is presented

and it is explained that for the ERM principle to be consistent in a learning ma-
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chine, its VC dimension should be finite. BRADSHAW [28] argued that the ERM

principle is always consistent with finite sets of functions, such as those produced

by traditional n-tuple classifiers. Section 4.1 ended by informing that the bleaching

n-tuple classifier yields an infinite set of functions, so it was pertinent to assess the

VC dimension of that learning machine.

The following sections presented the calculations of the VC dimensions of the

traditional and the min-max bleaching n-tuple classifiers (defined in Section 2.2.2).

For each variant, the lower and upper bounds of their VC dimensions were deter-

mined. In both cases the bounds proved to be equal and thus exact values were

achieved for the VC dimensions of both systems. Furthermore, their values were

also identical, indicating that the benefits brought by the bleaching technique did

not imply in some harm on the generalization capacity of the WiSARD network.

Exact VC dimensions were obtained for both n-tuple classifiers, as it was in-

tended. Their values were notably big nevertheless. A discussion followed the cal-

culations, where a parallel was drawn with weighted learning machines, particularly

ELMs. A comparison taking into account their architecture and VC dimension

revealed similarities between those models and n-tuple classifiers. Next, it was re-

minded that the way the n-tuple method trains quite differently from its weighted

counterparts, and therefrom proposals to achieve a lower (and closer to reality) VC

dimension for the bleaching n-tuple classifier were offered.

5.1.5 Chapter 5

This chapter serves as a summary of the work described in this thesis, with a special

focus on its contributions. It also indicates some directions that can be taken to

further advance the research here presented.

5.2 Final Remarks

The intention to build an efficient POS-tagger that were versatile enough to work

with several different languages led to the choice for a weightless architecture [10, 11].

However, this brought the need for the fine tuning of some parameters, which could

impair its intended efficiency. This necessity drove the research towards the quantita-

tive linguistics field, where it was expected that measures concerning a given corpus

lexical diversity could help in the choice of the most suitable parameter configura-

tion for that textual base. No direct relation was found between those measures and

the parameters of mWANN-Tagger, but a universal parameter configuration was

found instead [12]. Although it seemed counterintuitive, a possible explanation can

be that the information given by the word itself could complement that given by its

71



vicinity and vice versa. In other words, even if an isolating language could rely more

on the context of a word to disambiguate its tag, the word itself might have enough

information to complement that knowledge in order to aid the tagger in its task.

Analogously, the vicinity of a word may help mWANN-Tagger accurately tag them,

even if the content of the corpus employed is written in a very synthetic language.

On the theoretical basis, this thesis provided the exact values of the VC di-

mension of WiSARD and of min-max bleaching n-tuple classifiers. Because they

are identical, it was concluded that the bleaching technique enhances the WiSARD

model doing little to no harm to its generalization capacity. This work also drew

a parallel with other pattern recognition machines, showing similarities and differ-

ences between these and the weightless systems. This paper argued as well on how

the pay-only-for-what-you-use policy of the n-tuple classifiers could be interpreted

as an advantage, for it would imply that the model generalization capacity should

grow according to the dataset employed for training.

5.3 Future Works

This thesis leaves some directions for enhancements in mWANN-Tagger architecture.

The tagger may benefit from a better word representation. A character-level repre-

sentation offers more information about the word being tagged, which could lead to

higher accuracies. It would also be desirable that the acquired word representation

were more compact than the current one. This would imply in a lighter architecture

for mWANN-Tagger and, consequently, more efficient training and tagging proce-

dures – one of the main reasons for opting for weightless learning systems. The

universal configuration could also be improved if it were subjected to larger cor-

pora on polysynthetic languages. The work on MIT Pirahã Corpus showed that

mWANN-Tagger actually produced a relatively high accuracy when using that con-

figuration. However, that corpus was quite small and experiments on larger corpora

are important to get more conclusive results. Unfortunately, by the time this thesis

was written no other annotated corpus in a polysynthetic language was found.

The study of the generalization capacity of other bleaching tie-breaking policies

and the investigation on which one is best suited for a given task is an almost direct

consequence to the theoretical research offered in this thesis. A deeper analysis on

the impact of the training dataset size on the generalization capacity of WiSARD

and bleaching n-tuple classifiers is also suggested as further improvement to this

work, as well as how these weightless models relate to their weighted counterparts.

Because of their multidiscriminator natures, the traditional and bleaching recogni-

tion machines could also benefit from studies on their generalization capacities, by

employing multiclass extensions to the VC dimension.
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universal multilingual weightless neural network tagger via quantitative

linguistics”, Neural Networks, v. 91, pp. 85–101, July 2017. ISSN: 0893-

6080. doi: 10.1016/j.neunet.2017.04.011.

