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a b s t r a c t

The objective of this work is to introduce the use of integral transformed temperature measured data for
the solution of inverse heat transfer problems, instead of the common local transient temperature mea-
surements. The proposed approach is capable of significantly compressing the measured data through the
integral transformation, without losing the information contained in the measurements and required for
the solution of the inverse problem. The data compression is of special interest for modern measurement
techniques, such as the infrared thermography, that allows for fine spatial resolutions and large frequen-
cies, possibly resulting on a very large amount of measured data. In order to critically address the use of
integral transformed measurements, we examine in this paper the simultaneous estimation of spatially
variable thermal conductivity and thermal diffusivity in one-dimensional heat conduction within heter-
ogeneous media. The direct problem solution is analytically obtained via integral transforms and the
related eigenvalue problem is solved by the Generalized Integral Transform Technique (GITT). The inverse
problem is handled with Bayesian inference by employing a Markov Chain Monte Carlo (MCMC) method.
The unknown functions appearing in the formulation are expanded in terms of eigenfunctions as well, so
that the unknown parameters become the corresponding series coefficients. Such projection of the func-
tions in an infinite dimensional space onto a parametric space of finite dimension also permits that sev-
eral quantities appearing in the solution of the direct problem be analytically computed. Simulated
measurements are used in the inverse analysis; they are assumed to be additive, uncorrelated, normally
distributed, with zero means and known covariances. Both Gaussian and non-informative uniform distri-
butions are used as priors for demonstrating the robustness of the estimation procedure.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of diffusion problems in heterogeneous media
involves formulations with spatial variations of the thermophysi-
cal properties in different ways, such as large scale variations in
functionally graded materials (FGM), abrupt variations in layered
composites, and random variations due to local concentration fluc-
tuations in dispersed phase systems [1–6]. For instance, composite
materials have been providing engineers with increased opportu-
nities for tailoring structures to meet a variety of property and per-
formance requirements. As the composite material morphology in
applications presents endless possibilities due to design and man-
ufacturing processes, the characterization of their physical proper-
ties is to be made almost case to case [7–13].

The accurate representation of the heat conduction phenomena
requires a detailed local solution of the temperature distribution,
generally with the aid of discrete numerical solutions with

sufficient mesh refinement and computational effort and/or
semi-analytical approaches for specific or simplified functional
forms. Analytical solutions of linear diffusion problems have been
analyzed and compiled in [14], where seven different classes of
heat and mass diffusion formulations are systematically solved
by the classical Integral Transform Method. The obtained formal
solutions are applicable over a very broad range of problems in
heat and mass transfer, in part illustrated in the referred compen-
dium. Later on, the classical integral transform approach gained a
hybrid numerical–analytical implementation and is in general re-
ferred to as the Generalized Integral Transform Technique (GITT)
[15–21], offering more flexibility in handling non-transformable
problems, including, among others, the analysis of nonlinear diffu-
sion and convection–diffusion problems.

The usefulness of such direct problem solutions is nevertheless
limited by the precise knowledge of the corresponding thermo-
physical properties and boundary condition coefficients that are
fed in the corresponding models, and quite often need to be deter-
mined by the appropriate inverse problem analysis [22–29].
Among the various available solution techniques of inverse
problems [30–34], a fairly common approach is related to the
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minimization of an objective function that usually involves the
quadratic difference between measured and estimated dependent
variables, such as the least squares norm, or its modified versions
with the addition of regularization terms. Although very popular
and useful in many situations, the minimization of the least
squares norm is a non-Bayesian estimator. A Bayesian estimator
is basically concerned with the analysis of the posterior probability
density, which is the conditional probability of the parameters gi-
ven the measurements, while the likelihood is the conditional
probability of the measurements given the parameters [33]. If we
assume the parameters and the measurement errors to be inde-
pendent Gaussian random variables, with known means and
covariance matrices, and that the measurement errors are additive,
a closed form expression can be derived for the posterior probabil-
ity density. In this case, the estimator that maximizes the posterior
probability density can be recast in the form of a minimization
problem involving the maximum a posteriori objective function.
On the other hand, if different prior probability densities are as-
sumed for the parameters, so that the Posterior Probability Distri-
bution may not allow an analytical treatment, Markov Chain
Monte Carlo (MCMC) methods are required to draw samples of
all possible parameters, and thus inference on the posterior prob-
ability becomes inference on the samples.

In this work we use Bayesian inference for the estimation of
spatially variable equation and boundary condition coefficients in
diffusion problems, by employing the method of Markov Chain
Monte Carlo (MCMC) [33,35–38]. The Metropolis-Hastings
algorithm is employed for the sampling procedure [39,40], imple-
mented in theMathematica platform [41]. This sampling procedure
used to recover the posterior distribution is in general the most

expensive computational task in solving an inverse problem by
Bayesian inference, since the direct problem is calculated for each
state of the Markov Chain. In this context, the use of a fast, accurate
and robust computational implementation of the direct solution
[42] is extremely important. Thus, the integral transformation ap-
proach discussed above becomes very attractive for the combined
use with the Bayesian estimation procedure, since all required
expressions in the method are analytically obtained at once by
symbolic computation and the single numerical repetitive task is
the solution of an algebraic matrix eigenvalue problem [42–44].
Also, instead of seeking the function estimation in the form of a se-
quence of local values for the variable coefficients, an alternative
approach is utilized based on the eigenfunction expansion of the
functions to be estimated [42]. As a result, the solution of the in-
verse problem is performed in a finite dimensional space of param-
eters, involving the corresponding series coefficients.

The main contribution of the present work is the analysis of the
inverse problem in the transformed temperature field, instead of
employing the directly measured temperature data. The experi-
mental temperature values at each time are integral transformed
along the spatial domain to yield transformed temperature mea-
surements of increasing order, which is the eigenvalue order of
the auxiliary problem used in the transformation. This procedure
is particularly advantageous when a substantial amount of exper-
imental measurements are available, such as in thermographic
sensors, thus permitting a remarkable data compression through
the integral transformation process, without discarding any of
the available measurements.