[13] CARDOSO, D. O., CARVALHO, D. S., ALVES, D. S. F., et al. “Financial

credit analysis via a clustering weightless neural classifier”, Neurocomput-

ing, v. 183, pp. 70–78, March 2016. doi: 10.1016/j.neucom.2015.06.105.
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Department of Linguistics, Brown University, Providence, Rhode Island,

US, 1964.

[81] SKUT, W., KRENN, B., BRANTS, T., et al. “An annotation scheme for free

word order languages”. In: Proceedings of the 5th conference on Applied

natural language processing, ANLC ’97, p. 88–95. Association for Compu-

tational Linguistics, 1997.

[82] BOSCO, C., LOMBARDO, V., VASSALLO, D., et al. “Building a Treebank

for Italian: a Data-driven Annotation Schema”. In: Proceedings of the 2nd

International Conference on Language Resources and Evaluation LREC-

2000, p. 99–105, 2000.

[83] HINRICHS, E. W., BARTELS, J., KAWATA, Y., et al. “The VERBMO-

BIL Treebanks”. In: KONVENS 2000 / Sprachkommunikation, Vorträge
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[107] TOMIĆ, O. M. Balkan Sprachbund Morpho-Syntactic Features. Dordrecht,

Springer Netherlands, 2006. doi: 10.1007/1-4020-4488-7.

[108] KARLSSON, F. Finnish: An Essential Grammar. Essential Grammars. Taylor

& Francis, 2013. ISBN: 9781134070534.

[109] GREVISSE, M., GOOSSE, A. Le bon usage: grammaire française. Duculot,

1993. ISBN: 9782801110454.

[110] BENNETT, C. E. A Latin Grammar. Allyn and Bacon, 1895.

[111] FRANK, M. C., EVERETT, D. L., FEDORENKO, E., et al. “Number as

a cognitive technology: Evidence from Pirahã language and cognition”,
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M.G. ; LIMA, PRISCILA M.V. . The exact VC dimension of the WiSARD

n-tuple classifier. Submitted to IEEE Transactions on Neural Networks and

Learning Systems, 2017.

85



Neural Networks 66 (2015) 11–21

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Multilingual part-of-speech tagging with weightless neural networks
Hugo C.C. Carneiro a,∗, Felipe M.G. França a, Priscila M.V. Lima b

a Systems Engineering and Computer Science Program/COPPE, Universidade Federal do Rio de Janeiro (UFRJ) - Caixa Postal 68511, Cidade Universitária,
Rio de Janeiro, Rio de Janeiro 21941-972, Brazil
b Instituto Tércio Pacitti de Aplicações e Pesquisas Computacionais (NCE), Universidade Federal do Rio de Janeiro (UFRJ) - Av. Athos da Silveira Ramos, 274
- Edifício do Centro de Ciências Matemáticas e da Natureza, Bloco E, Cidade Universitária, Rio de Janeiro, Rio de Janeiro 21941-916, Brazil

a r t i c l e i n f o

Article history:
Received 12 April 2014
Received in revised form 17 February 2015
Accepted 22 February 2015
Available online 2 March 2015

Keywords:
Weightless neural networks
Part-of-speech tagging

a b s t r a c t

Training part-of-speech taggers (POS-taggers) requires iterative time-consuming convergence-depend-
able steps, which involve either expectation maximization or weight balancing processes, depending
on whether the tagger uses stochastic or neural approaches, respectively. Due to the complexity of
these steps, multilingual part-of-speech tagging can be an intractable task, where as the number of lan-
guages increases so does the time demanded by these steps. WiSARD (Wilkie, Stonham and Aleksander’s
Recognition Device), a weightless artificial neural network architecture that proved to be both robust
and efficient in classification tasks, has been previously used in order to turn the training phase faster.
WiSARD is a RAM-based system that requires only one memory writing operation to train each sentence.
Additionally, the mechanism is capable of learning new tagged sentences during the classification phase,
on an incremental basis. Nevertheless, parameters such as RAM size, context window, and probability bit
mapping, make the multilingual part-of-speech tagging task hard. This article proposes mWANN-Tagger
(multilingualWeightlessArtificialNeuralNetwork tagger), aWiSARD POS-tagger. This tagger is proposed
due to its one-pass learning capability. It allows language-specific parameter configurations to be thor-
oughly searched in quite an agile fashion. Experimental evaluation indicates that mWANN-Tagger either
outperforms or matches state-of-art methods in accuracy with very low standard deviation, i.e., lower
than 0.25%. Experimental results also suggest that the vast majority of the languages can benefit from
this architecture.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Part-of-speech tagging (POS-tagging) is a common task in
natural language processing. It requires high accuracy since its
result is commonly used as input (or as part of the input) to other
tasks, e.g., syntactic parsing and machine translation. Multilingual
POS-tagging presents a further challenge. Not only its accuracy
must be high in every language, but also the tagger used must
have an agile language-independent architecture. Nowadays, two
different techniques are used: (i) several POS-taggers are trained
independently, which can create some overhead, or (ii) cross-
lingual POS-taggers are employed, which use previously annotated
relations between words of different corpora (composed of texts
in different languages) in order to remove tagging ambiguities

∗ Corresponding author.
E-mail addresses: hcesar@cos.ufrj.br (H.C.C. Carneiro), felipe@cos.ufrj.br

(F.M.G. França), priscilamvl@gmail.com (P.M.V. Lima).

(Naseem, Snyder, Eisenstein, & Barzilay, 2009; Snyder, Naseem,
Eisenstein, & Barzilay, 2008, 2009). In the first case, once a new
tagger is needed for a particular language, there is no technique
to speed up the parameter tuning procedure. In both strategies,
the architecture of the tagger is not truly language-independent.
This article proposes a tagger with both a language-independent
architecture and the ability to train taggers for new languageswith
little time spent on parameter tuning procedures.

Neural network models have proven useful in solving natural
language processing tasks (Caridakis, Karpouzis, Drosopoulos, &
Kollias, 2012; Hinoshita, Arie, Tani, Okuno, & Ogata, 2011; Klein,
Kamp, Palm, & Doya, 2010). Neural-based taggers have been pro-
posed since Schmid (1994), some of which employed the neuro-
symbolic paradigm, such as Ma, Murata, Uchimoto, and Isahara
(2000) andMarques, Bader, Rocio, and Hölldobler (2007). More re-
cently, a weightless neural-based tagger was proposed in Carneiro,
França, and Lima (2010). Despite the variety of techniques and
parameters adjustment employed, it is observed that every neu-
ral tagger created ever since has only been used for monolingual
part-of-speech tagging. This work explores the weightless neural

http://dx.doi.org/10.1016/j.neunet.2015.02.012
0893-6080/© 2015 Elsevier Ltd. All rights reserved.
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a b s t r a c t

In the last decade, given the availability of corpora in several distinct languages, research on multilingual
part-of-speech tagging started to grow. Amongst the novelties there is mWANN-Tagger (multilingual
weightless artificial neural network tagger), a weightless neural part-of-speech tagger capable of being
used for mostly-suffix-oriented languages. The tagger was subjected to corpora in eight languages of
quite distinct natures and had a remarkable accuracy with very low sample deviation in every one of
them, indicating the robustness of weightless neural systems for part-of-speech tagging tasks. However,
mWANN-Tagger needed to be tuned for every new corpus, since each one required a different parameter
configuration. For mWANN-Tagger to be truly multilingual, it should be usable for any new language
with no need of parameter tuning. This article proposes a study that aims to find a relation between the
lexical diversity of a language and the parameter configuration that would produce the best performing
mWANN-Tagger instance. Preliminary analyses suggested that a single parameter configuration may
be applied to the eight aforementioned languages. The mWANN-Tagger instance produced by this
configuration was as accurate as the language-dependent ones obtained through tuning. Afterwards, the
weightless neural taggerwas further subjected to new corpora in languages that range from very isolating
to polysynthetic ones. The best performing instances of mWANN-Tagger are again the ones produced by
the universal parameter configuration. Hence, mWANN-Tagger can be applied to new corpora with no
need of parameter tuning, making it a universal multilingual part-of-speech tagger. Further experiments
with Universal Dependencies treebanks reveal that mWANN-Tagger may be extended and that it has
potential to outperform most state-of-the-art part-of-speech taggers if better word representations are
provided.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Part-of-speech tagging (POS-tagging) is the basis for several
other natural language processing tasks. It is important that its
accuracy is as high as possible, so to avoid that potential mistakes
propagate in cascade to the following tasks. There are two major
issues that prevent part-of-speech tagging from being a fully
straightforward process, they are homonymy and unknownwords.
The former consists of a word having at least two different
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meanings (or parts of speech) while the latter are words that need
to be tagged but were not seen during the training phase.

Those issues arise from the basic nature of languages and how
they encode information into words. Some languages have a small
lexicon,mostlywithwords of atomicmeaning, and build sentences
using many of them in a very fixed order. Other languages
prefer to have a freer word order, but their words tend to have
more complex meanings and new ones can always be coined by
appending affixes to other existing words.