In order to demonstrate the applicability of the proposed esti-
mation approach, a simulated experiment is used, which employs

Nomenclature

a coefficient in time lag function of applied heat flux,
Eq. (24c)

b coefficient in time lag function of applied heat flux,
Eq. (24c)

cp specific heat, Eq. (1.a)
d(x) linear dissipation operator coefficient, Eq. (3.a)
f(t) time lag function in applied heat flux, Eq. (24a)
heff(x) effective heat transfer coefficient, Eq. (1.a)
k(x) space variable thermal conductivity, Eq. (1.a)
Lx plate length
Lz plate thickness
M truncation order in eigenvalue problem expansion
Mn normalization integrals in auxiliary eigenvalue

problem
NT truncation order in temperature expansion
Nw, Nk truncation orders in coefficients expansions, w(x)

and k(x), respectively
NFk, NFw, NFd number of parameters to be estimated in each fil-

tered solution, wf(x), kf(x) and df(x), respectively
NPk, NPw, NPd number of parameters to be estimated in each

parametrization, w(x), k(x) and d(x), respectively
Nf number of parameters to be estimated in time

behavior of the applied heat flux, f(t)
NP number of parameters to be estimated, Eq. (20b)
Nx number of measurements along the spatial domain

(sensors)
Nt number of measurements in time
Nm total number of measurements
Ni normalization integrals in original eigenvalue prob-

lem
P(x, t) source term, Eq. (3.a,g)
qw(x, t) applied heat flux, Eq. (1.a)

qinf heat flux dissipated from electrical resistance, Eq.
(24.b)

t time variable
Tm(x, t) temperature distribution
w(x) thermal capacity, Eq. (3.a)
wf(x) filter for thermal capacity expansion
x space coordinate
Y vector of measurements
P vector of unknown parameters
Pw, Pk, Pd, Pf vector of unknown parameters for w(x), k(x), d(x)

and f(t) respectively
T vector of estimated temperatures
W covariance matrix of the measurement errors

Greek symbols
c parameter in heat flux or linear dissipation coeffi-

cient spatial variation
e emissivity
k eigenvalues of the auxiliary problem
l eigenvalues of the original problem
w eigenfunctions of the original problem
X eigenfunctions of the auxiliary problem
q density

Subscripts and Superscripts
i, n, m order of eigenquantities
– integral transform
� normalized eigenfunction
d dispersed phase (filler) properties
f filtering function in the coefficient expansion
m matrix phase properties
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a partially heated thin plate. Natural convection and radiation cool-
ing is considered in the non-heated surface of the plate. It is as-
sumed that infrared camera thermography is utilized to provide
a fairly large number of transient temperature measurements over
the plate non-heated surface. A combination of uniform and Gauss-
ian priors are employed in the MCMC algorithm, and the thermo-
physical properties are then estimated for a heterogeneous
composite material in the form of an exponential variation of the
dispersed phase concentration.

2. Direct problem

We consider a one-dimensional special case of the general for-
mulation on transient heat conduction presented in [42], for the
temperature field Tm(x, t) in a region x e [0, Lx], as depicted in
Fig. 1. The formulation includes spatially variable thermal conduc-
tivity and heat capacity, k(x) and w(x), respectively. The heat con-
duction equation with the appropriate initial and boundary
conditions are given by:

wðxÞ @Tmðx; tÞ
@t

¼ @

@x
kðxÞ @Tmðx; tÞ

@x

� �
� heffðxÞ

Lz
ðTmðx; tÞ � T1Þ

þ qwðx; tÞ
Lz

; 0 < x < Lx; t > 0 ð1aÞ

Tmðx;0Þ ¼ T1 ð1bÞ

@Tmðx; tÞ
@x

����
x¼0

¼ 0; t > 0
@Tmðx; tÞ

@x

����
x¼Lx

¼ 0; t > 0 ð1c;dÞ

Problem (1) models a typical one-dimensional transient heat
conduction experimental setup for a thermally thin plate, includ-
ing prescribed heat flux at one surface and convective heat losses
at the opposite surface, based on a lumped formulation across
the sample thickness. Before providing the integral transform solu-
tion of problem (1), a simple filtering solution is employed for im-
proved convergence behavior of the eigenfunction expansions, in
the form:

Tmðx; tÞ ¼ T1 þ T�ðx; tÞ ð2Þ

The filtered temperature formulation is then given by:

wðxÞ @T
�ðx; tÞ
@t

¼ @

@x
kðxÞ @T

�ðx; tÞ
@x

� �
� dðxÞT�ðx; tÞ þ Pðx; tÞ;

0 < x < Lx; t > 0 ð3aÞ

T�ðx;0Þ ¼ 0
@T�ðx; tÞ

@x

����
x¼0

¼ 0;
@T�ðx; tÞ

@x

����
x¼L

¼ 0; t > 0
ð3b-dÞ

where

wðxÞ ¼ qðxÞcpðxÞ; dðxÞ ¼ heffðxÞ
Lz

; Pðx; tÞ ¼ qwðx; tÞ
Lz

ð3e-gÞ

The formal exact solution of problem (1) is then obtained with
the Classical Integral Transform Method [14], and is written as:

Tmðx; tÞ ¼ T1 þ
X1
i¼1

~wiðxÞ
Z t

0

�giðt0Þe�l
2
i
ðt�t0Þdt ð4Þ

where the eigenvalues li and eigenfunctions wi(x), are obtained
from the eigenvalue problem that contains the information about
the heterogeneous medium, in the form:

d
dx

kðxÞdwiðxÞ
dx

� �
þ ðl2

i wðxÞ � dðxÞÞwiðxÞ ¼ 0; x 2 ½0; Lx� ð5aÞ

with boundary conditions

dwiðxÞ
dx

¼ 0; x ¼ 0;
dwiðxÞ
dx

¼ 0; x ¼ Lx ð5b; cÞ

Also, the other quantities that appear in the exact solution (4)
are computed after solving problem (5), such as:

~wiðxÞ ¼
wiðxÞffiffiffiffiffi

Ni
p ; normalized eigenfunctions ð6aÞ

Ni ¼
Z Lx

0
wðxÞw2

i ðxÞdx; normalization integrals ð6bÞ

�giðtÞ ¼
Z Lx

0
Pðx; tÞ ~wiðxÞdx; transformed source terms ð6cÞ

The Generalized Integral Transform Technique (GITT) is here
employed for the solution of the Sturm–Liouville problem (5) via
the proposition of a simpler auxiliary eigenvalue problem, and
expanding the unknown eigenfunctions in terms of the chosen ba-
sis [42–44]. Also, the variable equation coefficients are themselves
expanded in terms of known eigenfunctions [42], so as to allow for
a fully analytical implementation of the coefficients matrices in the
transformed system. The solution of problem (5) is thus proposed
as an eigenfunction expansion, in terms of the following simpler
auxiliary eigenvalue problem:

d2XnðxÞ
dx2

þ k2nXnðxÞ ¼ 0; x 2 ½0; Lx� ð7aÞ

with boundary conditions

dXnðxÞ
dx

¼ 0; x ¼ 0;
dXnðxÞ
dx

¼ 0; x ¼ Lx ð7b; cÞ

with normalized eigenfunctions, eigenvalues and norms given by:

~XnðxÞ ¼
cosðknxÞffiffiffiffiffiffiffi

Mn
p ; kn ¼ np

Lx
; with n ¼ 0;1;2; . . .