The languages of the former group are known as isolating and
the ones of the latter as synthetic (Sapir, 1921). A same language
can encode distinct pieces of information in very different ways.
This way, languages can be classified in a syntheticity spectrum
that range from fully isolating languages at one end to fully
synthetic at the other. It is important to knowwhere a language lies

http://dx.doi.org/10.1016/j.neunet.2017.04.011
0893-6080/© 2017 Elsevier Ltd. All rights reserved.
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The Exact VC Dimension of the WiSARD n-tuple
Classifier

Hugo C. C. Carneiro, Carlos E. Pedreira, Felipe M. G. França and Priscila M. V. Lima

Abstract—WiSARD n-tuple classifier is a multicategorical
weightless neural network. Each category is represented by a
structure called discriminator. It has N nodes, composed of
memory positions, where the model stores its learned knowledge.
They are addressed by n-tuples, and so their stored content can
be retrieved. This architecture allows WiSARD to learn a pattern
in a single pass. In other words, the system does not depend
on convergence. However, its fast training was counterbalanced
by the saturation problem, which arose when the network was
exposed to large amount of data. Previous studies were done
concerning the generalization capability of the learning system,
in order to better understand it and come up with solutions to its
saturation. They did not find the exact value of the VC dimension
of the traditional n-tuple classifier, but found tight bounds for it
nevertheless. Recently, the bleaching technique was proposed as
a means to avoid saturation. Applications with large amount of
data showed that the bleaching n-tuple classifier is able to prevent
it, achieving high accuracies with low variance. Despite its com-
petitive performance, no theoretical studies had been conducted
with this extension yet. This paper aims to push forward the
research on the theoretical foundations of the bleaching technique
and how it improves the generalization capability of the n-tuple
classifier. This article presents the calculation of the exact VC
dimension of the traditional model, which is linearly proportional
to the amount of nodes and exponentially to their addressing
tuple length, precisely N (2n − 1) + 1. It also introduces the VC
dimension of the bleaching model, whose value is exactly the same
as that of the traditional one, demonstrating that the bleaching
technique is an enhancement to the n-tuple method that does
little to no harm to its generalization capability.

Index Terms—

I. INTRODUCTION

The n-tuple classifier is a weightless neural model, initially
proposed in 1959 [1] and formally defined in 1962 [2]. It is
a one-pass learning multicategory pattern recognizer, whose
learned knowledge is stored on memory matrices. A practical
implementation made in 1982 [3], [4], the Wilkie, Stonham
and Aleksander Recognition Device (WiSARD), showed that
it was actually possible to assemble the n-tuple classifier.

Theoretical researches and architecture improvements were
performed on that learning model [5]–[24]. One of the main
issues raised by those studies was how to find a means to
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mitigate saturation, a common problem of WiSARD n-tuple
classifier. As the recognition machine is fed with (especially
if noisy) data, it starts filling up every position of the memory
matrices, deteriorating its capability of discriminating patterns.

Among the studies intended to lessen the effects of satura-
tion, it is worth mentioning the work of Bradshaw [12], where
lower and upper bounds for the VC dimension of WiSARD
n-tuple classifier were calculated. No exact value for this
measure was found. The research made by Bradshaw [12]
provided a fertile ground for further analyses on this field.
Unfortunately, the solution to the saturation problem there
proposed was not that successful, as it relied on convergence
and had no guarantee that it would actually happen whatsoever.

In 2010 [23] an actual way of mitigating saturation was
devised, called the bleaching technique. It allowed the network
to be exposed to loads of data (noisy and unnoisy) and yet
keep the fidedignity of its pattern discrimination capability.
This improvement considerably enhanced both accuracy and
precision of traditional WiSARD n-tuple classifier applications
with no performance harm on their training procedures and just
a small bit on the classification step [25]–[29].

That technique granted the WiSARD model competitiveness
with trending learning systems, by achieving high accuracies
with low variance in experimental works. However, there lacks
a theoretical background for bleaching. This paper aims to
provide a mathematical foundation for that extension of the
weightless classifier, by analyzing the generalization capacity
of both traditional and bleaching recognition schemes.

The paper structure is divided as follows. Section II intro-
duces some basic definitions of the VC theory and presents
WiSARD and bleaching n-tuple classifiers. A formal mathe-
matical definition of both models is also provided. Their VC
dimensions are calculated in Sections III and IV. The results
thereof are then discussed in Section V, where some con-
clusions are drawn and comparisons with weighted learning
schemes are made. Section VI summarizes the work presented
in this paper and proposes future works.

II. BASIC CONCEPTS

Some VC theory basic concepts and a brief introduction
to both architectures of the WiSARD model are presented
in this Section. They are provided as a cornerstone for the
calculations yet to come.

A. VC theory definitions

To measure the capacity of a learning system, like the
WiSARD network, the definitions of some VC theory basic
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Abstract. Weightless neural networks constitute a still not fully ex-
plored Machine Learning paradigm, even if its first model, WiSARD, is
considered. Bleaching, an improvement on WiSARD’s learning mechanism
was recently proposed in order to avoid overtraining. Although presenting
very good results in different application domains, the original sequential
bleaching and its confidence modulation mechanisms still offer room for
improvement. This paper presents a new variation of the bleaching mecha-
nism and compares the three strategies performance on a complex domain,
that of multilingual grammatical categorization. Experiments considered
both number of iterations and accuracy. Results show that binary bleach-
ing allows for a considerable improvement to number of iterations whilst
not introducing loss of accuracy.