M0 ¼ Lx and Mn ¼ Lx
2
; with n ¼ 1;2; . . .

ð8a-dÞ

The proposed expansion of the original eigenfunction is then gi-
ven by:

wiðxÞ ¼
X1
n¼1

~XnðxÞ �wi;n; inverse ð9aÞ

�wi;n ¼
Z Lx

0
wiðxÞ ~XnðxÞdx; transform ð9bÞ

The integral transformation is thus performed by operating Eq.
(3a) on with

R Lx
0

~XnðxÞ � dx, to yield, after some manipulation [42–
44], the following algebraic problem in matrix form:

conv.+ rad.q
, ( )effT h x∞

( , )wq x t

0wq =

x

x=0
xL

zL

xc=Lx/3 

Fig. 1. Physical problem.
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ðA� mBÞ�w ¼ 0; with m ¼ l2 ð10aÞ

�w ¼ �wn;m; B ¼ fBn;mg; Bn;m ¼
Z Lx

0
wðxÞ ~XnðxÞ ~XmðxÞdx ð10b-dÞ

A ¼ fAn;mg;

An;m ¼
Z Lx

0

~XmðxÞ
d
dx

kðxÞd
~XnðxÞ
dx

" #
dx�

Z Lx

0
dðxÞ ~XnðxÞ ~XmðxÞdx

ð10e; fÞ

The algebraic problem (10a) can be numerically solved to
provide results for the eigenvalues and eigenvectors, upon trun-
cation to a sufficiently large finite order M, which will be com-
bined by the inverse formula (9a) to provide the desired
original eigenfunctions. It is also of interest to express the vari-
able coefficients themselves as eigenfunction expansions [42].
This is particularly advantageous in the evaluation of the alge-
braic system coefficients, An,m and Bn,m. All the related integrals
can then be expressed in terms of eigenfunctions, allowing for
straightforward analytical evaluations. For instance, the coeffi-
cient w(x) can be expanded in terms of eigenfunctions, together
with a filtering solution to enhance convergence, in the follow-
ing form:

wðxÞ ¼ wf ðxÞ þ
X1
k¼1

~CkðxÞ �wk; inverse ð11aÞ

�wk ¼
Z Lx

0
ŵðxÞ½wðxÞ �wf ðxÞ� ~CkðxÞdx; transform ð11bÞ

where ŵðxÞ is the weighting function for the chosen normalized
eigenfunction ~CkðxÞ. This eigenfunction basis may be chosen from
the same auxiliary problem equation, but with first order boundary
conditions, while the filtering function may be a simple analytic
function that satisfies the boundary values for the original coeffi-
cients. The two remaining coefficients are equally expanded, in
terms of eigenfunctions, to yield:

kðxÞ ¼ kf ðxÞ þ
X1
k¼1

~CkðxÞ�kk; inverse ð11cÞ

�kk ¼
Z Lx

0
ŵðxÞ½kðxÞ � kf ðxÞ� ~CkðxÞdx; transform ð11dÞ

dðxÞ ¼ df ðxÞ þ
X1
k¼1

~CkðxÞ�dk; inverse ð11eÞ

�dk ¼
Z Lx

0
ŵðxÞ½dðxÞ � df ðxÞ� ~CkðxÞdx; transform ð11fÞ

The matrices coefficients may then be rewritten in terms of the
expanded functions, such as for the elements of matrix B:

Bn;m ¼
Z Lx

0
wf ðxÞ ~XnðxÞ ~XmðxÞdxþ

X1
k¼1

�wk

Z Lx

0

~CkðxÞ ~XnðxÞ ~XmðxÞdx

ð12aÞ

and for matrix A:

An;m ¼
Z Lx

0

~XmðxÞ
d
dx

kf ðxÞ
d ~XnðxÞ
dx

" #
dx

þ
X1
k¼1

Z Lx

0

~XmðxÞ
d
dx

~CkðxÞ
d ~XnðxÞ
dx

" #
dx

" #
�kk

�
Z Lx

0
df ðxÞ ~XnðxÞ ~XmðxÞdx

�
X1
k¼1

Z Lx

0

~CkðxÞ ~XnðxÞ ~XmðxÞdx
� �

�dk ð12bÞ

Also, the normalization integrals are then computed from:

Ni ¼
X1
n¼1

X1
m¼1

�wi;n
�wi;m

Z Lx

0
wf ðxÞ ~XnðxÞ ~XmðxÞdx

�

þ
X1
k¼1

Z Lx

0

~CkðxÞ ~XnðxÞ ~XmðxÞdx
� �

�wk

)
ð12cÞ

3. Inverse problem

For the solution of the inverse problem, we assume available a
vector of measurements Y, whose values are uncertain and de-
scribed by a probability distribution with density p(Y|P). The quan-
tity P indexes the family of observation distributions representing
characteristics of interest. However, the quantity P may be more
than a simple indexer and may be the very reason of taking mea-
surements, if the goal of the analysis is the determination of its va-
lue. In addition, it is possible that prior knowledge about the
quantity P be available, so that it can be incorporated into the anal-
ysis through a distribution p(P) within the Bayesian framework
[35].

In this way, the process of inference is based on the distribu-
tion of probability P after observing the value of Y, which be-
comes part of the available information as a whole. The
distribution p(P|Y) is called the a posteriori distribution, in direct
opposition to the a priori distribution, and can be obtained
through Bayeś theorem as:

pðPjYÞ ¼ pðYjPÞpðPÞ
pðYÞ / pðYjPÞpðPÞ ð13Þ

where the probability distribution p(Y) plays the role of a normaliz-
ing constant [33,35,36].