1 Introduction

As the areas of application of Artificial Intelligence expand, so do the demand
for speed and accuracy in classification and training techniques. Moreover, many
situations require that training be interleaved with classification, in an online
learning fashion. Though not a recently proposed paradigm, weightless neural
networks (WNNs) are still not fully explored [1]. WNNs first model, WiSARD
[2], possesses the ability of performing online training. However, it often suffers
from overtraining after a not so big set of examples. WiSARD’s learning mech-
anism has been recently improved by the addition of a process called bleaching
[3]. The original sequential bleaching and its confidence modulation mechanisms
presented promising results in different application domains [3] [4]. There is still,
however, room for improvement.

The following is how the remainder of the text is organised. Background
knowledge on WiSARD and bleaching is briefly reviewed in Section 2. Section
3 presents a new variation of the bleaching mechanism and Section 4 provides
a quantitative comparison of the three strategies performance. The problem
of multilingual grammatical categorization of ambiguous words was the chosen
complex domain chosen for the comparison. Section 5 provides some concluding
remarks as well as points to future research steps.

∗This work was partially supported by CAPES, CNPq and FAPERJ Brazilian research
agencies.
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Abstract—This paper presents some strategies used for cre-
ating intelligent players of rock-paper-scissors using WiSARD
weightless neural networks and results obtained therewith. These
strategies included: (i) a new approach for encoding of the
input data; (ii) three new training algorithms that allow the
reclassification of the input patterns over time; (iii) a method
for dealing with incomplete information in the input array; and
(iv) a bluffing strategy. Experiments show that, in a tournament
of intelligent agents, WiSARD-based agents were ranked among
the 200 best players, one of them achieving 9th place for about
three weeks.

Keywords—Weightless neural networks, game, bots, intelligent
agents, adaptiveness

I. INTRODUCTION

A common requirement for the development of intelligent
agents is the need to adapt their behavior according to the
actions of other agents. As seen in [1], such a behavior
is especially important for the gaming industry, in which it
is desirable to create players adaptable to the strategy of
each opponent, increasing this way the realism and difficulty
of the game. In general, strategy games, whether electronic
or not, tend to provide a good environment for the study
and development of such agents. Rock-paper-scissors [2], [3],
in special, constitutes a quite interesting game, because its
simplicity would be analogous to situations in which agents
do not have a wide range of action possibilities. Furthermore,
this game analogy has been successfully applied to represent
several communities of subpopulations [4], [5], [6], [7]. In
this work, we create adaptive agents who can play this game,
predicting its opponent strategy and defeating it.

This work assumes that every move performed in a rock-
paper-scissors game is influenced by the recent results in the
game and, therefore, can be inferred by an adaptive intelligent
agent. As it is easily seen, in cases where at least one of
the two players uses randomness as a strategy, the number
of wins of both players will be on average equal to one third
of the number of rounds played, thereby generating a result
very close to a draw. Several machine learning techniques have
been adopted to provide agents with this adaptiveness [8], [9],
but weightless artificial neural networks (WANNs) had not yet
been applied in this context.

Because it is a mechanism that combines a high potential

adaptiveness and an extremely simple architecture [10], [11],
[12], the WiSARD neural network has been chosen as the basic
paradigm in the proposal of rock-paper-scissors players/agents.
The network shall receive as input the game history of last H
rounds and thus try to predict the next move of its opponent.

The major problem of the application of that model to
this context, is that the game strategies of the opponents
tend to change over time. Thus it is necessary to readjust
the knowledge of the network according to opponent strategy.
For this reason, this work uses variations during the network
training so as to allow that its classification for a particular
input pattern can evolve with time.

The remainder of this paper is organized as follows. After
this introduction, the architecture and functioning of the WiS-
ARD neural model are summarized in Section II. Sections III
and IV present, respectively, the strategies used to create the
agents and experimental results. Section V concludes the text
pointing at future steps of this research.

II. THE WISARD NEURAL MODEL

Technological advances on the area of integrated circuits
that occurred in the ’70s, enabled Wilkie, Stonham and
Aleksander to create a general-purpose device, composed of
small units of RAM (Random Access Memory). This device,
called WiSARD [10], [12], was capable of recognizing and
classifying different patterns which were presented to it, with
a certain degree of generalization.

Fig. 1. A RAM node with an input pattern of N bits.
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Abstract—This work investigates the effect of different data
structures on the performance and accuracy of VG-RAM-based
classifiers. This weightless neural model is based on RAM nodes
having very large address input, what suggests the use of
special data structures in order to deal with space and time
computational costs. Four different data structures are explored,
including the classical one used in recent VG-RAM related
literature, resulting in a novel and accurate yet fast setup.
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I. INTRODUCTION

One of the most common activities in machine learning is
the classification of data. Among other techniques, artificial
neural networks are often used for this purpose. A particular
subset of this group, weightless artificial neural networks
(WANNs) [1]–[3], distinguishes itself by approaching the
biological inspiration from a different point of view than that of
McCullogh and Pitts [4]. WANNs are based on the collective
response of artificial neurons inspired by the functionality of
the dendritic tree, a massive decoding structure found on most
neuron cells, that are interpreted as memory modules, or nodes.

The relation between memory nodes and its internal func-
tionality influences the features of a particular WANN model.
This work was focused on the Virtual Generalizing Random
Access Memory (VG-RAM) [1], [3], [5] whose properties
include a great generalization capacity of stored data without
the expense of writing extra memory locations, as needed by
similar memory modules. But this comes at the cost of extra
runtime and higher implementation complexity. How these
characteristics vary depends on the operation of the internals
of the VG-RAM node. This work proposes to study some of
the possibilities to this and compare their observed executions.

The remainder of the paper is organized as follows. Sec-
tion II shows the basic version of a VG-RAM node and the
generic VG-RAM classifier architecture. Section III presents
the alternative versions proposed in this paper. The introduced
VG-RAM classifier architecture was used to experiment on
the new versions proposed and to compare with the original
version. Such experiments and comparison are discussed in
section IV. Section V concludes the paper pointing to future
topics of investigation.

II. CLASSIFICATION USING VG-RAM

Random access memory (RAM) modules are one of the
most basic building blocks in modern computing. In a simple
manner, the way a RAM module works can be described by
two actions: write(x, y), which records the value y in the
location x; and read(x), which returns the last value recorded in
x. We will consider that each location is addressed exclusively
by a value of m bits, where m is a parameter of each RAM
instance. From this description it is possible to see a RAM
module as an associative array [6], another very common
structure in computer systems.

GRAM [1] (G stands for generalizing) extends the tra-
ditional RAM with the idea of spreading: when the action
write(x, y) is performed, not only the location x is written with
y but this value is spread to neighbouring locations according
to the Hamming distance to x, similarly to a circular wave.
The spreading in a direction may stop because: (i) all related
locations were recorded, (ii) a location written before with
a value that is not y was reached or (iii) a given maximum
distance threshold was exceeded.

The generalization capability of a GRAM node could also
be provided without spreading. Whenever a read(x) targets
an unwritten location, it returns the value of the closest
written location. The proximity criteria adopted consists of the
Hamming distance. This is how VG-RAM [1], [7](V stands for
virtual) nodes work. Virtual means that the node only stores
the written locations and its values, while still behaving like
the GRAM.

Using any VG-RAM conception, a network can be built
for classification. While there are advanced architectures such
as the GNU and MAGNUS [7], the most traditional structure
of a neural network of VG-RAM nodes is similar to that of
a WiSARD discriminator [1], [3], an array of nodes whose
results are combined to define a result for the network.
However, it has been shown that a simple layer of VG-RAM
nodes can achieve performance similar to that of the WiSARD
network with a smaller storage penalty, albeit a larger time
penalty [7].

The way a RAM node works was described by write(x,
y) and read(x). Showing how a VG-RAM classifier works can
be done in a similar manner, using train(a, b) and classify(a),
which we present next (algorithms 1 and 2, respectively), as
pseudocode, considering that the classifier has n VG-RAM
nodes of m-bits addresses.
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Abstract— This paper describes a study of neural networks without weights application for recognizing emo-
tions. Task is performed from facial expressions image analysis. Eight situations were considered: anger, con-
tempt, disgust, fear, happiness, neutral, sadness, and surprise. Experiments were made from TFEID (Taiwanese
Facial Expression Image Database). Results shown that presented method is suitable to solve the recognizing
emotions problem. Various training configurations were tested. Best returned hit rate above 95%.
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Resumo— Este trabalho descreve um estudo da aplicação de redes neurais sem pesos para o reconhecimento de
emoções. A tarefa é feita a partir de análise de imagens de expressões faciais. Oito situações foram consideradas:
raiva, desprezo, nojo, medo, felicidade, neutro, tristeza e surpresa. Os experimentos foram feitos a partir da base
de dados TFEID (Taiwanese Facial Expression Image Database). Os resultados mostraram que a metodologia
é adequada para a resolução do problema. Várias configurações de treinamento foram testadas. As melhores
retornaram taxa de acerto acima de 95%.
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1 Introdução

O desenvolvimento tecnológico e o crescimento de
poder de processamento proveem diferentes for-
mas de interação com o computador. O reconhe-
cimento automático de emoções viabiliza que uma
máquina possa reagir de forma mais adequada ao
estado emocional do usuário ou de pessoas em
torno de uma máquina. Esta é uma forma de de-
senvolver interfaces naturais e pró-ativas, sendo
uma alternativa ao uso do tradicional método de
respostas a comandos por meio de hardwares como
teclado, mouse ou joysticks.