Once we have obtained the a posteriori distribution within the
proportionality constant, the information contained therein can
be summarized by statistical measures, in particular to provide
estimates of central values and dispersion. The main positioning
quantities are the average, median and mode, and the key quanti-
ties for the dispersion are the variance, the standard deviation, and
the precision and curvature of the mode. The relationship among
these quantities and their relationship with the rules of decision
are given by Migon and Gamerman [36].

By assuming that the temperature data are additive, uncorre-
lated, Gaussian, with zero mean and constant standard deviation
rY, the likelihood can be written as:

pðYjPÞ ¼ 1

ð2pr2
YÞ

�1=2 exp �ðY � TðPÞÞTðY � TðPÞÞ
2r2

Y

" #
ð14Þ

where T is the vector of calculated temperatures as a function of the
parameters to be estimated, and Y are the measured tempera-
tures.

The unknown quantities in the diffusion problem addressed
here are the variable equation coefficients and eventually also
the space variable effective heat transfer coefficient. Remember,
however, that the approach adopted in solving the direct problem
was to expand such coefficients in terms of eigenfunctions, so that
the unknown quantities are in fact the coefficients of the eigen-
function expansion and the two values of the properties at the
boundaries, employed in the solution procedure as a filter.

When it is not possible to analytically obtain the corresponding
marginal distributions, one needs to use a method based on
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simulation [35]. Inference based on simulation techniques uses
samples from the posteriori p(P|Y) to extract information about
P. The numerical method most used to explore the space of states
of the posteriori is the Monte Carlo simulation. The Monte Carlo
simulation is based on a large sample of the probability density
function (in this case, the function of the posterior probability den-
sity p(P|Y)). Several sampling strategies are proposed in the litera-
ture, including the Monte Carlo method by Markov Chain (MCMC)
adopted in this work, where the basic idea is to simulate a random
walk in the space of p(P|Y) that converges to a stationary distribu-
tion, which is the distribution of interest in the problem.

A Markov chain is a stochastic process {P0, P1, . . .} such that the
distribution of Pi, given all previous values P0, . . . , Pi�1, depends
only on Pi�1. A Markov chain is more precisely defined by its tran-
sition probability p(i, j) = p(i? j), which defines the probability
that the process, from the state si moves to the state sj in a single
step, as follows:

pði; jÞ ¼ pði ! jÞ ¼ pðPtþ1 ¼ sjjPt ¼ siÞ ð15Þ

The MCMC methods require, in order to obtain a single equilib-
rium distribution, that the Markov chain be [35]:

� homogeneous, that is, the probability of transition from one
state to another is invariant;

� irreducible, that is, each state can be reached from any other in
a finite number of iterations;

� aperiodic, that is, there are no absorbing states.

A sufficient condition for a single equilibrium distribution is
that the process meets the following balance equation:

pði ! jÞpiðPjYÞ ¼ pðj ! iÞpjðPjYÞ ð16Þ

where p(Pi|Y) and p(Pj|Y) are the posterior probabilities of different
states of the distribution of interest.

The most commonly used MCMC algorithms are the Metropo-
lis-Hastings, here employed, and the Gibbs sampler [35,36]. The
Markov chain Monte Carlo method according to the generic label
of Metropolis-Hastings, comes from the articles of Metropolis
et al. [39] and Hastings [40], later on complemented by several rel-
evant works. The Metropolis-Hastings algorithm uses the same
idea of the rejectionmethods, i.e., a value is generated from an aux-
iliary distribution and accepted with a given probability. This cor-
rection mechanism ensures the convergence of the chain for the
equilibrium distribution. The Metropolis-Hastings algorithm uses
an auxiliary probability density function, q(P⁄|P), from which it
is easy to obtain sample values. Assuming that the chain is in a
state P, a new candidate value, P⁄, is generated from the auxiliary
distribution q(P⁄|P), given the current state of the chain P, where P
is the vector of parameters under study.

The new value P⁄ is accepted with probability given by Eq. (17),
where the ratio that appears in this equation was called by Has-
tings [40] the ratio test, being today called the ratio of Hastings
‘‘RH’’

RHðP;P�Þ ¼ min 1;
pðP�jYÞqðP�jPÞ
pðPjYÞqðPjP�Þ

� �
ð17Þ

where p(P|Y) is the a posteriori distribution of interest. An important
observation is that we only need to know p(P|Y) up to a constant,
since we are working with ratios between densities and the normal-
ization constant, Eq. (13), is cancelled.

In practical terms, the simulation of a sample of p(P|Y) using the
Metropolis-Hastings algorithm can be outlined as follows [35]:

1. Boot up the iterations counter of the chain i = 0 and assign an
initial value P(0).

2. Generate a candidate value P⁄of the distribution q(P⁄/P).

3. Calculate the probability of acceptance of the candidate value
RH(P, P⁄) by Eq. (17).

4. Generate a random number u with uniform distribution, i.e.,
u � U(0, 1).

5. If u 6 RH then the new value is accepted and we let P(i+1) = P⁄,
otherwise the new value is rejected and we let P(i+1) = P(i).

6. Increase the counter i to i + 1 and return to step 2.

The transition core q(P⁄|P) defines the proposal for a movement
that can be confirmed or not by RH(P, P⁄). For this reason q(P⁄|P) is
usually called the proposal and, when regarded as a conditional
density, it is called the proposal density (or distribution) [35].

In this study we have chosen to adopt symmetrical chains, i.e.,
q(P⁄|P) = q(P|P⁄) for all (P⁄, P). In this case, Eq. (17) reduces to the
ratio of the posterior densities calculated at the previous and pro-
posed chain positions, and does not depend on q(P⁄|P).