O reconhecimento automático de expressões
faciais vem ganhando importância para o desen-
volvimento de interfaces interativas, podendo con-
tribuir em diversas aplicações como: ambientes
virtuais de aprendizagem, sistemas de segurança,
casas inteligentes ou aplicações que visem acessi-
bilidade a pessoas portadoras de necessidades es-
peciais. O objetivo é fazer com que um sistema
aja de acordo com reações de usuários ou de indi-
v́ıduos a serem observados.

Uma solução de reconhecimento de expressões
faciais pode passar por 3 (três) etapas: (1) loca-

lização da face; (2) segmentação de regiões de in-
teresse; e (3) identificação da emoção. O escopo
deste trabalho foca apenas a última etapa. Nos
experimentos, as duas primeiras foram feitas de
modo manual.

Vários métodos de reconhecimento de padrões
podem ser adotados para identificar a emoção
de uma pessoa, como Lógica Fuzzy, Redes Neu-
rais Artificiais, Support Vector Machine (SVM),
ou Redes Bayesianas. Neste trabalho, utilizou-se
uma Rede Neural sem Pesos. Para tal escolha,
considerou-se o processo de treinamento, o qual é
mais rápido e mais simplificado que outros mode-
los de redes neurais, como o o MLP (Multilayer
Perceptron).

Nas duas próximas seções, alguns trabalhos
relacionados e opções de base de dados de ima-
gens são referenciados. Em seguida, são descritos
os processos de pré-processamento das imagens
e o treinamento da rede neural sem pesos. Por
fim, apresenta-se a validação e os resultados, e são
feitas as considerações finais.

Anais do XI Simpósio Brasileiro de Automação Inteligente (SBAI 2013) -  Fortaleza, CE                                         ISSN 2358-4483
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Abstract. Datasets with a large amount of noisy data are quite com-
mon in real-world classification problems. Robustness is an important
characteristic of state-of-the-art classifiers that use error minimization
techniques, thus requiring a long time to converge. This paper presents
ClusWiSARD, a clustering customization of the WiSARD weightless neu-
ral network model, applied to credit analysis, a non-trivial real-world prob-
lem. Experimental evidence show that ClusWiSARD is very competitive
with Support Vector Machine (SVM) w.r.t. accuracy, with the difference
of being capable of online learning. Nonetheless, it outperforms SVM in
both training time, being two orders of magnitude faster, and test time,
being slightly faster.

1 Introduction

Data with concept drift increases the complexity of classifiers, since information
learnt is likely to degrade classification performance over time, as both feature
patterns and target functions can change. This is the case of credit analysis, a
recurring problem in the banking business which can be summarized as deciding
which requests for credit should be granted. The usual process involves the
collection of data, which is used to determine the “quality” of the request, in
other words, the risk of a borrower failing to pay his or her debts. The analysis
of these data, however, is a complex problem.

One of the aspects which makes this problem considerably harder is the
change of patterns over time. The movement of populations, changes in econ-
omy, natural catastrophes [1], general news [2], among other factors which may
directly affect the relations pertinent to credit. Another aspect to be considered
is the bias of the available data: only data about granted requests are usually
stored. This means there is not enough information about the bad payers.

An automated learning and classification mechanism could offer a more pre-
cise solution, being able to analyse vast amounts of data on credit applications
and consider subtle relations between the actual financial data and the borrower
profile. Those methods would need to be efficient and robust in order to account
for changes in the circumstances and sample biasing. Two classifying mecha-
nisms which exhibit these characteristics are the WiSARD [3] artificial neural
network model and the Support Vector Machine (SVM) [4], which we introduce
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Abstract. DRASiW is an extension of the WiSARD weightless neural
model that provides the ability of producing examples/prototypes, called
“mental images”, from learnt categories. This work introduces a novel way
of performing rule extraction by applying the WiSARD/DRASiW RAM-
based neural model upon a well-known machine learning benchmark. A
functional exploration is offered in order to demonstrate how the new
rule extraction mechanism behaves under different system configurations.
Experimental results suggest that the rules conformance to data increases
proportionally to the corresponding classifier accuracy. Furthermore, com-
parison with C4.5 decision tree algorithm shows that the DRASiW-based
technique produces more compact sets of rules.

1 Introduction

DRASiW [1] [2] is an extension to the WiSARD weightless neural model ca-
pable of producing approximated examples of learnt categories, the so-called
“mental images”. This work introduces a novel way of performing rule extrac-
tion (production rules) from “mental images” produced by a WiSARD/DRASiW
multidiscriminator trained with the Iris machine learning dataset [3, 4]. In order
to demonstrate how the proposed rule extraction mechanism works, the system
is stressed under different configurations. The remainder of the text is organised
in the following manner. Background knowledge on WiSARD, DRASiW and
bleaching is briefly reviewed in Section 2. The explanation of how rules can be
extracted by the use of DRASiW is presented in Section 3. Section 4 provides
experiments with a well-known benchmark and a detailed analysis in order to
demonstrate the capabilities of DRASiW. Finally, in Section 5 some concluding
points are drawn and some further research challenges are presented.