4. Integral transformation of the measured data

Themain objective of the present studywas to advance the solu-
tion of the inverse problem in the transformed temperature field,
from the integral transformation of the experimental temperature
data. With such an approach, the experimental measurements in
the spatial domain are compressed into few transformed modes,
as it will be apparent below. Once the experimental temperature
readingsYhavebeenobtained, oneproceeds to the integral transfor-
mation of the temperature field at eachmeasured time. For this pur-
pose the temperature measurements can be interpolated in the
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(a) Thermal conductivity 
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Fig. 2. Spatial behavior of thermophysical properties: (a) thermal conductivity and
(b) volumetric heat capacity.
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spatial domain, generating the continuous functions Texp(x, t),which
are then integral transformed, according to the following integral
transform pair:

Transform Texp;iðtÞ ¼
Z Lx

0
wðxÞ ~wiðxÞ½Texpðx; tÞ � T1�dx ð18aÞ

Inverse Texpðx; tÞ ¼ T1 þ
XNT
i¼0

~wiðxÞTexp;iðtÞ ð18bÞ

In the context of the Bayesian inference here adopted, we thus
have to reformulate the likelihood function because the experi-
mental data are now the transformed temperatures, according to
Eq. (18a). We compare in Eq. (19) the expressions for the likelihood
as traditionally obtained directly from the temperature measure-
ments, Eq. (19a), and as here calculated from the transformed tem-
perature fields, both weighted by the adequate experimental
standard deviation in each field.

Likelihood in the temperature field

/ Exp �1
2

XNx
s

XNt
m

1
r2

s
ðTexpðxs; tmÞ � Tcalcðxs; tmÞÞ2

" #
ð19aÞ

Likelihood in the transformed temperature field

/ Exp �1
2

XNT
i

XNt
m

1
�r2
i

ðTexp;iðtmÞ � Tcalc;iðtmÞÞ2
" #

ð19bÞ

where NT is the number of modes used in representing the trans-
formed temperature.
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Fig. 3. Spatial behavior of additional coefficients.

Table 1
Data employed to generate the simulated experimental data.

tfinal 3 600 s e 0.97
Lx 0.12 m a 0.7
Ly 0.04 m b 0.005 s�1

Lz 0.001 m qinf 1030.9 W/m2

xC 0.04 m T1 23.4 �C

Table 2b
Filters employed for each coefficient representation.

Coefficient Filter Functional form Numerical parameters
in filter

k(x) Linear ðkxL�kx0Þ
Lx

xþ kx0 NkF = 2

w(x) Linear ðwxL�wx0Þ
Lx

xþwx0
NwF = 2

d(x) Step dx0 þ dxL�dx0
1þexp �cðx�xC Þ

Lx

	 
 For c = 200 NdF = 2

Table 2a
Functions and parameters to be estimated for each coefficient.

Coefficient Adopted function Numerical parameters

k(x) Eigenfunction expansion PT
k � ½kx0; kxL; �k1; �k2; . . . ; �kNk

�
w(x) Eigenfunction expansion PT

w � ½wx0;wxL; �w1; �w2; . . . ; �wNw �
d(x) Eigenfunction expansion PT

d � ½dx0;dxL; �d1; �d2; . . . ; �dNd
�

f(t) Parametrization given by
Eq. (20.c)

PT
f � ½a; b�
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In a previous contribution [45], the combination of integral
transforms and Bayesian inference was presented, aiming at the
estimation of spatially variable thermal conductivities in two-
phase dispersed systems. Simulated temperature measurements
were directly employed in the inverse problem analysis, and prior
information in terms of estimates on the dispersed phase concen-
tration was invoked. An example of abrupt space variation was
then selected and the approach was extensively tested and demon-
strated. Nevertheless, it was then recognized that computational
cost could be markedly affected by further increasing the number
of sensors and measurements, such as in modern non-intrusive
infrared thermography temperature acquisition [38]. Therefore,
the present work introduces the inverse problem analysis based

on integral transformed experimental data, instead of directly
employing the original temperature data, thus compressing the
experimental information and significantly reducing computa-
tional costs. Also, to further challenge the inverse analysis algo-
rithm, an application has been selected involving exponential
variations of thermophysical properties in heterogeneous media,
such as in FGM (functionally graded materials), without the need
of a priori information on the concentration of the dispersed phase,
as described below.

5. Results and discussion

The selected physical problem deals with a thermally thin plate
of thickness Lz = 1 mm heated by an electrical resistance on one
surface up to a fraction xC = Lx/3 of its total length, Lx = 12 cm. At

Table 3a
Number of spatial and time measurements used in the sensitivity
analysis.

Number of time measurements
Nt = 300
Number of spatial
measurements, Nx

Total number of experimental
points, Nm

61 18 300
121 36 300
241 72 300
481 144 300
961 288 300

1921 576 300

Table 3b
Number of parameters considered in the sensitivity analysis.

Coefficient Number of parameters

k(x) NPk = 2 + 1 NPk = 2 + 3 NPk = 2 + 5
w(x) NPw = 2 + 1 NPw = 2 + 3 NPw = 2 + 5
d(x) NPd = 2 + 1 NPd = 2 + 1 NPd = 2 + 1
f(t) Nf = 2 Nf = 2 Nf = 2

Total number of parameters
NP 11 15 19

Table 4
Comparison of the number of experimental points for the estimation in the
temperature field and in the transformed temperature field.

Number of spatial
measurements, Nx

Number of time
measurements, Nt

Total number of
experimental points, Nm

241 120 25 680
200 48 200
300 72 300

Number of modes in
temperature expansion

Number of time
measurements, Nt

Total number of
experimental points, Nm

NT = 10 120 1200
200 2000
300 3000

NT = 20 120 2400
200 4000
300 8000

NT = 40 120 4800
200 8000
300 12 000

50 100 150 200 250 300
0.1

1016

1033

1050

1067

1084

t

det[J TJ] 

Fig. 4. Determinant of the information matrix for estimation in the transformed temperature field (from top to bottom, NT = 40, 20, and 10 terms).
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the opposite surface the plate experiences heat losses by both nat-
ural convection and radiation, here taken into account in linearized
form, while all lateral borders are considered to be insulated. This
problem was thus modeled with a one-dimensional transient heat
conduction formulation, as described in Eq. (1) and represented in
Fig. 1, after lumping in the transversal direction. The power dissi-
pated in the resistance per unit area is considered to be known, qinf,
and the spatial distribution of the applied heat flux is also avail-
able, being uniform up to x = xc and zero for x > xc, while an expo-
nential function in time, f(t), models the delay due to the thermal
capacitance of the electrical resistance, i.e.:

qw½x; t� ¼ q½x�f ½t� ð20aÞ

q½x� ¼
qinf 0 < x < Lx=3;
0 Lx=3 < x < Lx;

�
f ½t� ¼ 1� ae�bt ð20b; cÞ

We then seek the simultaneous estimation of the thermal
capacity, thermal conductivity, effective heat transfer coefficient,
and parameters of the time delay of the applied heat flux, respec-
tively, w(x), k(x), heff(x), a and b.

In the present inverse problem analysis, a test-case was chosen
in the form of a polymeric matrix (HDPE) with dispersed alumina
nanoparticles (Al2O3). The concentration of nanoparticles was as-
sumed as an exponential function, varying from essentially the
pure polymer at x = 0, up to 60% of nanoparticles at x = Lx. The poly-
mer volumetric heat capacity and thermal conductivity are respec-
tively of wm = 2.2264 � 106 J/m3 C and km = 0.545W/m C, while the
alumina nanoparticles have thermophysical properties given by
wp = 3.0172 � 106 J/m3 C and kp = 36 W/m C. By employing the
mixture theory and the Lewis and Nielsen correlation [5,10] to
compute the effective volumetric heat capacity and thermal con-
ductivity throughout the domain, we obtain at x = Lx, wx¼Lx ¼
2:7008� 106 J=m3 C and kx¼Lx ¼ 9:078 W=m C. Therefore, in the
present test-case the thermophysical properties were chosen to
vary in exponential form as:

kðxÞ ¼ k0 exp 2bk 1� x
Lx

� �� �
; bk ¼ 1:4064

wðxÞ ¼ w0 exp 2bw 1� x
Lx

� �� �
; bw ¼ 0:0966

ð21a;bÞ

which are illustrated in Fig. 2a and b for the thermal conductivity
and volumetric heat capacity, respectively.

The effective heat transfer coefficient was also estimated
accounting for natural convection and linearized radiation at the
horizontal plate, yielding the behavior shown in Fig. 3a. Fig. 3b
illustrates possible behaviors for the time lag in the applied heat
flux, by varying the parameter a and fixing b = 0.005. The remain-
ing data that define the test-case is then provided in Table 1, from
which the simulated experimental data was generated with the di-
rect problem solution.

The convergence of the temperature eigenfunction expansions
was analysed for increasing truncation orders, up to NT = 40, and
full convergence to four significant digits was achieved at these
truncation orders. Even for much lower truncation orders
(NT < 15) it was achieved a three significant digits convergence,
which is a quite favorable aspect for the sake of accelerating the
solution of the proposed inverse problem.

Table 2a summarizes the parametrization adopted in each func-
tion to be estimated and the number of parameters in each case.
Table 2b shows the filtering choices for the expanded coefficients,
that complement the information on the total number of
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T
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Fig. 5a. Simulated temperature data for selected times, along the plate, for the
0.5 �C uncertainty.
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Fig. 5b. Simulated transient variation of the transformed temperature data up to
NT = 10 and for the 0.5 �C uncertainty (numeric symbols indicate the transformed
temperature mode).

Table 5
Test cases examined.

Simulated experimental data (NT = 10, NPk = 3, NPw = 3, NPd = 3, Nf = 2)
Case Temperature uncertainty NT Nt Nx Prior kx0; kxL; �kj �wx0;wxL; �wj � dx0; dxL; �dj � a; b

Validation cases
1 0.001 �C 10 200 241 N, N, U – N, N, U – N, N, U – U, U
2 0.5 �C 10 200 241 N, N, U – N, N, U – N, N, U – U, U

Simulated experimental data (NT = 50, NPk = 12, NPw = 12, NPd = 12, Nf = 2)
Case Temperature uncertainty NT Nt Nx Prior kx0; kxL; �kj �wx0;wxL; �wj � dx0; dxL; �dj � a; b

Test cases
3 0.1 �C 10 200 241 N, N, U – N, N, U – N, N, U – U, U
4 0.5 �C 10 200 241 N, N, U – N, N, U – N, N, U – U, U

(⁄) N – Normal (Gaussian) prior; U – Uniform prior.
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parameters to be estimated for the functions k(x), w(x), the linear
dissipation term d(x) = heff(x)/Lz and the time behavior of the ap-
plied heat flux, f(t). Therefore, the total number of parameters
‘‘NP’’ is given by the sum of the parameters in each expansion
and the respective filters, as follows:

PT � PT
k [ PT

w [ PT
d [ PT

f

NP ¼ NPk þ NPw þ NPd þ Nf

NP ¼ ðNkF þ NkÞ þ ðNwF þ NwÞ þ ðNdF þ NdÞ þ Nf

ð22a-cÞ

The filters were chosen as functions that incorporate the values
of the coefficients at the two boundaries, x = 0 and Lx, (kx0, kxL, wx0,
wxL and dx0, dxL), which are unknown and should be estimated

together with the eigenfunction expansions coefficients, so as to
make the boundary conditions of the chosen eigenfunction homo-
geneous. For the thermophysical properties k(x) and w(x) we have
employed a simple linear filter without any sort of a priori informa-
tion on the coefficients variations. For the dissipation coefficient,
d(x), a more informative filter was adopted in the form of a steep
variation approaching a step function, since this behavior is phys-
ically expected, in light of the functional form of the applied heat
flux.

Before addressing the estimation of the unknown parameters,
the behavior of the determinant of the information matrix JTJ
[32] needs to be analyzed in order to inspect the influence of the
number of parameters to be estimated in the solution of the in-
verse problem. The sensitivity matrix J is defined as:

JðPÞ ¼ @TTðPÞ
@P

" #T

¼

@T1
@P1

@T1
@P2

@T1
@P3

	 	 	 @T1
@PNp

@T2
@P1

@T2
@P2

@T2
@P3

	 	 	 @T2
@PNp

..

. ..
. ..

. ..
.

@TI
@P1

@TI
@P2

@TI
@P3

	 	 	 @TI
@PNp

2
66666664

3
77777775

ð23Þ

where, for simplicity, the estimated variables were taken as the ac-
tual temperatures and not the ones obtained after the integral
transformation as discussed above. The sensitivity coefficients
Jij ¼ @Ti

@Pj
give the sensitivity of Ti with respect to changes in the

parameter Pj. A small value of the magnitude of Jij indicates that
large changes in Pj yield small changes in Ti. It can be easily noticed
that the estimation of the parameter Pj is extremely difficult in such
cases, because basically the same value for Ti would be obtained for
a wide range of values of Pj. In fact, when the sensitivity coefficients

Table 6
Input data for estimation.