2 WiSARD and Bleaching

WiSARD (Wilkie, Stonham and Aleksander’s Recognition Device) [5] is both
a weightless neural network and an n-tuple classifier, i.e., its input is an array of
bits. The basic structure of its architecture is a RAM (random access memory)
discriminator. Each of these structures is assigned to a particular category,
therefore a WiSARD network possesses as many discriminators as the number

∗This work was partially supported by Inovax, and CAPES, CNPq and FAPERJ Brazilian
research agencies.

529

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



Financial credit analysis via a clustering weightless neural classifier

Douglas O. Cardoso a, Danilo S. Carvalho a, Daniel S.F. Alves a, Diego F.P. Souza a,n,
Hugo C.C. Carneiro a, Carlos E. Pedreira a, Priscila M.V. Lima b, Felipe M.G. França a

a PESC/COPPE - Universidade Federal do Rio de Janeiro - UFRJ, Brazil
b NCE, Instituto Tércio Pacitti, Universidade Federal do Rio de Janeiro, Brazil

a r t i c l e i n f o

Article history:
Received 31 August 2014
Received in revised form
5 April 2015
Accepted 2 June 2015
Available online 9 January 2016

Keywords:
Bleaching
ClusWiSARD
Clustering
Concept drifting
Credit assignment
Online learning

a b s t r a c t

Credit analysis is a real-world classification problem where it is quite common to find datasets with a
large amount of noisy data. State-of-the-art classifiers that employ error minimisation techniques, on the
other hand, require a long time to converge, in order to achieve robustness. This paper explores Clus-
WiSARD, a clustering customisation of the WiSARD weightless neural network model, applied to two
different credit analysis real-world problems. Experimental evidence shows that ClusWiSARD is very
competitive with Support Vector Machine (SVM) w.r.t. accuracy, with the advantage of being capable of
online learning. ClusWiSARD outperforms SVM in training time, by two orders of magnitude, and is
slightly faster in test time.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Credit analysis represents the complex tasks of deciding which
credit applicants present a good probability of returning the
granted credit and which do not. This task depends on many dif-
ferent factors, such as economic and cultural circumstances, and is
often delegated to human experts. Human judgement, however,
may not use explicit rules that can be referenced as basis for
decision making. That could lead to conflicting analysis of the
same problem instance from different experts. In some countries,
this is considered illegal. This question would justify the design of
a machine learning system that is able to replace the decisions of
experts, providing a single analysis standard.

Important pattern recognition challenges can be found in credit
analysis. For example, data can be noisy or corrupted due to pro-
blems in data collection. Data could also embed temporal infor-
mation, possibly useful to identify concept drift: movement of
populations, changes in economy, natural catastrophes [1], general
news [2], etc. These and other factors may affect the relations
pertinent to credit assignment. Class imbalance is also expected, as
credit applications labeled as “good” are more frequent than
“bad” ones.

How observations were gathered and labeled is also note-
worthy. Labelling could be done a priori, according to a risk

appraisal system already in use. Alternatively, this could be per-
formed after observing if payment of granted requests was duly
realised. A system trained with data from the first case aims to
reproduce the behaviour of the established classification system,
instead of attempting to excel it. In the second case, training data
is the product of a filtering process, implying in a reduction of
information about the population.

Different machine learning techniques have been analysed in
the context of this problem. As discriminated by Tsai [3], they may
be classified in three smaller sets, which are: single classifiers,
classifier ensemble and hybrid classifiers. The first one contains
single supervised models, like Support Vector Machine (SVM) [4–
8], Multilayer-Perceptron (MLP) [9,4,10], Decision Trees (DT) [11]
and Genetic Algorithm/Programming (GA/GP) [12,13]. Regarding
classification accuracy over the UCI dataset, which was also used
in this work, some results obtained were 77.34% by Ong, Huang
and Tzeng [13] with the use of GP and 77.09%/76.59% by Tsai [4]
with SVM and MLP, respectively. These models have achieved at
most an accuracy of 77.34% working as single classifiers. However,
they may achieve much better results when grouped together,
forming classifier ensembles. For instance, Ghodselahi [14] has
obtained 81.42% with the use of a SVMs ensemble, and Hoffmann
[15] has reached 84.90% with a GA-based SVM. Some other
approaches used GA-based MLP [16] and GA-based SVM [17] in
other financial credit analysis datasets. The third category, called
Hybrid Classifiers, contains approaches mixing two or more
techniques. For instance, combining clustering and single classi-
fiers. Previously a work [3] compared many different approaches
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