P Exact Min Max Initial

kx0 9.0780 0.463 10.440 8.6157
kxL 0.545 0.463 10.440 0.5028
�k1 �0.6677 �3.111 3.111 �0.7256
�k2 �0.1111 �0.778 0.778 �0.1082
�k3 �0.04091 �1.037 1.037 �0.04433
wx0 2.701 � 106 1.892 � 106 3.106 � 106 2.686 � 106

wxL 2.226 � 106 1.892 � 106 3.106 � 106 2.282 � 106

�w1 �2894.68 �378487.0 378487.0 �2810.39
�w2 �34.942 �94621.8 94621.8 �33.045
�w3 �107.57 �126162.0 126162.0 �104.67
hx0 26.620 13.310 53.241 26.601
hxL 5.7286 2.8643 11.457 6.2323
�h1 0 �3 � 10�12 3 � 10�12 0.
a⁄ = aqinf 721.65 0 1 237.1 700.89
b 0.005 0 0.1 0.00521

0.00 0.02 0.04 0.06 0.08 0.10 0.12

x m

2

4

6

8

10

k
x

,W
m

ºC

(a)  Thermal conductivity 

0.00 0.02 0.04 0.06 0.08 0.10 0.12
x m

2.2 106

2.4 106

2.6 106

2.8 106

3.0 106

w
x

,J
m

3
ºC

(b) Volumetric heat capacity 

0.00 0.02 0.04 0.06 0.08 0.10 0.12
x m

5

10

15

20

25

30

h
x

,W
m

2 ºC

(c) Effective heat transfer coefficient 

500 1000 1500 2000 2500 3000 3500

t s

400

600

800

1000

qw
t

(d) Time lag function in applied heat flux 

Fig. 6. Estimation results – test case 1.
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are small, |JTJ| 
 0 and the inverse problem is ill-conditioned. It can
also be shown that |JTJ| is null if any column of J can be expressed as
a linear combination of other columns [32].

Table 3a presents different possibilities for the number of sen-
sors, depending on the resolution of the infrared camera utilized,
and the total number of experimental points available for a total
of 300 measurements in time. As we can see, the total number of
experimental points can be quite large with such kind of non-
intrusive measurement instrument, which has encouraged the
present approach of data compression in the spatial domain. With
such an approach, the measured data points are not simply dis-
carded, but compressed with the integral transformation of the
measurements in the spatial domain, thus significantly reducing
the amount of information to be actually handled by the inverse
problem algorithm. Table 3b provides three cases involving differ-
ent choices of parameters to be estimated, yielding a total number
of NP = 11, 15 or 19. The differences among such cases are basically
associated with the increasing number of terms in the thermo-
physical properties eigenfunction expansions, k(x) e w(x). For the
dissipation function d(x), only one term was used in the eigenfunc-
tion expansion, since the adopted filter for this coefficient was
already quite informative.

The integral transformation of the experimental data was per-
formed in accordance with Eq. (18a), after interpolating the spatial
measured data with cubic splines. In the inverse analysis that fol-
lows, 241 spatial measurements were employed in the integral
transformation of the experimental data (see Table 3a). A consider-
able reduction on the experimental data set is then achieved with
the integral transformation, as illustrated in Table 4. This table

shows the total number of experimental points, for a fixed number
of sensors (241), available for the estimation procedure performed
directly in the temperature field. It also shows the number of data
points available for the transformed measurement field, by varying
the number of eigenmodes used in the transformations (NT = 10,
20, and 40). It can be noticed that a reduction of more than 10
times is achieved when the plain temperature data is replaced by
the transformed temperature field with the truncation order of
NT = 20.

Fig. 4 presents the determinant of the information matrix by
using the integral transformed data in the inverse analysis. We
can notice that the increase in the expansion truncation orders
leads to an increase in the values of the determinant, as a result
of the larger number of experimental points in the transformed do-
main. The three curves shown in Fig. 4, correspond from top to bot-
tom to NT = 40, 20, and 10. On the other hand, by doubling the
number of eigenmodes available for the transformed data a rela-
tively small increase is observed in the determinant values for a
fixed number of measurements in time. Therefore, for the results
presented hereafter, we preferred to perform the inverse problem
solution by keeping NT = 10 eigenmodes.

Fig. 5a shows the simulated experimental temperature data
with the 0.5 �C uncertainty level, for selected times along the plate.
For the sake of comparison, Fig. 5b illustrates the time evolution of
the first 10 transformed temperature fields, again for the 0.5 �C
uncertainty case. This figure shows the more significant role of
the first five transformed temperatures.

The four test cases examined in this work are summarized in
Table 5. Test cases 1 and 2 were chosen for validation purposes,
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Fig. 7. Estimation results – test case 2.
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since the experimental data were generated with the same number
of terms in the expansions that were employed in the estimations,
NT = 10, Nk = 3, Nw = 3, and Nd = 1, respectively for T(x, t), k(x), w(x)
and d(x). The difference between test cases 1 and 2 is the different
level of experimental error that was examined, an uncertainty of
0.0001 �C and of 0.5 �C, respectively. For the more challenging test
cases 3 and 4, the experimental data were generated with NT = 50,
Nk = 10, Nw = 10, and Nd = 10 and an uncertainty of 0.1 �C and
0.5 �C, respectively, while the estimation was performed with the
same reduced number of terms as in test cases 1 and 2 to avoid
the so called inverse crime. In these four test cases a uniform
non-informative prior (denoted by U) was utilized for the trans-
formed coefficients of the two thermophysical properties and of
the linear dissipation coefficient, besides the two heat flux param-
eters a and b. Gaussian prior distributions (denoted by N) were
adopted for the values of thermophysical properties and of the dis-
sipation coefficient at the boundaries, centered at the expected val-
ues for each parameter, with a standard deviation of 5% of the
respective exact value for kx0, kxL, wx0 and wxL and of 20% for dx0
and dxL. The uniform priors are defined with the minimum and
maximum allowable limits in the search procedure, as detailed in
Table 6. Table 6 also presents the expected exact values used to
generate the simulated measurements, the upper and lower allow-
able bounds and the initial states used in the Markov chain for each
parameter. As initial state of the Markov chain for these coeffi-
cients, we have chosen a random value of the coefficient in the
range defined by 90% and 110% of the exact value. The maximum

and minimum values for the coefficients to be estimated are ob-
tained from the corresponding maximum and minimum values
of the original coefficients, for instance, kmax and kmin. The param-
eterized form of the thermal conductivity, as an example, is given
by:

kðxÞ ¼ kx¼L � kx¼0

L

� �
xþ kx¼0 þ

XNk

k¼1

�kk ~CkðxÞ ð24aÞ

or,

XNk

k¼1

�kk ~CkðxÞ ¼ kðxÞ � kx¼L � kx¼0

L

� �
x� kx¼0 ð24bÞ

By operating (24b) with
R L
0
~CiðxÞdx on both sides, we obtain:

�ki ¼
Z L

0

~CiðxÞkðxÞdx�
kx¼L � kx¼0

L

� �
�gi � kx¼0fi ð25aÞ

where

�gi ¼
Z L

0
x ~CiðxÞdx; fi ¼

Z L

0

~CiðxÞdx ð25b; cÞ

Thus, for a bound maximum or minimum values of k(x), kb = kmin or
kb = kmax, respectively, we have:

�ki;b ¼ ðkb � kx¼0Þfi �
kx¼L � kx¼0

L

� �
�gi ð26Þ
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Fig. 8. Estimation results – test case 3.
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Since the values of the original coefficients at the boundaries are not
known a priori, to either maximize or minimize the values of the
transformed coefficients in Eq. (26), we need to take into consider-
ation the signs of the coefficients �gi and �f i. Thus, from the analysis of
the expression above, and the specific forms of the transformed
quantities, �gi and �f i for odd or even indices, one may get conserva-
tive upper and lower limits for the expansion coefficients, for in-
stance, �ki;max and �ki;min, in the form:

for i ¼ odd ! ðkx¼0 ¼ kx¼L ¼ kmin; kb ¼ kmaxÞ :

�ki;max ¼
2

ffiffiffi
2

p
ðkmax � kminÞ
ip

ffiffiffiffiffiffiffiffi
1=L

p ð27aÞ

�ki;min ¼ 2
ffiffiffi
2

p
ðkmax � kminÞ
ip

ffiffiffiffiffiffiffiffi
1=L

p ð27bÞ

for i = even? (kx=0 = kmin; kx=L = kmax)

�ki;max ¼
2ðkmax � kminÞ

ip
ffiffiffiffiffiffiffiffi
1=L

p ð28aÞ

for i = even? (kx=L = kmin; kx=0 = kmax)

�ki;min ¼ �
ffiffiffi
2

p
ðkmax � kminÞ
ip

ffiffiffiffiffiffiffiffi
1=L

p ð28bÞ

Alternatively, a priori information on the coefficients could have
been used to narrow the minimum to maximum intervals, but at
the present stage of tools demonstration, we have preferred to em-
ploy a wider range.

Figs. 6–9 present the results obtained in the estimations proce-
dure for the four test cases, where the dashed lines represent the
expected exact function, the solid lines represent the estimated
functions, and the dotted lines represent the lower and upper lim-
its related to the 99% confidence levels after propagating the uncer-
tainties involved in the reconstruction of the functions. Only for
the figures related to the time lag of the applied heat flux, the
dashed lines represent just the steady-state expected value of the
prescribed heat flux, qinf.

From the analysis of Figs. 6a–d and 7a–d, related to the two val-
idations cases 1 and 2, one may observe that the proposed ap-
proach was able to recover by estimation the expected exact
functions, thus validating the proposed procedure based on the
integral transformed temperature data. Even for the higher error
level of 0.5 C (case 2), the estimations remain practically coincident
to the graph scale with the expected exact coefficients behavior.
Therefore, the data compression through the integral transforma-
tion of the measured data, which was introduced in this work, does
not affect the spatial information conveyed by the local tempera-
ture measurements, and is still capable of resulting in very accu-
rate estimations for the functions. The analysis of the results for
the more challenging test cases 3 and 4, presented in Figs. 8a–d
and 9a–d, with uncertainty of the temperature measurements of
0.1 C and 0.5 C, respectively, reveals that better estimates are
achieved with the use of the 0.1C error level (test case 3). Never-
theless, the results obtained for test case 4 (Fig. 9a–d), with a much
higher error level of 0.5 C, demonstrate that the present approach,
even in such case, can still provide reasonable estimates. Only at
the cooler edge of the plate, where the temperature distribution

Fig. 9. Estimation results – test case 4. (a) Thermal conductivity; (b) volumetric heat capacity and (c) effective heat transfer coefficient; (d) time lag function in applied heat
flux.
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is practically unchanged along the transient (see Fig. 10), the esti-
mation of the thermal capacity boundary value, present in the filter
solution for this function, is more challenged in both cases 3 and 4.
The encouraging performance of the proposed inverse analysis is
also clear from the excellent agreement achieved between the
experimental and estimated temperatures, for both test cases 3
and 4, as demonstrated by Fig. 10a, for case 3, and Fig. 10b for case
4, for the times t = 120 s, 600 s and 1200 s. In these curves, not to
overpopulate the graphs with the experimental data, the dots rep-
resent the experimental temperature measurements at every five
time steps.

6. Conclusions

The present work addresses the inverse analysis for the simul-
taneous identification of space variable thermophysical properties
in heterogeneous materials, together with the estimation of
boundary condition coefficients in a heat conduction problem.
From the experience achieved in previous contributions, the direct
problem solution was analytically obtained through integral trans-
forms, with the related eigenvalue problem solved by the General-
ized Integral Transform Technique (GITT). The unknown variables
to be estimated were also expanded in terms of eigenfunctions,
yielding a straightforward parameterization of the functions to
be identified, besides a fully analytical implementation of the coef-
ficients matrix in the direct problem solution. Bayesian inference is
employed in the inverse problem solution, implemented via the
Monte Carlo Markov Chain method and the Metropolis-Hastings
sampling procedure. The proposed approach also introduces the

use of experimental information in the transformed domain. The
discrete temperature measurements along the space coordinate
are integral transformed into a small set of modes which represent
the experimental transformed temperatures. A remarkable data
compression is achieved through this transformation procedure,
thus significantly accelerating the inverse problem algorithm,
without loss of information for the reconstruction of the local
thermophysical properties spatial behavior. The approach here
implemented can in principle be directly extended to multidimen-
sional cases, thus taking further advantage of the large amount of
spatially distributed measurements normally made available
through thermographic cameras.
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